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Abstract: In the modeling of complex integrated circuits, the locations of the sampled data points are essential to the success of 
the verification process. Most of the adaptive sampling methods based on iterative algorithms, that use data acquired from 
previous iterations to guide future sample selection, are optimization algorithms. An essential consideration of every adaptive 
sampling method is the trade-off between exploration and exploitation, i.e., the capability of the method to cover the under-
sampled parts of the design space, but also focusing on interesting regions. This paper proposes three combinations of existing 
methods with the purpose of minimizing this trade-off and efficiently characterizing the verification space. Their performance 
and efficiency were validated on 20 synthetic test functions.  
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I. INTRODUCTION 
Nowadays, one of the most technologically advanced 
industries is the semiconductor manufacturing industry. 
Integrated circuits began to be produced in very fine 
technologies and they started to include increasingly 
complex functions [1]. In view of the complexity in 
semiconductor industry, as well as the increasing demand 
for faster designs with growing quality requirements, 
finding methods that greatly increase the speed of 
evaluating system performance becomes crucial in order to 
maintain the company’s profitability [2]. To comply with 
these requirements, accurate simulation models must be 
used, which must evaluate the performance of the system 
in the best determined simulation points of the entire 
permitted design space, which is not a trivial task, as the 
simulation of complex systems with multiple input and 
output parameters can be a time-consuming process. 
Furthermore, the simulation effort explodes, however, 
when the performance has to be analyzed for a continuous 
range of several parameter settings. Since simulations can 
be very expensive, the data points, which are required to 
build the model, must be chosen as optimally as possible 
[3]. 
 Sequential optimization methods (used in adaptive 
sampling) analyze data (models and samples) from 
previous iterations conducive to select new samples in 
areas that are more difficult to approximate, resulting in a 
more efficient distribution of samples compared to 
traditional design of experiments [4]. In a representative 
adaptive sampling method, firstly, an initial set of samples 

is evaluated using a minimal experimental design. Then a 
model is built using this data and based on the estimated 
accuracy of the model, the algorithm may decide if more 
samples are required [5]. Figure 1 depicts the adaptive 
sampling flow. 
 Verification in IC process is essentially an optimization 
problem where the aim is to find the worst-case behavior 
in relation to the performance within the limits of 
specification. This also comes with ensuring certainty, in 
terms of the minimum performance found by exploring as 
completely as possible the space of depending factors. By 
factors we refer to any of the following: system parameters, 
operating conditions, production process parameters, while 
an example of system response is the power consumption.  
While the number of evaluations must be kept to a 
minimum value to avoid rising costs. 
 The traditional optimization algorithms come with 
certain difficulties in achieving this ideal compromise in 
terms of exploration-exploitation, so combining them can 
bring an extra benefit in the efficiency of verification. In 
this paper, we will prove that it is so. 
  An essential consideration in adaptive sampling is the 
trade-off between global exploration and local 
exploitation. Exploitation-based methods estimate the 
error of the model over the design space and select new 
samples in locations where the estimated error is the 
largest. Exploration-based methods, on the other hand, try 
to improve the domain coverage by selecting samples in 
such a way that the design space is covered as uniformly as 
possible [6]. The best optimization method is the one that 
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manages to combine intelligently global exploration and 
local exploitation.  
 In this paper, we propose three new hybrid sequential 
optimization methods to improve the exploration-
exploitation trade-off. In this way, we overcome the 
disadvantage of the Uncertainty reduction adaptive 
sampling method [7], mainly used for exploration 
purposes, by combining it with suitable optimizers for local 
exploitation purposes. Thus, the global exploration role 
will be fulfilled by Uncertainty reduction and in terms of 
local exploitation; optimization algorithms such as 
Differential Evolution [8], Fmincon [9], and Pattern search 
[10] have proven to be a very good choice. 
 The paper is organized as follows: in Section II we 
present the problem formulation and provide a brief 
description of the methods used in this paper; in Section 
III, we describe the setup of the new methods, generated as 
a combination between the Uncertainty reduction and an 
optimizer: Uncertainty reduction & Differential Evolution, 
Uncertainty reduction & Fmincon and Uncertainty 
reduction & Pattern search.; in Section IV we demonstrate 
the effectiveness of the new methods to cover the entire 
analysis space of the test functions and, at the same time, 
accurately determine the regions of interest (extremes in 
this case); conclusions are drawn in Section V. 
 

 
 

Figure 1. An adaptive sampling flowchart. 
 

II. PROBLEM FORMULATION 
2.1 Context  
 An essential consideration in adaptive sampling is the 
trade-off between exploration and exploitation. If an 
adaptive sampling strategy focuses only on local 
exploitation, the initial experimental design must be 
sufficiently large as to capture all regions of interest right 
away and avoid large (interesting) areas to remain 
unsampled. On the other hand, if a strategy focuses only on 
global exploration, the advantage provided by evaluating 
and selecting the samples sequentially is ignored, because 
the outputs are not used. 
In order to increase the sampling performance, these two 
parts should be mixed in a balanced manner, which is 
conceptually expressed as: 
 

𝑆𝑐𝑜𝑟𝑒 =  𝑤𝑙𝑜𝑐𝑎𝑙  × local +𝑤𝑔𝑙𝑜𝑏𝑎𝑙× global (1) 

 

where 𝑤𝑙𝑜𝑐𝑎𝑙 and 𝑤𝑔𝑙𝑜𝑏𝑎𝑙, which are assumed to satisfy 

𝑤𝑙𝑜𝑐𝑎𝑙 + 𝑤𝑔𝑙𝑜𝑏𝑎𝑙   = 1, are the weights for local 

exploitation and global exploration. Local and global 

represent the local exploitation term and global exploration 

term, respectively [11]. 
 However, current adaptive sampling approaches use a 
fixed rule to balance local exploitation and global 
exploration. The SEED approach [12] adopts a balance 
factor λ; [13] presented a decreasing law of the weights 
according to several error thresholds; the LOLA-Voronoi 
approach [14] assigns the same weight for local 
exploitation and global exploration. [15] employed balance 
strategy to perform adaptive sampling by circularly 
looping through a search pattern that contains several 
weights from global to local exploitation. 
 We propose a novel, generic approach, in which two 
different criteria are defined: one for global exploration and 

one for local exploitation, we considered 𝑤𝑙𝑜𝑐𝑎𝑙 = 

𝑤𝑔𝑙𝑜𝑏𝑎𝑙=0.5. For the global exploration criterion, we have 

chosen an adaptive sampling method based on sampling in 
areas where metamodel prediction currently is most 
uncertain, Uncertainty reduction. For the local exploitation 
criterion, we used three optimization methods (Differential 
Evolution, Fmincon and Pattern search), see Figure 2. 
 
2.2 Adaptive sampling and optimization approaches 
Uncertainty Reduction Method  
Uncertainty reduction method is an adaptive sampling 
technique, which samples the space in the region where the 
prediction currently is most uncertain (Figure 3). The 
algorithm starts with a small number of uniformly 
distributed samples as an initial training set to create a 
metamodel. Using the metamodel simulation, it gets the 
response of the new points from this uncertainty region. 
Then, it moves on to the next stage, training a new 
metamodel. This procedure is repeated until there are 
enough samples from simulations to get a sufficiently good 
fit of the response curve [7]. 
 

 
 

Figure 2. Schematic representation of the new adaptive 
sampling strategy. 

 
 

 
 

Figure 3. Concept of Uncertainty reduction method (the 
red points are the samples generated with Uncertainty 
reduction and the curve illustrates the shape of the 
simulated function) [7]. 
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Differential Evolution Method  
The differential evolution (DE) algorithm belongs to a 
broader family of evolutionary computing algorithms. It 
starts by randomly initiating a population of real-valued 
decision vectors, also known as genomes or chromosomes 
[8]. The mutations are performed on the population, at each 
iteration, to generate new candidate solutions (Figure 4). 
The mutation process adds the weighted difference 
between two population vectors to a third vector, to 
produce a mutated vector. The factors of the mutated vector 
are again mixed with the factors of another predetermined 
vector, the target vector, during a process known as 
crossover that aims to increase the diversity of the 
perturbed parameter vectors. The resulting vector is known 
as the trial vector. These iterations continue until a 
termination criterion is reached [16]. 
 
Fmincon Method  
The software module fmincon is a solver provided by 
MATLAB used on both linear and nonlinear systems. The 
function fmincon is an optimizer that supports solving 
large, structured problems. Fmincon has 4 algorithm 
options that can be selected from the field options [9]. This 
function is a gradient based function and can be used to 
search and find all possible local extremes that satisfy the 
given objectives. The iteration process starts with an initial 
guess and stops when all setup criteria are met. If the first-
order optimization is fulfilled by the last iteration, the result 
is considered as a local extreme that satisfies system needs 
(Figure 5) [17]. 
 

 
 

Figure 4. Concept of Differential evolution method [16]. 
 

 
 

Figure 5. Trace of unconstrained optimization with 
fmincon [18]. 

 

Pattern search Method  
Pattern search (also known as direct search, derivative-free 
search or black-box search) is a family of numerical 
optimization methods provided by MATLAB that does not 
require any information about the gradient of the objective 
function (Figure 6). This algorithm searches a set of points 
around the current point, looking for a lower value of the 
objective function   than the value of the current point. 
Direct search can be used to solve problems for which the 
objective function is not differentiable or is not even 
continuous. Global Optimization Toolbox functions 
include three Pattern search algorithms called: the 
generalized pattern search (GPS) algorithm, the generating 
set search (GSS) algorithm and the mesh adaptive search 
(MADS) algorithm [10]. 
 

 
 

Figure 6. The concept of the pattern search method [10]. 
 

III. EXPERIMENTAL SETUP AND RESULTS  
To test the existing and proposed methods let us consider a 
set of 20 synthetic test functions (monotonic functions and 
also functions with extreme points); these functions can be 
grouped into five categories as shown in Figure 7. The 
experiments were performed on these test functions with 
different number of factors; it started with 2 factors, it 
continued with 5 factors and finally 10 factors were 
considered for each function. In all cases, the factors were 
varied in the range [-1, 1].   
 The first experiments were performed on the 
Uncertainty reduction and independently on each of the 
optimizers. 
 

 
 

Figure 7. Test functions overview. 
 Within these experiments, a maximum number of 1000 
samples were allocated for each of the tested methods. It 
was noticed that the first method offers a very good 
coverage of the entire space of the function but does not 
insist on the extreme areas. Meanwhile the optimizers 
insist on the extreme area, but do not offer a good coverage 
of the whole space. 
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 The second stage of the experiments consists of 
generating new methods by combining the Uncertainty 
reduction with each of the optimizers in two steps, as 
shown in Figure 2.  
 Uncertainty reduction & Differential Evolution method 
was obtained by considering the 500 samples generated by 
Uncertainty reduction. From these samples, the first 10 
highest values were selected as the initial population in 
Differential Evolution. Taking into account the initial 
population set by us, Differential Evolution generated 500 
samples. From Figure 8.a. and Figure 8.b. it can be 
understood that the methods worked as we expected, they 
cover the whole space and at the same time emphasizes the 
analysis on the extreme areas. But there is a disadvantage: 
the long experimental time due to the large number of 
required evaluations of functions. 
For the methods Uncertainty reduction & Fmincon and 
Uncertainty reduction & Pattern search, the 500 samples 
generated by Uncertainty reduction were also considered. 
From this set of 500 samples, the maximum value (which 
is identified as local exploitation term) was determined and 
was added as a starting point parameter for the two 
optimizers, Fmincon and Pattern search. For these 
optimization methods the maximum number of samples 
was set at 500, but they used less, see Table 1, Figure 8. c 
and Figure 8. d 
  

 
                    (a)                                           (b) 

 
                      (c)                                      (d) 

 
               (e)                                            (f)      

 

                                (g) 
 
Figure 8. Data points for the following methods: (a) 
Uncertainty; (b) Differential Evolution; (c) Fmincon; (d) 
Pattern search; (e) Uncertainty reduction & Differential 
Evolution; (f) Uncertainty reduction & Fmincon; (g) 
Uncertainty reduction & Pattern search 
 
 The disadvantage of the Uncertainty reduction & 
Fmincon method, can be considered the risk of getting 
stuck around the starting point.  The Uncertainty reduction 
& Pattern search method thus prove to be the most 
advantageous choice and with the fewest compromises. 
 
3.2 Results  
 By visually comparing the figures 8.a and 8.b, it can be 
deduced that Uncertainty reduction offers the best 
coverage of the analysis space and the three optimizers 
insist in the extreme area. 
 To analyze how the local exploitation part is performed, 
the comparison of the obtained maximum values was used. 
We generated, for each function, 1000000 samples with 
Differential Evolution, determine the maximum value, 
then this maximum value is compared with the maximum 
value obtained with each of the three methods (Uncertainty 
reduction & Differential Evolution, Uncertainty reduction 
& Fmincon and Uncertainty reduction & Pattern search). 
When the 20 test functions have 2 factors, all 3 methods 
behave very well, as confirmed in Table 1. However, the 
Uncertainty reduction & Fmincon and Uncertainty 
reduction & Pattern search methods have the lowest values 
for the cost of evaluating the functions. The methods 
worked as expected, they cover the whole space and at the 
same time forces the analysis on the extreme areas. 
 From the careful analysis of Table 2 and Table 3 it can 
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be seen that Uncertainty reduction & Pattern search is the 
method with the best results, but also with the highest 
number of function evaluations. To have a clear 
comparison between the three methods, we tested the 
Uncertainty reduction & Differential Evolution method 
with the same number of function evaluation (500&600 in 
case of 5 factors and 500&1700 in case of 10 factors). From 
this test, two observations can be made: 
• the best results are those obtained with the Uncertainty 
reduction & Pattern search method, 
• With the increase of the number of factors the methods 
Uncertainty reduction & Differential Evolution need more 
samples to obtain conclusive results. 
 For an even more complex analysis on the methods, 
Tables 4-6 were filled in with the results obtained after 
comparing the maxima obtained by the methods with 1% 
error compared to the real maxima. 
 The results presented in the last 3 tables reinforce the 
previous observations: the method with the best results is 
the Uncertainty reduction & Pattern search method; the 
other two methods need a larger number of samples and a 
higher number of function evaluations to offer satisfactory 
results. 
 

Table 1. Overview of the results obtained on the 20 

functions of 2 factors 
 

Controller 
type 

Percentage 
of 

determined 
maxima 

Function 
Evaluation 

No. of 
samples 

Uncertainty  35%  1000  1000 

Differential 
Evolution 

 85%  1000  1000 

Fmincon  60%  38-239  12-36 

Pattern 
search 

 90%  47-218  22-72 

Uncertainty 
& 

Differential 
      95% 500 & 500 

500& 

500 

Uncertainty 
& Fmincon 

      95% 
500 & (21-
94) 

500 & 
(5-25) 

Uncertainty 
& Pattern 

search 
      95% 

500 & (59-
181) 

500 & 
(30-60) 

 
Table 2. Overview of the results obtained on the 20 

functions of 5 factors 
 

Controller 
type 

Percentag
e of 

determine
d maxima 

Function 
Evaluation 

No. of 
samples 

Uncertainty  0%  1000  1000 

Differential 
Evolution 

 0%  1000  1000 

Fmincon  55%  116-315  15-52 

Pattern search  75%  359-680  90-138 

Uncertainty & 
Differential 

      20% 500 & 500 500& 

500 

Uncertainty & 
Fmincon 

      45% 500 & (92-
276) 

500 & 
(16-37) 

Uncertainty & 
Pattern search 

      75% 500 & 
(305-602) 

500 & 
(92-124) 

Uncertainty & 
Differential 

      65%  500 & 600 500 
&600 

 
Table 3. Overview of the results obtained on the 20 

functions of 10 factors 
 

Controller type 

Percenta
ge of 

determin
ed 

maxima 

Function 
Evaluation 

No. of 
samples 

Uncertainty  0%  1000  1000 

Differential 
Evolution 

 0%  1000  1000 

Fmincon  45%  187-918   17-46 

Pattern search  90%  1242-1827  32-200 

Uncertainty & 
Differential 

      0% 500 & 500 
500& 

500 

Uncertainty & 
Fmincon 

      55% 
500 & (156-
276) 

500 & 
(14-45) 

Uncertainty & 
Pattern search 

      95% 
500 & 
(1246-
1693) 

500 & 
(152-
198) 

Uncertainty & 
Differential 

      5% 
 500 & 
1700 

500 
&1700 

 
Table 4. Overview of the results obtained on the 20 

functions of 2 factors (1% error) 
 

Controller type Percentage of 
determined maxima 

Uncertainty 65% 

Differential Evolution 85% 

Fmincon 65% 

Pattern search 90% 

Uncertainty & Differential 100% 

Uncertainty & Fmincon 100% 

Uncertainty & Pattern 
search 

100% 

 
Table 5. Overview of the results obtained on the 20 

functions of 5 factors (1% error) 
 

Controller type Percentage of 
determined maxima 

Uncertainty 0% 

Differential Evolution 40% 
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Fmincon 60% 

Pattern search 90% 

Uncertainty & Differential 55% 

Uncertainty & Fmincon 65% 

Uncertainty & Pattern 
search 

90% 

 
Table 6. Overview of the results obtained on the 20 

functions of 10 factors (1% error) 
 

Controller type 
Percentage of 

determined maxima 

Uncertainty  0% 

Differential Evolution  0% 

Fmincon  70% 

Pattern search  95% 

Uncertainty & Differential       10% 

Uncertainty & Fmincon       75% 

Uncertainty & Pattern search       100% 

 
IV. CONCLUSION  

The paper proposes novel, highly efficient and very robust 
generic adaptive sampling methods that minimize the 
exploration-exploitation trade-off of some well-known 
adaptive sampling methods.  
 Discovering that Uncertainty reduction manages to 
cover well the entire space of analysis, but does not insist 
enough on the extreme areas, we completed the 
shortcoming by combining it with an optimizer for 
exploitation purpose. The optimizers (Differential 
Evolution, Fmincon and Pattern search) will only insist on 
the extreme area. Thus, our combined methods 
(Uncertainty reduction & Differential Evolution, 
Uncertainty reduction & Fmincon and Uncertainty 
reduction & Pattern search) provide a complete analysis of 
the space, covering the entire analysis domain, including 
the extreme areas. 
 Balancing the cost and efficiency of the three methods, 
it was proved that Uncertainty reduction & Pattern search 
is the best method. This method requires a small number of 
samples and an acceptable cost in terms of time and 
function evaluations. This is especially noticeable in the 
case of 10-factor functions, where the method identified a 
maximum of 19 of 20 functions with only 698 samples and 
a number of function evaluations of 2193. However, the 
other two methods also manage to obtain a special balance 
between exploitation and global exploration, offering both 
the coverage of the entire space and the focus on the 
extreme area. The disadvantage of these two methods is the 
large number of required samples and a high number of 
function evaluations. 
 We can conclude that, the proposed method:  
Uncertainty reduction & Pattern search provides a good 
alternative for classical sequential experimental design 
techniques by reducing the total number of simulations 
requires. Future work includes testing and validating the 

proposed methods on real data sets from IC verification. 
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