

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received March 26, 2023; revised June 22, 2023

6

DDoS ATTACK DETECTION USING SUPERVISED MACHINE LEARNING

ALGORITHMS OVER THE CIDDOS2019 DATASET

Daniel ZINCA, Virgil DOBROTA

Communications Department, Technical University of Cluj-Napoca, Romania
Corresponding author: Daniel.Zinca@com.utcluj.ro

Abstract: Distributed Denial-of-Service (DDoS) attacks are one of the most common types of cyber-attacks that can cause
severe damage to networks and systems. Traditional methods to detect them rely on signature-based Intrusion Detection
Systems (IDS), which are limited by the need of prior knowledge of specific patterns and by the usual ineffectiveness against
zero-day attacks. However machine learning (ML) algorithms have the potential to support the detection of new and unknown
attacks. This article compares the DDoS detection performance of three Machine Learning techniques: Gaussian Naïve Bayes,
Logistic Regression and Random Forest, based on validation metrics such as precision, recall and F1 score. The system was
trained using three datasets extracted from CICDDoS2019 database. The results proved the detection of attacks at Layer 4
(TCP SYN/ UDP flood), and at reflective Layer 7 (MSSQL, NetBIOS). The Random Forests and Logistic Regression methods
achieved a precision between 93.7% and 99.4 % over these three datasets.

Keywords: CICDDoS2019, DDoS, Gaussian Naïve Bayes, Intrusion Detection Systems, Logistic Regression, Random
Forest.

I. INTRODUCTION
Distributed Denial of Service (DDoS) attacks are a major
threat for online services and organizations, causing
downtime, financial loss, and also reputational damage.
They involve the flooding of a targeted system with a large
number of requests, overwhelming its resources and
causing it to become unavailable to legitimate users. DDoS
attacks are typically carried out using botnets, i.e. networks
of compromised computers that are controlled by a central
command-and-control (C&C) server. The botnet is used to
send a large volume of requests to the targeted system, with
the goal of overwhelming its resources and causing it to
become unavailable. Traditional approaches to detect
DDoS attacks rely on signature-based Intrusion Detection
System (IDS) implementations. They are limited by the
need for prior knowledge of specific attack patterns. In
general, IDS monitor network traffic to search for
signatures of malicious activity or for violations of rules
previously created by security policies. Signature- and
anomaly-based methods are the two main approaches used
to build such systems [1]. A signature represents an
indicator of compromise created based on known attacks.
Snort is considered to be one of the most popular Open-
Source IDS that implements such approach [2]. It has
capabilities to detect DDoS attacks either by using the
built-in set of rules, either by developing new ones [3]. The
detection capabilities in the case of this approach greatly
depend on the rules that are written and a slightly different
attack may not be detected.
 Recently machine learning (ML) algorithms proved to
be a promising approach for DDoS detection, having the
potential to detect new and unknown attack patterns by

implementing anomaly-based IDS. ML algorithms can
analyze large volumes of network traffic data and learn
how to identify anomalous patterns. Papers [4]-[8] present
various algorithms used to assess the performance against
different datasets.
Depending on the layer the affected protocol belongs to,
there are Layer 3, Layer 4 and Layer 7 attacks [7]-[10]. The
following two categories represent a possible classification
of DDoS:
1. Flooding attacks that attempt to exhaust the resources
available at the targeted entity, by sending a large number
of packets, flooding the channel or the server resources.
One subcategory is represented by an exploitation attack
where a “vulnerability” in the protocol design is used, like
in the case of the TCP SYN-Flood.
2. Reflection and amplification attacks where the attacker
is spoofing packets having as source address the target
device. This determines other computers to send back
packets to the victim’s IP address. This category of issues
is called DrDoS (Distributed Reflection Denial of Service).
For the traditional approach of a rule-based IDS, the
metrics that are used are the number of true positives, true
negatives, false positives and false negatives. In [12] the
performance of rule-based IDS (using snort) was assessed.
Also, in [12] it was demonstrated that a collaborative
detection mechanism using flow-based anomaly detection
with Deep Neural Networks improves the performance
over the usage of the rule-based IDS by achieving more
than 90% true positive rate with less than 5% of false
alarms.
 A recent dataset CIC-DDoS2019 was created by the
Canadian Institute of Cybersecurity. It contains records for

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 7

DDoS attacks on Layer 4 (TCP/ UDP) protocols and on
Layer 7 protocols in addition to benign traffic [9]-[10]. The
CIC-DDoS2019 dataset was captured in two different days
and contains not only the entire traffic in pcap format but
also csv files with 80 features that were extracted from
them using the CICFlowMeter v3 tool [9]. Each record was
labeled with the corresponding classification (benign or a
certain type of DDoS attack). Each csv file was named
according to the attack present in the majority of the
records, along with some benign traffic and in some cases,
with other attacks. Table I summarizes the files with
corresponding attacks in each folder. The total number of
records for each attack is not evenly distributed and it does
not follow the percentages encountered in the case of real
network traffic. The behavior for each category can be very
different than the others, making the detection of new
attacks more difficult.

TABLE I. CIC-DDOS2019 DATASET FILE CONTENTS

WITH BENIGN, L4 AND L7 DDOS ATTACKS

SPECIFICATIONS

Day 1 Day 2
Syn (TCP)
UDP
UDPLag

Syn (TCP)
DrDoS UDP
UDPLag

LDAP
MSSQL
NetBIOS
Portmap

DrDoS LDAP

DrDoS MSSQL

DrDoS NeBIOS

DrDos NTP

DrDoS SNMP

DrDoS SSDP

DrDoS DNS

TFTP

 The performances obtained in paper [9] against the
complete dataset are rather low, with the RF algorithm
achieving the F1 value of 0.62. In [8] the approach was to
split each csv file into the training and testing part and then
separately measuring the performance of each algorithm
for each attack. Even if the resulting performance in [8] is
better than in [9], the F1 score being 0.99 in most cases, the
disadvantage in [8] is that the algorithm is trained to
classify one attack only versus normal traffic. Paper [10]
used a mixture of records from different datasets. In this
work we propose a novel combination of data from the
same dataset to obtain three different ones in order to test
the performance of each Machine Learning algorithm
involved. The remainder of the paper is organized as
follows: Section II describes the contents of the derived
datasets and the Machine Learning algorithms, Section III
discusses the experimental results and the last section
concludes the paper. The advantages of partitioning the
dataset into three datasets as described in Section II consist
in a better detection in terms of Precision, Recall and F1
score compared to [9] and in the classification of multiple
attacks for several protocols, compared to [8].

II. METHODS
The source code for data processing and for training,
testing and measuring performance was done by using the
Google Colab platform[13], the Python language and the
scikit library. Each file in the CICDDoS2019 dataset
contained records from one attack targeted to a certain
protocol. However there are two aspects that can lead to a
lower performance when using just the original dataset and
caused the results in [8]:
1. In the case of some protocols, the file from one day

contains records for a different attack (for example a
flooding attack) than the records targeting the same
protocol in the other file (where a DrDoS attack is
recorded).

2. The behavior of a Layer 4 attack is different than the
behavior of a L7-based one.

 Due to the fact that the size of each file in the original
dataset is very large and it contains in some situations
millions of records, the load operation can be inefficient.
In DoS/ DDoS attacks, there is a high number of packets
with identical characteristics, differentiated only by their
timestamp. For a signature-based method, this aspect is
important and it can increase the detection capability. On
the other hand, the timestamp value is not useful as a
feature for a Machine Learning algorithm and all duplicate
records should be removed to eliminate biased results in
the training stage.
 We addressed these aspects and we generated from the
original dataset, a total number of three different datasets
we worked with. The size problem was solved by using the
compressed parquet feature available in the
read_parquet from the pandas Python library [14],
combined with the removal of duplicated records. For all
datasets we selected protocols that were present in both
days. For Layer 4 we selected TCP (Syn) and UDP, whilst
for Layer 7 we chose LDAP, MSSQL and NetBIOS. Each
dataset had 78 features.
The first dataset we assembled contains the records from
Day 1 from the files with TCP(Syn), UDP, MSSQL, LDAP
and NetBIOS. Then we split the file on 80% for training
and 20% for testing. The number of benign and attack
traffic is presented in Table II.

TABLE II. DATASET1 WITH BENIGN, L4 AND L7 DDOS

ATTACKS

Attack Class Training
Dataset

Testing
Dataset

Benign 30,678 7,581
UDP 1,030,024 258,171
TCP (Syn) 362,353 90,512
MSSQL 206,672 51,339
LDAP 13,717 3,324
NetBIOS 9,004 2,186
TOTAL 1,652,448 413,113

 For the rest of the datasets we used record from distinct
files for training compared to testing. In the second dataset
we choose only UDP in L4, but the same protocols for L7
attacks as in the previous case. For this dataset, the training
dataset was taken from the corresponding Day 1 files and
the testing dataset from the corresponding Day 2 files. The
numbers for benign and attack records for each part are
presented in Table III.

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 8

TABLE III. DATASET2 WITH BENIGN, UDP AND L7 DDOS

ATTACKS

Attack Class Training
Dataset

Testing
Dataset

Benign 11,225 6931
UDP 1,288,195 1,074,277
MSSQL 258,011 193,346
LDAP 17,041 28,843
NetBIOS 11,190 17,886
TOTAL 1,585,662 1,321,283

 Finally in the last dataset we were focused on L7 attacks
only. Therefore it has fewer records than Dataset 2,
because the UDP records were eliminated. See Table IV
for the number of records in Dataset 3.

TABLE IV. DATASET3 WITH BENIGN AND L7 DDOS

ATTACKS

Attack Class Training
Dataset

Testing
Dataset

Benign 8,392 4,889
MSSQL 253,051 193,346
LDAP 17,041 28,843
NetBIOS 11,190 17,886
TOTAL 289,674 244,964

 After the dataset is loaded from parquet files and then
concatenated, the features for which the corr() function
has a value higher than 0.97 were removed, the number of
remaining features being 41.
 The next step was to train the model using ML. For the
purposes of this article we choose three algorithms:
Gaussian Naïve Bayes, Decision Tree and Random
Forests. For each dataset, we trained the model for each of
the three algorithms and we compared their performance.

A. Gaussian Naïve Bayes
Gaussian Naïve Bayes represents a Supervised Machine
Learning Algorithm based on the Bayes Theorem that is
used to determine, based on the conditional probability, the
posterior probability of a hypothesis that considers the
occurrence of each feature is independent of the other
features. The Gaussian variant of the Naïve Bayes
algorithm uses a specific probability equation that is
expressed in (1).

(𝑥𝑖|𝑦) =
1

√2πσ𝑦2
 𝑒𝑥𝑝(−

(xi−µy)2

2σ𝑦2
) (1)

where 𝜎𝑦 represents the dispersion for class 𝑦 and µ𝑦 is the

median value for class 𝑦, both being estimated with a

maximum probability. We used the GaussianNB from

sklearn.naive_bayes, scikit library.

B. Decision Tree
This algorithm is a Supervised Learning technique that can
be used in the case of classification problems. It is a tree-
structured classifier, where internal nodes represent the

features of a dataset, branches represent the decision rules,
and each leaf node is the outcome. The decisions are made
on the basis of features of the given dataset.
 Decision Tree is a graphical representation for getting
all the possible solutions to a problem/ decision based on
given conditions. It is called a decision tree because,
similar to a tree, it starts with the root node, which expands
on further branches and constructs a tree-like structure. A
tree is composed of nodes, and those nodes are chosen
looking for the optimum split of the features. We
implemented this algorithm by using the
DecisionTreeClassifier class from the sklearn
library.

C. Random Forest

This is a Supervised ML algorithm that is used widely in
classification and regression problems. It builds decision
trees on different samples and takes their majority vote for
classification and average in case of regression. Random
Forest uses the Bagging (Bootstrap Aggregation)
which is an ensemble method. Ensemble techniques
consist in combining multiple models. Bagging chooses a
random sample from the data set. Hence each model is
generated from the samples provided by the original data
with replacement known as row sampling. This step of row
sampling with replacement is called bootstrap. Then each
model is trained independently and generates results. The
final output is based on majority voting after combining the
results of all models. This step which involves combining
all the results and generating output based on majority
voting is known as aggregation. We implemented Random
Forest by using the RandomForestClassifier class
from the sklearn library.

III. EXPERIMENTAL RESULTS
In order to assess the performance of each of the three
algorithms for the case of each of the three datasets, we
computed the precision (or detection rate), recall, and F1
score (which combines both precision and recall) using (2)
– (4). In addition, we also show the confusion matrix in
each case.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

 True Positive (TP) represents the number of records
correctly matched as attack traffic; True Negative (TN)
represents the number of records correctly matched as
normal traffic; False Positive (FP) is the number of normal
records incorrectly labeled as attack traffic; and finally
False Negative (FN) is the number of DDoS attack records
incorrectly labeled as normal traffic.
 Tables V-VII present the performance in the case of
each Dataset, with respect to each ML algorithm. We
analyzed the confusion matrices, as in Tables VIII-X, XII-
XIV and XVI-XVIII, to determine the best algorithm for
each Dataset. The algorithm performance was compared
for each Dataset in Tables XI, XV and XIX.

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 9

TABLE V. PRECISION, RECALL AND F1 SCORE FOR DATASET1

Attack
Class

Machine Learning Algorithm

Gaussian Naïve Bayes Decision Tree Random Forest
Precision Recall F1

score
Precision Recall F1

score
Precision Recall F1

score
Benign 0.85 0.16 0.26 0.98 1.00 0.99 1.00 1.00 1.00

LDAP 0.00 0.00 0.00 0.85 0.87 0.86 0.92 0.90 0.91
MSSQL 0.90 0.57 0.70 0.97 0.99 0.98 0.98 0.98 0.98
NetBIOS 0.11 0.04 0.06 0.98 0.95 0.96 0.97 0.97 0.97

TCP 0.98 0.89 0.93 1.00 1.00 1.00 1.00 1.00 1.00
UDP 0.87 0.99 0.93 1.00 1.00 1.00 1.00 1.00 1.00

TABLE VI. PRECISION, RECALL AND F1 SCORE FOR DATASET2

Attack
Class

Machine Learning Algorithm

Gaussian Naïve Bayes Decision Tree Random Forest

Precision Recall F1
score

Precision Recall F1
score

Precision Recall F1
score

Benign 0.73 0.17 0.28 0.74 0.98 0.84 0.78 1.00 0.87

LDAP 0.00 0.00 0.00 0.87 0.91 0.89 0.88 0.93 0.91
MSSQL 0.84 0.67 0.74 0.93 0.98 0.95 0.94 0.98 0.96
NetBIOS 0.01 0.01 0.01 0.96 0.48 0.64 0.97 0.50 0.66
UDP 0.73 0.17 0.28 0.74 0.98 0.84 0.78 1.00 0.87

TABLE VII. PRECISION, RECALL AND F1 SCORE FOR DATASET3

Attack
Class

Machine Learning Algorithm

Gaussian Naïve Bayes Decision Tree Random Forest

Precision Recall F1
score

Precision Recall F1
score

Precision Recall F1
score

Benign 0.75 0.15 0.24 0.85 0.99 0.92 0.83 1.00 0.91

LDAP 0.00 0.00 0.00 0.88 0.90 0.89 0.89 0.94 0.91
MSSQL 0.79 1.00 0.88 0.95 0.98 0.96 0.95 0.98 0.97
NetBIOS 0.27 0.01 0.02 0.99 0.49 0.66 0.99 0.50 0.67

A. Results obtained based on Dataset1

TABLE VIII. CONFUSION MATRIX FOR GAUSSIAN NAÏVE

BAYES (DATASET1)

Benign 1186 52 22 56 784 5481

LDAP 1 0 1925 6 9 1383

MSSQL 1 0 29158 77 291 21812

NetBIOS 0 0 226 88 687 1185

TCP 202 4 33 140 80295 9838

UDP 1 0 929 420 2 256819

TABLE IX. CONFUSION MATRIX FOR DECISION TREE

(DATASET1)

Benign 7545 4 6 5 21 0

LDAP 16 2882 410 3 12 1

MSSQL 35 513 50648 4 32 107

NetBIOS 10 1 34 2075 15 51

TCP 53 0 34 3 90400 22

UDP 4 0 926 27 6 257208

 Figure 1 presents the ten most important features
according to the coefficient’s values in the case of Decision
Tree for Dataset1.

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 10

Figure 1. Ten most important features for Decision Tree

(Dataset 1)

TABLE X. CONFUSION MATRIX FOR RANDOM FOREST

(DATASET1)

Benign 7578 0 0 1 2 0

LDAP 4 2991 313 3 12 1

MSSQL 3 251 50391 24 38 632

NetBIOS 2 4 26 2111 12 31

TCP 11 6 28 12 90439 16

UDP 0 0 776 27 11 257357

Comparing the precision in the case of all three algorithms
using Dataset1 we came to the conclusion, according to
Table XI that Random Forest presents the best
performance.

TABLE XI. ALGORITHM PERFORMANCE (DATASET1)

Algorithm used with Dataset1 Precision
(training
dataset)

Precision
(testing
dataset)

Gaussian Naïve Bayes 0.8884 0.8896
Decision Tree 0.9943 0.9943
Random Forest 0.9979 0.9945

B. Results based on Dataset2

TABLE XII. CONFUSION MATRIX FOR GAUSSIAN NAÏVE

BAYES (DATASET2)

Benign 1200 40 161 114 5416

LDAP 58 0 11913 151 16721

MSSQL 98 5 129588 34 63621

NetBIOS 106 15 6547 100 11118

UDP 189 2 6567 10512 1056997

TABLE XIII. CONFUSION MATRIX FOR DECISION TREE

(DATASET2)

Benign 6827 36 62 6 0

LDAP 332 26138 2357 16 0

MSSQL 397 3345 189377 35 195

Net
BIOS 695 291

8112 8631 157

UDP 995 306 3956 297 1068723

TABLE XIV. CONFUSION MATRIX FOR RANDOM FORESTS,
FOR THE CASE OF DATASET2

Benign 6907 0 6 17 1

LDAP 268 26753 1807 11 4

MSSQL 343 3103 188913 32 955

Net
BIOS 441 147

7988 9003 307

UDP 927 235 2866 193 1070056

Comparing the precision in the case of all three algorithms
using Dataset2 we came again to the conclusion, according
to Table XV that Random Forest has the best performance.

TABLE XV. ALGORITHM PERFORMANCE (DATASET2)

Algorithm used with
Dataset2

Precision
(training
dataset)

Precision
(testing
dataset)

Gaussian Naïve Bayes 0.9019 0.8990
Decision Trees 0.9938 0.9836
Random Forests 0.9969 0.9851

C. Results obtained based on Dataset3

Table XVI presents the confusion matrix. The results
obtained in this case showed that Gaussian Naïve Bayes
should not be used to detect L7 DDoS attacks.

TABLE XVI. CONFUSION MATRIX FOR GAUSSIAN NAÏVE

BAYES (DATASET3)

Benign 713 24 4065 87

LDAP 51 0 28551 241

MSSQL 93 5 193149 99
NetBIOS 98 14 17616 158

TABLE XVII. CONFUSION MATRIX FOR DECISION TREE

(DATASET3)

Benign 4863 3 4 19

LDAP 127 25930 2730 56

MSSQL 366 2961 189996 23

NetBIOS 357 543 8203 8783

TABLE XVIII.

CONFUSION MATRIX FOR RANDOM FOREST (DATASET3)

Benign 4866 0 9 14

LDAP 164 26978 1684 17

MSSQL 325 3301 189668 52

NetBIOS 504 168 8184 9030

 Figure 2 presents the most important 10 features
according to the coefficient’s values in the case of Random
Forests for Dataset3.

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 11

Figure 2. Ten most important features for Random Forest

(Dataset 3)

 Comparing the precision in the case of all three
algorithms using Dataset3, again the conclusion, according
to Table XIX, the Random Forest has the best performance.

TABLE XIX. ALGORITHM PERFORMANCE (DATASET3)

Algorithm used with
Dataset3

Precision
(training
dataset)

Precision
(testing
dataset)

Gaussian Naïve Bayes 0.8766 0.7920
Decision Trees 0.9852 0.9371
Random Forests 0.9964 0.9411

IV. CONCLUSIONS
In this work we analyzed the performance of three Machine
Learning algorithms: Gaussian Naïve Bayes, Decision
Tree, Random Forest on the detection of DDoS attacks,
both flooding and reflection/amplification, on L4 and L7.
We derived three datasets from the CIC-DDoS-2019
dataset. Dataset 1 contains records for TCP(Syn) and UDP
flood for L4 attacks and L7 attacks for the protocols
MSSQL, NetBIOS, LDAP. Dataset 2 contains UDP flood
attacks and L7 attacks, where the testing data was captured
on a different date. Dataset 3 contains L7 attacks only.
From the measurements we performed, the Random Forest
algorithm performed very well with precision between
0.94 and 0.99 depending on the dataset. The Decision Tree
algorithm offered also good performance, between 0.93
and 0.99 depending on the dataset. The third algorithm was
Gaussian Naïve Bayes that offered much lower
performance than the other algorithms, between 0.79 and
0.88.
 Future work will consider the implementation of Deep
Learning algorithms for the purpose of DDoS attack
detection, based on the same datasets.

REFERENCES
[1] O.U. Olouhal, T.S. Yange, G.E. Okerekel and F.S. Bakpol, “Cutting

Edge Trends in Deception Based Intrusion Detection Systems-A
Survey”. J. Inf. Secur. 2021, 12, 250–269.
https://doi.org/10.4236/jis.2021.124014.

[2] Snort3, [Online].Available: https://www.snort.org/snort3

[3] Z. Hassan, Shahzeb, R. Odarchenko, S. Gnatyuk, A. Zaman and M.
Shah, "Detection of Distributed Denial of Service Attacks Using
Snort Rules in Cloud Computing & Remote Control Systems," 2018
IEEE 5th International Conference on Methods and Systems of
Navigation and Motion Control (MSNMC), Kiev, Ukraine, 2018,
pp. 283-288, doi: 10.1109/MSNMC.2018.8576287.

[4] V. Verma, and V. Kumar, “DOS/DDOS Attack Detection using
Machine Learning: A Review”. Proceedings of the International
Conference on Innovative Computing & Communication (ICICC)
2021, doi: 10.2139/ssrn.3833289.

[5] T.E. Ali, Y.-W. Chong, and S. Manickam, “Machine Learning
Techniques to Detect a DDoS Attack in SDN: A Systematic
Review,” Applied Sciences, vol. 13, no. 5, p. 3183, Mar. 2023, doi:

10.3390/app13053183.

[6] M. Mittal, K. Kumar and S. Behal, “Deep learning approaches for
detecting DDoS attacks: a systematic review”. Soft Comput, 2022,
doi: 10.1007/s00500-021-06608-1

[7] O. Bamasag et al., “Real-time DDoS flood attack monitoring and
detection (RT-AMD) model for cloud computing”, PeerJ Comput.
Sci., 2022, doi: 10.7717/peerj-cs.814. Avaible:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202629/

[8] K.B. Dasari, N. Devarakonda, “Detection of Different DDoS
Attacks Using Machine Learning Classification Algorithms”,
Ingénierie des Systèmes d’Information, 2021, pp. 461-468, doi:
10.18280/isi.260505

[9] I. Sharafaldin, A.H. Lashkari, S. Hakak, and A. A. Ghorbani,
"Developing Realistic Distributed Denial of Service (DDoS) Attack
Dataset and Taxonomy", 2019 International Carnahan Conference
on Security Technology (ICCST), Chennai, India, 2019, pp. 1-8,
doi: 10.1109/CCST.2019.8888419.

[10] I. Sharafaldin, A.H. Lashkari, S. Hakak, and A. A. Ghorbani.
(2022), “CIC-DDoS2019 Data set”. Kaggle. Available:

https://doi.org/10.34740/KAGGLE/DSV/4059918

[11] T. Booth and K. Andersson, “Mitigating DRDoS Network Attacks
via Consolidated Deny Filter Rules”, ReBICTE, vol. 6, pp. 19–29,
Oct. 2020.

[12] R. M. A. Ujjan, Z. Pervez and K. Dahal, "Suspicious Traffic
Detection in SDN with Collaborative Techniques of Snort and Deep
Neural Networks," 2018 IEEE 20th International Conference on
High Performance Computing and Communications; IEEE 16th
International Conference on Smart City; IEEE 4th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS),
Exeter, UK, 2018, pp. 915-920, doi:
10.1109/HPCC/SmartCity/DSS.2018.00152.

[13] Google Colab platform, [Online], Available:
https://colab.research.google.com/

[14] Laurens D'Hooge, CIC-DDoS2019-00-Cleaning, StrGenIx 2019,
[Online], Available: https://www.kaggle.com/code/dhoogla/cic-
ddos2019-00-cleaning.

https://www.snort.org/snort3
https://dx.doi.org/10.2139/ssrn.3833289

