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Abstract: Distributed Denial-of-Service (DDoS) attacks are one of the most common types of cyber-attacks that can cause 
severe damage to networks and systems. Traditional methods to detect them rely on signature-based Intrusion Detection 
Systems (IDS), which are limited by the need of prior knowledge of specific patterns and by the usual ineffectiveness against 
zero-day attacks.  However machine learning (ML) algorithms have the potential to support the detection of new and unknown 
attacks. This article compares the DDoS detection performance of three Machine Learning techniques: Gaussian Naïve Bayes, 
Logistic Regression and Random Forest, based on validation metrics such as precision, recall and F1 score. The system was 
trained using three datasets extracted from CICDDoS2019 database. The results proved the detection of attacks at Layer 4 
(TCP SYN/ UDP flood), and at reflective Layer 7 (MSSQL, NetBIOS). The Random Forests and Logistic Regression methods 
achieved a precision between 93.7% and 99.4 % over these three datasets. 
 
Keywords: CICDDoS2019, DDoS, Gaussian Naïve Bayes, Intrusion Detection Systems, Logistic Regression, Random 
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I. INTRODUCTION 
Distributed Denial of Service (DDoS) attacks are a major 
threat for online services and organizations, causing 
downtime, financial loss, and also reputational damage. 
They involve the flooding of a targeted system with a large 
number of requests, overwhelming its resources and 
causing it to become unavailable to legitimate users. DDoS 
attacks are typically carried out using botnets, i.e. networks 
of compromised computers that are controlled by a central 
command-and-control (C&C) server. The botnet is used to 
send a large volume of requests to the targeted system, with 
the goal of overwhelming its resources and causing it to 
become unavailable. Traditional approaches to detect 
DDoS attacks rely on signature-based Intrusion Detection 
System (IDS) implementations. They are limited by the 
need for prior knowledge of specific attack patterns. In 
general, IDS monitor network traffic to search for 
signatures of malicious activity or for violations of rules 
previously created by security policies. Signature- and 
anomaly-based methods are the two main approaches used 
to build such systems [1]. A signature represents an 
indicator of compromise created based on known attacks. 
Snort is considered to be one of the most popular Open-
Source IDS that implements such approach [2]. It has 
capabilities to detect DDoS attacks either by using the 
built-in set of rules, either by developing new ones [3]. The 
detection capabilities in the case of this approach greatly 
depend on the rules that are written and a slightly different 
attack may not be detected. 
 Recently machine learning (ML) algorithms proved to 
be a promising approach for DDoS detection, having the 
potential to detect new and unknown attack patterns by 

implementing anomaly-based IDS. ML algorithms can 
analyze large volumes of network traffic data and learn 
how to identify anomalous patterns. Papers [4]-[8] present 
various algorithms used to assess the performance against 
different datasets.  
Depending on the layer the affected protocol belongs to, 
there are Layer 3, Layer 4 and Layer 7 attacks [7]-[10]. The 
following two categories represent a possible classification 
of DDoS: 
1. Flooding attacks that attempt to exhaust the resources 
available at the targeted entity, by sending a large number 
of packets, flooding the channel or the server resources. 
One subcategory is represented by an exploitation attack 
where a “vulnerability” in the protocol design is used, like 
in the case of the TCP SYN-Flood. 
2. Reflection and amplification attacks where the attacker 
is spoofing packets having as source address the target 
device. This determines other computers to send back 
packets to the victim’s IP address. This category of issues 
is called DrDoS (Distributed Reflection Denial of Service). 
For the traditional approach of a rule-based IDS, the 
metrics that are used are the number of true positives, true 
negatives, false positives and false negatives. In [12] the 
performance of rule-based IDS (using snort) was assessed. 
Also, in [12] it was demonstrated that a collaborative 
detection mechanism using flow-based anomaly detection 
with Deep Neural Networks improves the performance 
over the usage of the rule-based IDS by achieving more 
than 90% true positive rate with less than 5% of false 
alarms.  
 A recent dataset CIC-DDoS2019 was created by the 
Canadian Institute of Cybersecurity. It contains records for 
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DDoS attacks on Layer 4 (TCP/ UDP) protocols and on 
Layer 7 protocols in addition to benign traffic [9]-[10]. The 
CIC-DDoS2019 dataset was captured in two different days 
and contains not only the entire traffic in pcap format but 
also csv files with 80 features that were extracted from 
them using the CICFlowMeter v3 tool [9]. Each record was 
labeled with the corresponding classification (benign or a 
certain type of DDoS attack). Each csv file was named 
according to the attack present in the majority of the 
records, along with some benign traffic and in some cases, 
with other attacks. Table I summarizes the files with 
corresponding attacks in each folder. The total number of 
records for each attack is not evenly distributed and it does 
not follow the percentages encountered in the case of real 
network traffic. The behavior for each category can be very 
different than the others, making the detection of new 
attacks more difficult. 

TABLE I.  CIC-DDOS2019 DATASET FILE CONTENTS 

WITH BENIGN, L4 AND L7 DDOS ATTACKS 

SPECIFICATIONS  

Day 1 Day 2 
Syn (TCP) 
UDP 
UDPLag 

Syn (TCP) 
DrDoS UDP 
UDPLag 

LDAP 
MSSQL 
NetBIOS 
Portmap 
 

DrDoS LDAP 

DrDoS MSSQL 

DrDoS NeBIOS 

DrDos NTP 

DrDoS SNMP 

DrDoS SSDP 

DrDoS DNS 

TFTP 
 
 The performances obtained in paper [9] against the 
complete dataset are rather low, with the RF algorithm 
achieving the F1 value of 0.62. In [8] the approach was to 
split each csv file into the training and testing part and then 
separately measuring the performance of each algorithm 
for each attack. Even if the resulting performance in [8] is 
better than in [9], the F1 score being 0.99 in most cases, the 
disadvantage in [8] is that the algorithm is trained to 
classify one attack only versus normal traffic. Paper [10] 
used a mixture of records from different datasets. In this 
work we propose a novel combination of data from the 
same dataset to obtain three different ones in order to test 
the performance of each Machine Learning algorithm 
involved. The remainder of the paper is organized as 
follows: Section II describes the contents of the derived 
datasets and the Machine Learning algorithms, Section III 
discusses the experimental results and the last section 
concludes the paper. The advantages of partitioning the 
dataset into three datasets as described in Section II consist 
in a better detection in terms of Precision, Recall and F1 
score compared to [9] and in the classification of multiple 
attacks for several protocols, compared to [8]. 
 
 
 
 
 
 
 

II. METHODS 
The source code for data processing and for training, 
testing and measuring performance was done by using the 
Google Colab platform[13], the Python language and the 
scikit library. Each file in the CICDDoS2019 dataset 
contained records from one attack targeted to a certain 
protocol. However there are two aspects that can lead to a 
lower performance when using just the original dataset and 
caused the results in [8]: 
1. In the case of some protocols, the file from one day 

contains records for a different attack (for example a 
flooding attack) than the records targeting the same 
protocol in the other file (where a DrDoS attack is 
recorded).  

2. The behavior of a Layer 4 attack is different than the 
behavior of a L7-based one. 

 Due to the fact that the size of each file in the original 
dataset is very large and it contains in some situations 
millions of records, the load operation can be inefficient. 
In DoS/ DDoS attacks, there is a high number of packets 
with identical characteristics, differentiated only by their 
timestamp. For a signature-based method, this aspect is 
important and it can increase the detection capability. On 
the other hand, the timestamp value is not useful as a 
feature for a Machine Learning algorithm and all duplicate 
records should be removed to eliminate biased results in 
the training stage.  
 We addressed these aspects and we generated from the 
original dataset, a total number of three different datasets 
we worked with. The size problem was solved by using the 
compressed parquet feature available in the 
read_parquet from the pandas Python library [14], 
combined with the removal of duplicated records. For all 
datasets we selected protocols that were present in both 
days. For Layer 4 we selected TCP (Syn) and UDP, whilst 
for Layer 7 we chose LDAP, MSSQL and NetBIOS. Each 
dataset had 78 features. 
The first dataset we assembled contains the records from 
Day 1 from the files with TCP(Syn), UDP, MSSQL, LDAP 
and NetBIOS. Then we split the file on 80% for training 
and 20% for testing. The number of benign and attack 
traffic is presented in Table II. 

TABLE II.  DATASET1 WITH BENIGN, L4 AND L7 DDOS 

ATTACKS 

Attack Class Training 
Dataset 

Testing 
Dataset 

Benign 30,678 7,581 
UDP 1,030,024 258,171 
TCP (Syn) 362,353 90,512 
MSSQL 206,672 51,339 
LDAP 13,717 3,324 
NetBIOS 9,004 2,186 
TOTAL 1,652,448 413,113 

 For the rest of the datasets we used record from distinct 
files for training compared to testing. In the second dataset 
we choose only UDP in L4, but the same protocols for L7 
attacks as in the previous case. For this dataset, the training 
dataset was taken from the corresponding Day 1 files and 
the testing dataset from the corresponding Day 2 files. The 
numbers for benign and attack records for each part are 
presented in Table III. 
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TABLE III.  DATASET2 WITH BENIGN, UDP AND L7 DDOS 

ATTACKS 

Attack Class Training 
Dataset 

Testing 
Dataset 

Benign 11,225 6931 
UDP 1,288,195 1,074,277 
MSSQL 258,011 193,346 
LDAP 17,041 28,843 
NetBIOS 11,190 17,886 
TOTAL 1,585,662 1,321,283 

 
 Finally in the last dataset we were focused on L7 attacks 
only. Therefore it has fewer records than Dataset 2, 
because the UDP records were eliminated. See Table IV 
for the number of records in Dataset 3. 

TABLE IV.  DATASET3 WITH BENIGN AND L7 DDOS 

ATTACKS 

Attack Class Training 
Dataset 

Testing 
Dataset 

Benign 8,392 4,889 
MSSQL 253,051 193,346 
LDAP 17,041 28,843 
NetBIOS 11,190 17,886 
TOTAL 289,674 244,964 

 
 After the dataset is loaded from parquet files and then 
concatenated, the features for which the corr() function 
has a value higher than 0.97 were removed, the number of 
remaining features being 41. 
 The next step was to train the model using ML. For the 
purposes of this article we choose three algorithms: 
Gaussian Naïve Bayes, Decision Tree and Random 
Forests. For each dataset, we trained the model for each of 
the three algorithms and we compared their performance.  
 

A. Gaussian Naïve Bayes  
Gaussian Naïve Bayes represents a Supervised Machine 
Learning Algorithm based on the Bayes Theorem that is 
used to determine, based on the conditional probability, the 
posterior probability of a hypothesis that considers the 
occurrence of each feature is independent of the other 
features. The Gaussian variant of the Naïve Bayes 
algorithm uses a specific probability equation that is 
expressed in (1). 
 

(𝑥𝑖|𝑦) = 
1

√2πσ𝑦2
 𝑒𝑥𝑝(−

(xi−µy)2

2σ𝑦2
)                               (1) 

 

where 𝜎𝑦 represents the dispersion for class 𝑦 and µ𝑦 is the 

median value for class 𝑦, both being estimated with a 

maximum probability. We used the GaussianNB from 

sklearn.naive_bayes, scikit library. 

 

B. Decision Tree  
This algorithm is a Supervised Learning technique that can 
be used in the case of classification problems. It is a tree-
structured classifier, where internal nodes represent the 

features of a dataset, branches represent the decision rules, 
and each leaf node is the outcome. The decisions are made 
on the basis of features of the given dataset. 
 Decision Tree is a graphical representation for getting 
all the possible solutions to a problem/ decision based on 
given conditions. It is called a decision tree because, 
similar to a tree, it starts with the root node, which expands 
on further branches and constructs a tree-like structure. A 
tree is composed of nodes, and those nodes are chosen 
looking for the optimum split of the features. We 
implemented this algorithm by using the 
DecisionTreeClassifier class from the sklearn 
library. 

C. Random Forest  

This is a Supervised ML algorithm that is used widely in 
classification and regression problems. It builds decision 
trees on different samples and takes their majority vote for 
classification and average in case of regression. Random 
Forest uses the Bagging (Bootstrap Aggregation) 
which is an ensemble method. Ensemble techniques 
consist in combining multiple models. Bagging chooses a 
random sample from the data set. Hence each model is 
generated from the samples provided by the original data 
with replacement known as row sampling. This step of row 
sampling with replacement is called bootstrap. Then each 
model is trained independently and generates results. The 
final output is based on majority voting after combining the 
results of all models. This step which involves combining 
all the results and generating output based on majority 
voting is known as aggregation. We implemented Random 
Forest by using the RandomForestClassifier class 
from the sklearn library. 
  

III. EXPERIMENTAL RESULTS 
In order to assess the performance of each of the three 
algorithms for the case of each of the three datasets, we 
computed the precision (or detection rate), recall, and F1 
score (which combines both precision and recall) using (2) 
– (4). In addition, we also show the confusion matrix in 
each case. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                              (3) 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                (4) 

 True Positive (TP) represents the number of records 
correctly matched as attack traffic; True Negative (TN) 
represents the number of records correctly matched as 
normal traffic; False Positive (FP) is the number of normal 
records incorrectly labeled as attack traffic; and finally 
False Negative (FN) is the number of DDoS attack records 
incorrectly labeled as normal traffic. 
 Tables V-VII present the performance in the case of 
each Dataset, with respect to each ML algorithm. We 
analyzed the confusion matrices, as in Tables VIII-X, XII-
XIV and XVI-XVIII, to determine the best algorithm for 
each Dataset. The algorithm performance was compared 
for each Dataset in Tables XI, XV and XIX. 
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TABLE V.  PRECISION, RECALL AND F1 SCORE FOR DATASET1  

 
 
Attack 
Class 

Machine Learning Algorithm 

Gaussian Naïve Bayes Decision Tree  Random Forest  
Precision Recall F1 

score 
Precision Recall F1 

score 
Precision Recall F1 

score 
Benign 0.85 0.16 0.26 0.98 1.00 0.99 1.00 1.00 1.00 

LDAP 0.00 0.00 0.00 0.85 0.87 0.86 0.92 0.90 0.91 
MSSQL 0.90 0.57 0.70 0.97 0.99 0.98 0.98 0.98 0.98 
NetBIOS 0.11 0.04 0.06 0.98 0.95 0.96 0.97 0.97 0.97 

TCP 0.98 0.89 0.93 1.00 1.00 1.00 1.00 1.00 1.00 
UDP 0.87 0.99 0.93 1.00 1.00 1.00 1.00 1.00 1.00 

 

TABLE VI.  PRECISION, RECALL AND F1 SCORE FOR DATASET2  

 
 
Attack 
Class 

Machine Learning Algorithm 

Gaussian Naïve Bayes Decision Tree  Random Forest  

Precision Recall F1 
score 

Precision Recall F1 
score 

Precision Recall F1 
score 

Benign 0.73 0.17 0.28 0.74 0.98 0.84 0.78 1.00 0.87 

LDAP 0.00 0.00 0.00 0.87 0.91 0.89 0.88 0.93 0.91 
MSSQL 0.84 0.67 0.74 0.93 0.98 0.95 0.94 0.98 0.96 
NetBIOS 0.01 0.01 0.01 0.96 0.48 0.64 0.97 0.50 0.66 
UDP 0.73 0.17 0.28 0.74 0.98 0.84 0.78 1.00 0.87 

 

TABLE VII.  PRECISION, RECALL AND F1 SCORE FOR DATASET3  

 
 
Attack 
Class 

Machine Learning Algorithm 

Gaussian Naïve Bayes Decision Tree  Random Forest  

Precision Recall F1 
score 

Precision Recall F1 
score 

Precision Recall F1 
score 

Benign 0.75 0.15 0.24 0.85 0.99 0.92 0.83 1.00 0.91 

LDAP 0.00 0.00 0.00 0.88 0.90 0.89 0.89 0.94 0.91 
MSSQL 0.79 1.00 0.88 0.95 0.98 0.96 0.95 0.98 0.97 
NetBIOS 0.27 0.01 0.02 0.99 0.49 0.66 0.99 0.50 0.67 

 

 

A. Results obtained based on Dataset1 

TABLE VIII.  CONFUSION MATRIX FOR GAUSSIAN NAÏVE 

BAYES (DATASET1) 

Benign 1186 52 22 56 784 5481 

LDAP 1 0 1925 6 9 1383 

MSSQL 1 0 29158 77 291 21812 

NetBIOS 0 0 226 88 687 1185 

TCP 202 4 33 140 80295 9838 

UDP 1 0 929 420 2 256819 

 

TABLE IX.  CONFUSION MATRIX FOR DECISION TREE 

(DATASET1) 

Benign 7545 4 6 5 21 0 

LDAP 16 2882 410 3 12 1 

MSSQL 35 513 50648 4 32 107 

NetBIOS 10 1 34 2075 15 51 

TCP 53 0 34 3 90400 22 

UDP 4 0 926 27 6 257208 

 
 Figure 1 presents the ten most important features 
according to the coefficient’s values in the case of Decision 
Tree for Dataset1. 
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Figure 1. Ten most important features for Decision Tree 

(Dataset 1) 

TABLE X.  CONFUSION MATRIX FOR RANDOM FOREST 

(DATASET1) 

Benign 7578 0 0 1 2 0 

LDAP 4 2991 313 3 12 1 

MSSQL 3 251 50391 24 38 632 

NetBIOS 2 4 26 2111 12 31 

TCP 11 6 28 12 90439 16 

UDP 0 0 776 27 11 257357 

 

Comparing the precision in the case of all three algorithms 
using Dataset1 we came to the conclusion, according to 
Table XI that Random Forest presents the best 
performance. 

TABLE XI.  ALGORITHM PERFORMANCE (DATASET1)  

Algorithm used with Dataset1 Precision 
(training 
dataset) 

Precision 
(testing 
dataset) 

Gaussian Naïve Bayes 0.8884 0.8896 
Decision Tree 0.9943 0.9943 
Random Forest 0.9979 0.9945 

B. Results based on Dataset2 

TABLE XII.  CONFUSION MATRIX FOR GAUSSIAN NAÏVE 

BAYES (DATASET2) 

Benign 1200 40 161 114 5416 

LDAP 58 0 11913 151 16721 

MSSQL 98 5 129588 34 63621 

NetBIOS 106 15 6547 100 11118 

UDP 189 2 6567 10512 1056997 

TABLE XIII.  CONFUSION MATRIX FOR DECISION TREE 

(DATASET2) 

Benign 6827 36 62 6 0 

LDAP 332 26138 2357 16 0 

MSSQL 397 3345 189377 35 195 

Net 
BIOS 695 291 

8112 8631 157 

UDP 995 306 3956 297 1068723 

TABLE XIV.  CONFUSION MATRIX FOR RANDOM FORESTS, 
FOR THE CASE OF DATASET2 

Benign 6907 0 6 17 1 

LDAP 268 26753 1807 11 4 

MSSQL 343 3103 188913 32 955 

Net 
BIOS 441 147 

7988 9003 307 

UDP 927 235 2866 193 1070056 

 
Comparing the precision in the case of all three algorithms 
using Dataset2 we came again to the conclusion, according 
to Table XV that Random Forest has the best performance. 

TABLE XV.  ALGORITHM PERFORMANCE (DATASET2) 

Algorithm used with 
Dataset2 

Precision 
(training 
dataset) 

Precision 
(testing 
dataset) 

Gaussian Naïve Bayes 0.9019 0.8990 
Decision Trees 0.9938 0.9836 
Random Forests  0.9969 0.9851 

C. Results obtained based on Dataset3 

Table XVI presents the confusion matrix. The results 
obtained in this case showed that Gaussian Naïve Bayes 
should not be used to detect L7 DDoS attacks. 
 
 

TABLE XVI.  CONFUSION MATRIX FOR GAUSSIAN NAÏVE 

BAYES (DATASET3) 

Benign 713 24 4065 87 

LDAP 51 0 28551 241 

MSSQL 93 5 193149 99 
NetBIOS 98 14 17616 158 

 

TABLE XVII.  CONFUSION MATRIX FOR DECISION TREE 

(DATASET3) 

Benign 4863 3 4 19 

LDAP 127 25930 2730 56 

MSSQL 366 2961 189996 23 

NetBIOS 357 543 8203 8783 

  
TABLE XVIII.    

CONFUSION MATRIX FOR RANDOM FOREST (DATASET3) 

 
Benign 4866 0 9 14 

LDAP 164 26978 1684 17 

MSSQL 325 3301 189668 52 

NetBIOS 504 168 8184 9030 

 
 Figure 2 presents the most important 10 features 
according to the coefficient’s values in the case of Random 
Forests for Dataset3. 
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Figure 2. Ten most important features for Random Forest 

(Dataset 3) 
 

 Comparing the precision in the case of all three 
algorithms using Dataset3, again the conclusion, according 
to Table XIX, the Random Forest has the best performance. 

 
TABLE XIX.  ALGORITHM PERFORMANCE (DATASET3)  

Algorithm used with 
Dataset3 

Precision 
(training 
dataset) 

Precision 
(testing 
dataset) 

Gaussian Naïve Bayes 0.8766 0.7920 
Decision Trees 0.9852 0.9371 
Random Forests  0.9964 0.9411 

 
  

IV. CONCLUSIONS 
In this work we analyzed the performance of three Machine 
Learning algorithms: Gaussian Naïve Bayes, Decision 
Tree, Random Forest on the detection of DDoS attacks, 
both flooding and reflection/amplification, on L4 and L7. 
We derived three datasets from the CIC-DDoS-2019 
dataset. Dataset 1 contains records for TCP(Syn) and UDP 
flood for L4 attacks and L7 attacks for the protocols 
MSSQL, NetBIOS, LDAP. Dataset 2 contains UDP flood 
attacks and L7 attacks, where the testing data was captured 
on a different date. Dataset 3 contains L7 attacks only. 
From the measurements we performed, the Random Forest 
algorithm performed very well with precision between 
0.94 and 0.99 depending on the dataset. The Decision Tree 
algorithm offered also good performance, between 0.93 
and 0.99 depending on the dataset.  The third algorithm was 
Gaussian Naïve Bayes that offered much lower 
performance than the other algorithms, between 0.79 and 
0.88.  
 Future work will consider the implementation of Deep 
Learning algorithms for the purpose of DDoS attack 
detection, based on the same datasets. 
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