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Abstract: GPS tracking devices are widely used in industries like logistics, transportation, and security. However, they are 
susceptible to cyber-attacks, including Man-in-the-Middle (MITM). This study focuses on Teltonika GPS tracking devices and 
examines the impact of MITM attacks on their operation. We propose implementing encryption protocols and other measures 
to enhance the security and resilience of Teltonika GPS tracking devices. 
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I. INTRODUCTION 
Internet of Things (IoT) devices based on Global 
Positioning System (GPS) or other principles [1] enable 
organizations to track their assets and to monitor the 
movements of their employees and/or vehicles. However, 
these devices are vulnerable to cyber-attacks, which can 
compromise their accuracy, reliability, and security [2]. 
One of the most significant threats to the case of GPS 
tracking devices is represented by the Man-in-the-Middle 
(MITM) attack [3], [4]. This occurs when an attacker 
intercepts and alters the communications between two 
parties. In the context of this approach, it means that an 
attacker can intercept the GPS data sent by the device to 
the tracking platform and to modify it, to show a different 
location or route [5]. This can have serious consequences, 
such as lost productivity, stolen goods, or compromised 
personal safety [6].  
 One approach to protect against MITM attacks is to 
implement encryption protocols, such as Transport Layer 
Security (TLS) and Secure Sockets Layer (SSL) [4], [7]. 
These protocols can help to ensure that data transmitted 
between the device and the tracking platform is secure and 
cannot be intercepted or modified by the attackers. We 
investigated the impact of this type of attack and we 
proposed several mechanisms that can be integrated into 
the firmware of the devices. Thus, Teltonika GPS tracking 
devices can be made more resilient against cyber-attacks, 
enabling businesses and individuals to trust the accuracy 
and security of the GPS data [8]. 
 The remainder of the paper is organized as follows: 
Section II describes the architecture of FMB122 IoT 
device, whilst Section III discusses the legacy insecure 
algorithm integrated within the firmware. Section IV 
presents the countermeasures to secure the firmware, and 
Section V concludes the paper.  
   
 
 
 
 

II. TELTONIKA FMB122 IOT DEVICE 
The Teltonika FMB122 solution (see Figure 1) is a 
compact and versatile GPS tracking device designed for 
various applications, such as fleet management, asset 
tracking, and personal tracking. The device features a 
powerful ARM Cortex-M3 processor, built-in GSM/ 
GPRS and GPS modules, and a range of I/O interfaces, 
including digital/ analog inputs, and digital outputs [9]. 
  

 
 

Figure 1. FMB122 hardware device. 
 

 Its firmware was written in C programming language 
and it is based on the FreeRTOS real-time operating 
system. The code was designed to control the device's 
hardware components, including the GPS and mobile 
communications modules, and to manage the exchange of 
information between the device and the tracking platform. 
The firmware can be updated Over-the-Air (OTA), 
allowing Teltonika to release updates to address security 
vulnerabilities and other issues [8], [10]. 
 However, the FMB122 model uses encoding algorithms 
(i.e., Base64 or hexadecimal conversion) for data in transit, 
which provide less security than encryption. The legacy 
algorithms can be easily decoded, making them vulnerable 
to MITM attacks. Thus, without encryption, data 
transmitted between the device and the tracking platform 
can be intercepted, modified, or even replaced by attackers 
[11], [12]. For a better understanding of the processes of 
encoding and decoding, we summarized herein an 
algorithm used by Teltonika devices for telemetry data 
transmission.  
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 The structure is as follows: X is longitude; Y is latitude; 
Altitude in [meters above the sea level]; Angle in [degrees], 
where 0 is north, increasing 1 unit clockwise; Satellites in 
[number of visible satellites]; Speed in [km/h]. Note that 
the value 0x0000 is obtained when GPS data is invalid. 
Longitude and latitude are integer values constructed from 
degrees d, minutes m, seconds, and milliseconds according 
to the formula (d: degrees, m: minutes, s: seconds, ms: 
milliseconds, p: accuracy (10,000,000) [8], [9], [12]: 

 

                          (𝑑 +
𝑚

60
+

𝑠

3,600
+

𝑚𝑠

3,600,000
) ∗ 𝑝             (1) 

 
 Figure 2 presents an example of 152 bytes sent using 
Codec 8 Extended (see the differences compared to Codec 
8 in Table I). This does not provide an adequate level of 
security and it remains unsecured against MITM attacks 
[8], [12] 

TABLE I.  DIFFERENCES BETWEEN CODEC 8 AND CODEC 

8 EXTENDED 

 Codec 8 Codec 8 Extended 
Codec ID 0x08 0x8E 
AVL Data IO 
element length 

1 Byte 2 Bytes 

AVL Data IO 
element total IO 
count length 

1 Byte 2 Bytes 

AVL Data IO 
element IO count 
length 

1 Byte 2 Bytes 

VL Data IO element 
AVL ID length 

1 Byte 2 Bytes 

Variable size IO 
elements 

Does not 
include 

Include variable size 
elements 

 
 Adelson-Velsky and Landis (AVL) data element sizes 
in Codec 8 Extended were increased to 2 bytes length and 
new variable type added. For a detailed description see 
[12]. 
000000000000005F8E010000015FBA40B620000F0DC

DE420959D30008A000006000000000006000100EF00

00010011001E000100100000CBDF0002000B0000000

03544C875000E0000000029BFE4D100010100001100

00000000000000000000000000000000010000D153 

Figure 2. Use of Codec 8 Extended 
 

 The significance of these fields is the following: 
00000000 - 4 zeros, 4 bytes 
0000005F - data length, 4 bytes 
8E – codec ID 
01 - number of data (1 record)  
0000015FBA40B620 - Timestamp in milliseconds 
(1510658324000) 
GMT: Tuesday, January 14, 2023 09:18:10 AM 
00 – priority 
0F0DCDE4 – longitude 252562916 = 25, 2562916º N 
20959D30 – latitude 546676016 = 54.6676016 º E 
008A – altitude (138 meters) 
0000 – angle (0) 
06 – 6 visible satellites 
0000 – speed 0 km / h 
IO Element 
0000 - IO element ID of Event generated (in this case when 
0000 – data generated not on event) 
0006  – 6 IO elements in record (total)     

0001 – 1 IO elements, which length is 1 Byte 
00EF – IO element ID = 239 (dec) 
00 – IO element’s value 
0001 – 1 IO elements, which length is 2 Byte 
0011 – IO element ID = 17 (dec) 
001E – IO element’s value 
0001 – 1 IO elements, which length is 4 Byte 
0010 – IO element ID = 16 (dec) 
0000CBDF – IO element’s value = 52191 (dec) 
0002 – 1 IO elements, which length is 2 Byte 
000B – IO element ID = 11 (dec) 
000000003544C875 – IO element’s value 
000E – IO element ID = 14 (dec) 
0000000029BFE4D1 – IO element’s value 
01 – Number of data (1 record) 
0000D153 - CRC-16, 4 bytes (the first two are always 
zeros) 
 
 AVL data packet is the same as with codec 8, except 
codec ID is changed to 0x8E. An example of data received 
by the server is presented in Figure 3. 
 
00A1CAFE001B000F333536333037303432343431303

1338E010000013FEBDD19C8000F0E9FF0209A718000

690000120000 

001E09010002000300040016014703F0001504C8000

C0900910A00440B004D130044431555440000B5000B

B60005422E 

9B180000CD0386CE000107C700000000F10000601A4

60000013C4800000BB84900000BB84A00000BB84C00

000000024E 

0000000000000000CF000000000000000001 

Figure 3. Data received by the server 
 
 The significance is the following:  

• Data length: 00A1 or 161 bytes (not counting the first 
two data length bytes). 

• Packet identification: 0xCAFE 2 bytes.  

• Not usable byte: 00.  

• Packet ID: 1B.  

• IMEI length: 000F.  

• Actual IMEI: 333536333037303432343431303133.  

• Codec id: 8E.  

• Number of data: 01.  

• Timestamp: 0000013FEBDD19C8.  

• Priority: 00.  

• GPS data: 0F0E9FF0209A718000690000120000. 
 The decoder has two main parts: (1) Decoder Handler:  
it contains the logic that validates the decoding message, 
extracts general information such as IMEI, and it knows in 
case of successful decoding to send successful receiving 
messages (ACK messages) to the equipment; (2) Decoder: 
contains the decoding logic of the message data (AVL 
data) [12].  
 Codec 8 extended protocol sending over UDP.  AVL 
data packet is the same as with codec 8, except codec ID is 
changed to 0x8E. IoT module sends the data to the server 
and the server must respond with acknowledgment. 
Number of data – number of encoded data (number of 
records). Codec ID is constant 0x8E. Data field length is 
the length of bytes [codec id, number of data 2]. Number 
of data 1 should always be equal to number of data 2 byte. 
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CRC-16 is 4 bytes, but first two are zeroes and last two are 
CRC-16 calculated for [codec id, number of data 2]. 
Minimum AVL packet size is 53 bytes (all IO elements 
disabled). Also communication with server is the same as 
with codec 8 protocol, except in codec8 extended protocol 
codec id is 0x8E. Server acknowledges data reception (2 
data elements): 00000002.  
 Figure 4 shows the communication mode between the 
IoT GPS device and the server, respectively the encoded 
information using the Codec 8 Extended, which is a public 
and unsecured algorithm exposed to the MITM attack. 
 

 
Figure 4. Data on transit between FM device and server. 

 
 This is how the FMB122 communicates with the server 
and receives a response, and how the information is 
encoded and decoded [8], [12]. 
 

III. LEGACY INSECURE ALGORITHM IN 
TELTONIKA FMB122 FIRMWARE 

See in Figure 5 an example of source code for Teltonika 
FMB122 firmware, which is responsible for encoding and 
decoding telemetry data transmission using an insecure 
algorithm (publicly available) [12]. We used italics and red 
for the insecure parts. 
 
//Encoding telemetry data for transmission 

void EncodeTelemetryData(TelemetryData_t 

telemetryData, uint8_t *encodedData)  

{ 

    uint32_t pos = 0; 

    uint8_t tmp8 = 0; 

    uint16_t tmp16 = 0; 

    uint32_t tmp32 = 0; 

    uint8_t checksum = 0; 

//Add start bits to the encoded data 

    encodedData[pos++] = 0x01; 

    encodedData[pos++] = 0x02; 

    encodedData[pos++] = 0x03; 

// Encode the longitude value 

    tmp32 = (uint32_t)(telemetryData.longitude * 

10000000); 

    encodedData[pos++] = (tmp32 >> 24) & 0xFF; 

[…] 

//Encode the IMEI value 

// Potential issue: IMEI is transmitted in plain 

text. /MITM vulnerability: Longitude, latitude, 

and other data are encoded in plaintext. 

// An attacker could read or modify this data in 

transit. 

    for (uint8_t i = 0; i < 15; i++) 

    { 

        encodedData[pos++] = 

telemetryData.imei[i]; 

    } 

[…] 

//Decode telemetry data received from the 

tracking platform 

// An attacker could read or modify this data in 

transit. 

void DecodeTelemetryData(uint8_t *receivedData, 

uint32_t receivedDataLen, DecoderHandler_t 

*decoderHandler) 

{ 

[…] 

//Decode the IMEI value 

// Potential issue: IMEI is transmitted in plain 

text. 

// MITM vulnerability: IMEI is received in 

plaintext, which could have been read or 

modified by an attacker in transit. 

for (uint8_t i = 0; i < 15; i++) 

{ 

    decoderHandler->avlData.imei[i] = 

receivedData[13 + i]; 

} 

[…] 

Figure 5. Insecure code using encoding algorithm. 
 
 This example of a code demonstrates how telemetry 
data (longitude, latitude, altitude, IMEI, angle clockwise, 
and the number of visible satellites) is encoded and 
decoded for transmission between the FMB122 device and 
the tracking platform in an insecure way [8], [9]. The 
encoded data includes start and end bits, longitude, 
latitude, altitude, IMEI, angle clockwise, and the number 
of visible satellites, and a checksum is calculated to ensure 
the integrity of the data and can be easily decoded if data 
is intercepted by an attacker using MITM technique. 
 The decoding function verifies the start bits, data 
length, and checksum of the received data before decoding 
the telemetry data and storing it in the AVL data structure. 
The AVL data structure is used to store and transmit the 
telemetry data to the tracking platform [12]. 
 Overall, this example code demonstrates how the 
FMB122 firmware handles the encoding and decoding of 
telemetry data for transmission, which is a crucial aspect of 
the device's operation and data security [12]. In conclusion, 
the code sections highlighted in red have been identified as 
vulnerable to MITM attacks and other potential security 
issues. Therefore, it will be replaced with SSL/TLS 
encryption algorithms and secure functions to ensure data 
security in transit, integrated at the firmware level. 
 

IV. SECURING DATA TRANSMISSION WITH 
ENCRYPTION 

While encoding is a useful technique for converting data 
into a more suitable format for transmission, it does not 
offer security in terms of protecting data against MITM 
attacks. We discuss herein the following solutions: (1) 
Implementing the Transport Layer Security (TLS) or 
Secure Sockets Layer (SSL): These protocols provide end-
to-end encryption of data, ensuring that data transmitted 
between the device and the tracking platform cannot be 
intercepted or modified by attackers [7]; (2) Encrypting the 
AVL data structure: the data can be protected against 
unauthorized access or modification, ensuring the 
confidentiality and integrity of the data. The International 
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Mobile Equipment Identity (IMEI) is a unique identifier 
for mobile devices, thus FMB122 is included too [4], [13]. 
 In Figure 6 we present an example of modified 
firmware for Teltonika FMB122, to secure the connection 
between the client device and the server. 
 
//Initialize TLS session for telemetry data 

transmission 

void InitTLSSession(char *serverIP, uint16_t 

serverPort) 

{ 

[…] 

} 

// Encrypting and sending telemetry data using 

TLS 

void SendEncryptedTelemetryData(TelemetryData_t 

telemetryData) 

{ 

    uint8_t encodedData[ENC_DATA_LEN]; 

    uint32_t pos = 0; 

// Encode the telemetry data 

    EncodeTelemetryData(telemetryData, 

encodedData); 

// Encrypt the encoded data using TLS 

    pos = 0; 

    while (pos < ENC_DATA_LEN) 

    { 

        int ret = 

mbedtls_ssl_write(&tlsCtx.sslContext, 

encodedData + pos, ENC_DATA_LEN - pos); 

        if (ret < 0) 

        { 

//Error writing to the TLS context - handle the 

error 

            return; 

        } 

        pos += ret; 

    } 

} 

//Decrypt and receive the telemetry data using 

TLS 

void 

ReceiveDecryptedTelemetryData(DecoderHandler_t 

*decoderHandler) 

{ 

    uint8_t receivedData[RECV_DATA_LEN]; 

    uint32_t pos = 0; 

// Receive the encrypted telemetry data using 

TLS 

    pos = 0; 

    while (pos < RECV_DATA_LEN) 

    { 

        int ret = 

mbedtls_ssl_read(&tlsCtx.sslContext, 

receivedData + pos, RECV_DATA_LEN - pos); 

        if (ret < 0) 

        { 

            // Error reading from the TLS 

context - handle the error 

            return; 

        } 

        pos += ret; 

    } 

// Decrypt the received data 

    DecodeTelemetryData(receivedData, 

RECV_DATA_LEN, decoderHandler); 

} 

Figure 6. Secured code using encryption algorithm. 
 
 In this example, instead of encoding telemetry data, 
TLS encryption is used to protect the confidentiality and 
integrity of the data transmitted between the FMB122 

device and the tracking platform. 
 The InitTLSSession() function is responsible for 
establishing a secure TLS connection with the tracking 
platform, while the SendEncryptedTelemetryData() 
function encrypts and sends telemetry data using the TLS 
context. The ReceiveDecryptedTelemetryData) 
function receives and decrypts telemetry data transmitted 
over the TLS connection [4], [7]. 
 By using TLS encryption, the telemetry data 
transmitted between the FMB122 device, and the tracking 
platform is protected against MITM attacks, ensuring that 
the data remains confidential and cannot be modified or 
intercepted by attackers. The 
SendEncryptedTelemetryData()function encrypts 
the telemetry data using the TLS context, while the 
ReceiveDecryptedTelemetryData() function 
receives and decrypts the telemetry data, ensuring that the 
data is secure and confidential throughout the transmission 
process [7]. 
 The TLS protocol uses various mathematical 
algorithms and formulas to secure communication between 
the FMB122 device and the tracking platform. For a better 
understanding a brief summary of their principles is as 
following. 
 (1) Symmetric key encryption: this is based on a shared 
secret key, which is used to encrypt and decrypt data. The 
key is known only by the communicating parties, ensuring 
that the data remains confidential (see Figure 7).  
 

 
Figure 7. Symmetric encryption mechanism. 

 
 TLS uses various algorithms such as Advanced 
Encryption Standard (AES), Triple Data Encryption 
Standard (3DES), Rivest Cipher 4 (RC4) etc. [4], [14]. 
Using this method, the Codec 8 extended encoding 
algorithm is replaced at the firmware level by the TLS/SSL 
encryption algorithm, adapted and developed for the IoT 
device, ensuring a high level of security, preventing MITM 
attacks and data interception in transit for real-time 
protection, ensuring the integrity, confidentiality and 
availability of data in a GPS IoT monitoring devices for 
intelligent transportation systems. (2) Public key 
encryption: this is based on a pair of keys, a public key and 
a private key. The public key is used to encrypt data, while 
the private key is used to decrypt data (see Figure 8). TLS 
uses various public key encryption algorithms such as 
Rivest–Shamir–Adleman (RSA) and Elliptic Curve 
Cryptography (ECC) [15]. 
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Figure 8. Public key cryptography mechanism. 

 
 (3) Hash functions: they are mathematical algorithms 
that convert input data into a fixed-length output called a 
hash (see Figure 9). TLS uses various hash functions such 
as SHA-256 (Secure Hash Algorithm 256) and SHA-384 
to ensure that the transmitted data has not been tampered 
with [14]. 
 

 
Figure 9. Hash algorithm. 

 
 (4) Key exchange algorithms: they are used to ensure 
that the symmetric key for encryption and decryption is 
securely shared between the communicating parties (see 
Figure 10). TLS uses various key exchange algorithms 
such as Diffie-Hellman (DH) and Elliptic Curve Diffie-
Hellman (ECDH) [13]. 
 

 
Figure 10. Diffie-Hellman key exchange algorithm. 

 
 By the time this paper was submitted, some ongoing 
field test were under progress, using the infrastructure of 
AROBS Romania (as the major beneficiary of this work, 
requested by this company). We expect overall, by 
performing these tests and analyzing the results, to get the 
evidence of the effectiveness of encryption over encoding 
in the Teltonika FMB122 GPS tracking device. 
 
 In Figure 11, the experimental result (MITM Attack on 
Unsecured Encoded Data) is presented, along with the way 
data can be intercepted in Wireshark and our custom 
decoding script output, using the encoding/decoding 
mechanism in the unsecured previous code (Figure 5).  
 
No.     Time        Source                Destination           

Protocol Length Info 

      1 0.000000    192.168.1.2           

192.168.1.3           TCP      66     54123 → 

54545 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 

SACK_PERM=1 

INFO: TCP Handshake detected 

... 

INFO: Initiating ARP spoofing... 

... 

INFO: ARP spoofing successful... 

      2 0.003345    192.168.1.2           

192.168.1.3           TCP      162    Telemetry 

Data 

 

Data:  

    Start Bits: 01 02 03 

    Longitude: 23.6236 

    Latitude: 46.7712 

    Altitude: 320 

    IMEI: 356307042441013 

    Clockwise: 0 

    Number of Visible Satellites: 10 

    Checksum: 0xD4 

    End Bits: 0D 0A 

 

Alert: Possible privacy leak detected. IMEI number 

and precise location data intercepted. 

Figure 11. MITM Attack on Unsecured Encoded Data 
 
 The data is intercepted by the MITM and easily decoded 
due to the absence of encryption. In this experiment 
(MITM Attempt on SSL/TLS Encrypted Data), we use the 
same setup but with the device transmitting the telemetry 
data secured with SSL/TLS, as is shown in Figure 12. 
 
No.     Time        Source                

Destination           Protocol Length Info 

      1 0.000000    192.168.1.2           

192.168.1.3           TLSv1.3  219    Client 

Hello 

INFO: TLS Handshake detected 

... 

INFO: Initiating ARP spoofing... 

... 

INFO: ARP spoofing successful... 

 

      2 0.003456    192.168.1.2           

192.168.1.3           TLSv1.3  275    

Application Data 

 

Attempting to decrypt TLS Application 

Data... 

 

ERROR: Unable to decrypt data. RSA key not 

found. Invalid or missing private key! 

 

Data:  

    Encrypted Data: "2qV4fG2aA1rR..." 

Figure 12. MITM Attempt on SSL/TLS Encrypted Data 
 
 Even though the data was intercepted using the same 
MITM techniques, the encryption provided by SSL/TLS 
ensures that the content is unreadable without the 
corresponding decryption key. This clearly demonstrates 
the fundamental difference in security between 
unencrypted (encoded) and encrypted data transmission. 
Even if a MITM attack is successful in intercepting the 
data, without the correct decryption keys, the content 
remains secure when encrypted with SSL/TLS. 
 
 In Figure 13, a diagram of the experimental MITM 
attack can be seen, both unsecured using encoding and 
secured using SSL/TLS encryption. 
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Figure 13. Unsecured / Secured Data Transit Diagram 

 
 In RSA encryption, keys are created using two primes, 
p and q, to compute n = pq, serving as the modulus for both 
encryption and decryption. The encryption key, e, is a 
coprime with 1 < e < φ(n), where φ(n) = (p−1) (q−1), while 
the decryption key, d, is e's modular inverse mod φ(n). A 
plaintext, m, is encrypted to ciphertext, c, via c ≡ m^e (mod 
n) and decrypted by m ≡ c^d (mod n). In SSL/TLS, 
telemetry data, m, is encrypted with the server's public key 
(n, e) to yield c, which, without the private key d, can't be 
decrypted if intercepted. The server decrypts c back to m 
using its private key (n, d). RSA's security relies on the 
computational difficulty of factoring n, the product of large 
primes p and q [4], [7].  
 
 The choice of encryption solutions is driven by various 
factors and motivations. One significant aspect is the 
objective of ensuring robust data security, encompassing 
confidentiality and integrity, particularly when handling 
sensitive information. The selection process takes into 
consideration established encryption algorithms with 
proven security standards and suitability for the existing 
system architecture. Additionally, computational 
efficiency is a key consideration to minimize processing 
overhead. Alternative encryption solutions could involve 
asymmetric encryption algorithms like RSA or elliptic 
curve cryptography, each offering distinct trade-offs 
between security and performance. Furthermore, 
alternative protocols such as IPsec and VPN could be 
explored, tailored to specific system requirements. 
Ultimately, the selection of encryption solutions is 
contingent upon the desired security level, available 
resources, and compatibility with the prevailing 
infrastructure. This decision-making process aligns with 
scientific principles by considering established 
cryptographic principles, system requirements, and the 
pursuit of optimal security measures. 
 

V. CONCLUSIONS AND FUTURE WORK 
In the context of IoT devices, it was important to 
implement encryption algorithms instead of encoding ones 
to prevent Man-in-the-Middle attacks. The preliminary 
results can be used by the manufacturer of the GPS tracking 
devices (Teltonika in this particular case) to improve the 
security of its products. Moreover the companies working 
in intelligent transportation systems can get reliable and 
effective protection against attacks.  
 We plan to extend the solution with encryption 
mechanisms using AES-256 and security solutions (IPS/ 
IDS), investigating also Artificial Intelligence-based 

schemes for countermeasures. These features are needed to 
mitigate Denial-of-Service and MITM attacks. These could 
be aligned also with the use of new generation of devices 
and 5G/ B5G technologies to protect against cyber threats.
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