

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received March 29, 2023; revised May 27, 2023.

12

SECURE ACCESS WITH TELTONIKA GPS TRACKING DEVICES FOR

INTELLIGENT TRANSPORTATION SYSTEMS

Gheorghe-Romeo ANDREICA1,2, Ciprian STANGU2, Iustin-Alexandru IVANCIU1,

Daniel ZINCA1, Virgil DOBROTA1
1Communications Department, Technical University of Cluj-Napoca, Romania

2AROBS Transilvania Software Cluj-Napoca, Romania
Romeo.Andreica@com.utcluj.ro; Ciprian.Stangu@trackgps.ro; Iustin.Ivanciu@com.utcluj.ro;

Daniel.Zinca@com.utcluj.ro, Virgil.Dobrota@com.utcluj.ro

Abstract: GPS tracking devices are widely used in industries like logistics, transportation, and security. However, they are
susceptible to cyber-attacks, including Man-in-the-Middle (MITM). This study focuses on Teltonika GPS tracking devices and
examines the impact of MITM attacks on their operation. We propose implementing encryption protocols and other measures
to enhance the security and resilience of Teltonika GPS tracking devices.

Keywords: GPS Tracking, MITM Attack, TLS/SSL encryption.

I. INTRODUCTION
Internet of Things (IoT) devices based on Global
Positioning System (GPS) or other principles [1] enable
organizations to track their assets and to monitor the
movements of their employees and/or vehicles. However,
these devices are vulnerable to cyber-attacks, which can
compromise their accuracy, reliability, and security [2].
One of the most significant threats to the case of GPS
tracking devices is represented by the Man-in-the-Middle
(MITM) attack [3], [4]. This occurs when an attacker
intercepts and alters the communications between two
parties. In the context of this approach, it means that an
attacker can intercept the GPS data sent by the device to
the tracking platform and to modify it, to show a different
location or route [5]. This can have serious consequences,
such as lost productivity, stolen goods, or compromised
personal safety [6].
 One approach to protect against MITM attacks is to
implement encryption protocols, such as Transport Layer
Security (TLS) and Secure Sockets Layer (SSL) [4], [7].
These protocols can help to ensure that data transmitted
between the device and the tracking platform is secure and
cannot be intercepted or modified by the attackers. We
investigated the impact of this type of attack and we
proposed several mechanisms that can be integrated into
the firmware of the devices. Thus, Teltonika GPS tracking
devices can be made more resilient against cyber-attacks,
enabling businesses and individuals to trust the accuracy
and security of the GPS data [8].
 The remainder of the paper is organized as follows:
Section II describes the architecture of FMB122 IoT
device, whilst Section III discusses the legacy insecure
algorithm integrated within the firmware. Section IV
presents the countermeasures to secure the firmware, and
Section V concludes the paper.

II. TELTONIKA FMB122 IOT DEVICE
The Teltonika FMB122 solution (see Figure 1) is a
compact and versatile GPS tracking device designed for
various applications, such as fleet management, asset
tracking, and personal tracking. The device features a
powerful ARM Cortex-M3 processor, built-in GSM/
GPRS and GPS modules, and a range of I/O interfaces,
including digital/ analog inputs, and digital outputs [9].

Figure 1. FMB122 hardware device.

 Its firmware was written in C programming language
and it is based on the FreeRTOS real-time operating
system. The code was designed to control the device's
hardware components, including the GPS and mobile
communications modules, and to manage the exchange of
information between the device and the tracking platform.
The firmware can be updated Over-the-Air (OTA),
allowing Teltonika to release updates to address security
vulnerabilities and other issues [8], [10].
 However, the FMB122 model uses encoding algorithms
(i.e., Base64 or hexadecimal conversion) for data in transit,
which provide less security than encryption. The legacy
algorithms can be easily decoded, making them vulnerable
to MITM attacks. Thus, without encryption, data
transmitted between the device and the tracking platform
can be intercepted, modified, or even replaced by attackers
[11], [12]. For a better understanding of the processes of
encoding and decoding, we summarized herein an
algorithm used by Teltonika devices for telemetry data
transmission.

mailto:Romeo.Andreica@com.utcluj.ro
mailto:Ciprian.Stangu@trackgps.ro
mailto:Iustin.Ivanciu@com.utcluj.ro
mailto:Daniel.Zinca@com.utcluj.ro
mailto:Virgil.Dobrota@com.utcluj.ro

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 13

 The structure is as follows: X is longitude; Y is latitude;
Altitude in [meters above the sea level]; Angle in [degrees],
where 0 is north, increasing 1 unit clockwise; Satellites in
[number of visible satellites]; Speed in [km/h]. Note that
the value 0x0000 is obtained when GPS data is invalid.
Longitude and latitude are integer values constructed from
degrees d, minutes m, seconds, and milliseconds according
to the formula (d: degrees, m: minutes, s: seconds, ms:
milliseconds, p: accuracy (10,000,000) [8], [9], [12]:

 (𝑑 +
𝑚

60
+

𝑠

3,600
+

𝑚𝑠

3,600,000
) ∗ 𝑝 (1)

 Figure 2 presents an example of 152 bytes sent using
Codec 8 Extended (see the differences compared to Codec
8 in Table I). This does not provide an adequate level of
security and it remains unsecured against MITM attacks
[8], [12]

TABLE I. DIFFERENCES BETWEEN CODEC 8 AND CODEC

8 EXTENDED

 Codec 8 Codec 8 Extended
Codec ID 0x08 0x8E
AVL Data IO
element length

1 Byte 2 Bytes

AVL Data IO
element total IO
count length

1 Byte 2 Bytes

AVL Data IO
element IO count
length

1 Byte 2 Bytes

VL Data IO element
AVL ID length

1 Byte 2 Bytes

Variable size IO
elements

Does not
include

Include variable size
elements

 Adelson-Velsky and Landis (AVL) data element sizes
in Codec 8 Extended were increased to 2 bytes length and
new variable type added. For a detailed description see
[12].
000000000000005F8E010000015FBA40B620000F0DC

DE420959D30008A000006000000000006000100EF00

00010011001E000100100000CBDF0002000B0000000

03544C875000E0000000029BFE4D100010100001100

00000000000000000000000000000000010000D153

Figure 2. Use of Codec 8 Extended

 The significance of these fields is the following:
00000000 - 4 zeros, 4 bytes
0000005F - data length, 4 bytes
8E – codec ID
01 - number of data (1 record)
0000015FBA40B620 - Timestamp in milliseconds
(1510658324000)
GMT: Tuesday, January 14, 2023 09:18:10 AM
00 – priority
0F0DCDE4 – longitude 252562916 = 25, 2562916º N
20959D30 – latitude 546676016 = 54.6676016 º E
008A – altitude (138 meters)
0000 – angle (0)
06 – 6 visible satellites
0000 – speed 0 km / h
IO Element
0000 - IO element ID of Event generated (in this case when
0000 – data generated not on event)
0006 – 6 IO elements in record (total)

0001 – 1 IO elements, which length is 1 Byte
00EF – IO element ID = 239 (dec)
00 – IO element’s value
0001 – 1 IO elements, which length is 2 Byte
0011 – IO element ID = 17 (dec)
001E – IO element’s value
0001 – 1 IO elements, which length is 4 Byte
0010 – IO element ID = 16 (dec)
0000CBDF – IO element’s value = 52191 (dec)
0002 – 1 IO elements, which length is 2 Byte
000B – IO element ID = 11 (dec)
000000003544C875 – IO element’s value
000E – IO element ID = 14 (dec)
0000000029BFE4D1 – IO element’s value
01 – Number of data (1 record)
0000D153 - CRC-16, 4 bytes (the first two are always
zeros)

 AVL data packet is the same as with codec 8, except
codec ID is changed to 0x8E. An example of data received
by the server is presented in Figure 3.

00A1CAFE001B000F333536333037303432343431303

1338E010000013FEBDD19C8000F0E9FF0209A718000

690000120000

001E09010002000300040016014703F0001504C8000

C0900910A00440B004D130044431555440000B5000B

B60005422E

9B180000CD0386CE000107C700000000F10000601A4

60000013C4800000BB84900000BB84A00000BB84C00

000000024E

0000000000000000CF000000000000000001

Figure 3. Data received by the server

 The significance is the following:

• Data length: 00A1 or 161 bytes (not counting the first
two data length bytes).

• Packet identification: 0xCAFE 2 bytes.

• Not usable byte: 00.

• Packet ID: 1B.

• IMEI length: 000F.

• Actual IMEI: 333536333037303432343431303133.

• Codec id: 8E.

• Number of data: 01.

• Timestamp: 0000013FEBDD19C8.

• Priority: 00.

• GPS data: 0F0E9FF0209A718000690000120000.
 The decoder has two main parts: (1) Decoder Handler:
it contains the logic that validates the decoding message,
extracts general information such as IMEI, and it knows in
case of successful decoding to send successful receiving
messages (ACK messages) to the equipment; (2) Decoder:
contains the decoding logic of the message data (AVL
data) [12].
 Codec 8 extended protocol sending over UDP. AVL
data packet is the same as with codec 8, except codec ID is
changed to 0x8E. IoT module sends the data to the server
and the server must respond with acknowledgment.
Number of data – number of encoded data (number of
records). Codec ID is constant 0x8E. Data field length is
the length of bytes [codec id, number of data 2]. Number
of data 1 should always be equal to number of data 2 byte.

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 14

CRC-16 is 4 bytes, but first two are zeroes and last two are
CRC-16 calculated for [codec id, number of data 2].
Minimum AVL packet size is 53 bytes (all IO elements
disabled). Also communication with server is the same as
with codec 8 protocol, except in codec8 extended protocol
codec id is 0x8E. Server acknowledges data reception (2
data elements): 00000002.
 Figure 4 shows the communication mode between the
IoT GPS device and the server, respectively the encoded
information using the Codec 8 Extended, which is a public
and unsecured algorithm exposed to the MITM attack.

Figure 4. Data on transit between FM device and server.

 This is how the FMB122 communicates with the server
and receives a response, and how the information is
encoded and decoded [8], [12].

III. LEGACY INSECURE ALGORITHM IN
TELTONIKA FMB122 FIRMWARE

See in Figure 5 an example of source code for Teltonika
FMB122 firmware, which is responsible for encoding and
decoding telemetry data transmission using an insecure
algorithm (publicly available) [12]. We used italics and red
for the insecure parts.

//Encoding telemetry data for transmission

void EncodeTelemetryData(TelemetryData_t

telemetryData, uint8_t *encodedData)

{

 uint32_t pos = 0;

 uint8_t tmp8 = 0;

 uint16_t tmp16 = 0;

 uint32_t tmp32 = 0;

 uint8_t checksum = 0;

//Add start bits to the encoded data

 encodedData[pos++] = 0x01;

 encodedData[pos++] = 0x02;

 encodedData[pos++] = 0x03;

// Encode the longitude value

 tmp32 = (uint32_t)(telemetryData.longitude *

10000000);

 encodedData[pos++] = (tmp32 >> 24) & 0xFF;

[…]

//Encode the IMEI value

// Potential issue: IMEI is transmitted in plain

text. /MITM vulnerability: Longitude, latitude,

and other data are encoded in plaintext.

// An attacker could read or modify this data in

transit.

 for (uint8_t i = 0; i < 15; i++)

 {

 encodedData[pos++] =

telemetryData.imei[i];

 }

[…]

//Decode telemetry data received from the

tracking platform

// An attacker could read or modify this data in

transit.

void DecodeTelemetryData(uint8_t *receivedData,

uint32_t receivedDataLen, DecoderHandler_t

*decoderHandler)

{

[…]

//Decode the IMEI value

// Potential issue: IMEI is transmitted in plain

text.

// MITM vulnerability: IMEI is received in

plaintext, which could have been read or

modified by an attacker in transit.

for (uint8_t i = 0; i < 15; i++)

{

 decoderHandler->avlData.imei[i] =

receivedData[13 + i];

}

[…]

Figure 5. Insecure code using encoding algorithm.

 This example of a code demonstrates how telemetry
data (longitude, latitude, altitude, IMEI, angle clockwise,
and the number of visible satellites) is encoded and
decoded for transmission between the FMB122 device and
the tracking platform in an insecure way [8], [9]. The
encoded data includes start and end bits, longitude,
latitude, altitude, IMEI, angle clockwise, and the number
of visible satellites, and a checksum is calculated to ensure
the integrity of the data and can be easily decoded if data
is intercepted by an attacker using MITM technique.
 The decoding function verifies the start bits, data
length, and checksum of the received data before decoding
the telemetry data and storing it in the AVL data structure.
The AVL data structure is used to store and transmit the
telemetry data to the tracking platform [12].
 Overall, this example code demonstrates how the
FMB122 firmware handles the encoding and decoding of
telemetry data for transmission, which is a crucial aspect of
the device's operation and data security [12]. In conclusion,
the code sections highlighted in red have been identified as
vulnerable to MITM attacks and other potential security
issues. Therefore, it will be replaced with SSL/TLS
encryption algorithms and secure functions to ensure data
security in transit, integrated at the firmware level.

IV. SECURING DATA TRANSMISSION WITH
ENCRYPTION

While encoding is a useful technique for converting data
into a more suitable format for transmission, it does not
offer security in terms of protecting data against MITM
attacks. We discuss herein the following solutions: (1)
Implementing the Transport Layer Security (TLS) or
Secure Sockets Layer (SSL): These protocols provide end-
to-end encryption of data, ensuring that data transmitted
between the device and the tracking platform cannot be
intercepted or modified by attackers [7]; (2) Encrypting the
AVL data structure: the data can be protected against
unauthorized access or modification, ensuring the
confidentiality and integrity of the data. The International

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 15

Mobile Equipment Identity (IMEI) is a unique identifier
for mobile devices, thus FMB122 is included too [4], [13].
 In Figure 6 we present an example of modified
firmware for Teltonika FMB122, to secure the connection
between the client device and the server.

//Initialize TLS session for telemetry data

transmission

void InitTLSSession(char *serverIP, uint16_t

serverPort)

{

[…]

}

// Encrypting and sending telemetry data using

TLS

void SendEncryptedTelemetryData(TelemetryData_t

telemetryData)

{

 uint8_t encodedData[ENC_DATA_LEN];

 uint32_t pos = 0;

// Encode the telemetry data

 EncodeTelemetryData(telemetryData,

encodedData);

// Encrypt the encoded data using TLS

 pos = 0;

 while (pos < ENC_DATA_LEN)

 {

 int ret =

mbedtls_ssl_write(&tlsCtx.sslContext,

encodedData + pos, ENC_DATA_LEN - pos);

 if (ret < 0)

 {

//Error writing to the TLS context - handle the

error

 return;

 }

 pos += ret;

 }

}

//Decrypt and receive the telemetry data using

TLS

void

ReceiveDecryptedTelemetryData(DecoderHandler_t

*decoderHandler)

{

 uint8_t receivedData[RECV_DATA_LEN];

 uint32_t pos = 0;

// Receive the encrypted telemetry data using

TLS

 pos = 0;

 while (pos < RECV_DATA_LEN)

 {

 int ret =

mbedtls_ssl_read(&tlsCtx.sslContext,

receivedData + pos, RECV_DATA_LEN - pos);

 if (ret < 0)

 {

 // Error reading from the TLS

context - handle the error

 return;

 }

 pos += ret;

 }

// Decrypt the received data

 DecodeTelemetryData(receivedData,

RECV_DATA_LEN, decoderHandler);

}

Figure 6. Secured code using encryption algorithm.

 In this example, instead of encoding telemetry data,
TLS encryption is used to protect the confidentiality and
integrity of the data transmitted between the FMB122

device and the tracking platform.
 The InitTLSSession() function is responsible for
establishing a secure TLS connection with the tracking
platform, while the SendEncryptedTelemetryData()
function encrypts and sends telemetry data using the TLS
context. The ReceiveDecryptedTelemetryData)
function receives and decrypts telemetry data transmitted
over the TLS connection [4], [7].
 By using TLS encryption, the telemetry data
transmitted between the FMB122 device, and the tracking
platform is protected against MITM attacks, ensuring that
the data remains confidential and cannot be modified or
intercepted by attackers. The
SendEncryptedTelemetryData()function encrypts
the telemetry data using the TLS context, while the
ReceiveDecryptedTelemetryData() function
receives and decrypts the telemetry data, ensuring that the
data is secure and confidential throughout the transmission
process [7].
 The TLS protocol uses various mathematical
algorithms and formulas to secure communication between
the FMB122 device and the tracking platform. For a better
understanding a brief summary of their principles is as
following.
 (1) Symmetric key encryption: this is based on a shared
secret key, which is used to encrypt and decrypt data. The
key is known only by the communicating parties, ensuring
that the data remains confidential (see Figure 7).

Figure 7. Symmetric encryption mechanism.

 TLS uses various algorithms such as Advanced
Encryption Standard (AES), Triple Data Encryption
Standard (3DES), Rivest Cipher 4 (RC4) etc. [4], [14].
Using this method, the Codec 8 extended encoding
algorithm is replaced at the firmware level by the TLS/SSL
encryption algorithm, adapted and developed for the IoT
device, ensuring a high level of security, preventing MITM
attacks and data interception in transit for real-time
protection, ensuring the integrity, confidentiality and
availability of data in a GPS IoT monitoring devices for
intelligent transportation systems. (2) Public key
encryption: this is based on a pair of keys, a public key and
a private key. The public key is used to encrypt data, while
the private key is used to decrypt data (see Figure 8). TLS
uses various public key encryption algorithms such as
Rivest–Shamir–Adleman (RSA) and Elliptic Curve
Cryptography (ECC) [15].

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 16

Figure 8. Public key cryptography mechanism.

 (3) Hash functions: they are mathematical algorithms
that convert input data into a fixed-length output called a
hash (see Figure 9). TLS uses various hash functions such
as SHA-256 (Secure Hash Algorithm 256) and SHA-384
to ensure that the transmitted data has not been tampered
with [14].

Figure 9. Hash algorithm.

 (4) Key exchange algorithms: they are used to ensure
that the symmetric key for encryption and decryption is
securely shared between the communicating parties (see
Figure 10). TLS uses various key exchange algorithms
such as Diffie-Hellman (DH) and Elliptic Curve Diffie-
Hellman (ECDH) [13].

Figure 10. Diffie-Hellman key exchange algorithm.

 By the time this paper was submitted, some ongoing
field test were under progress, using the infrastructure of
AROBS Romania (as the major beneficiary of this work,
requested by this company). We expect overall, by
performing these tests and analyzing the results, to get the
evidence of the effectiveness of encryption over encoding
in the Teltonika FMB122 GPS tracking device.

 In Figure 11, the experimental result (MITM Attack on
Unsecured Encoded Data) is presented, along with the way
data can be intercepted in Wireshark and our custom
decoding script output, using the encoding/decoding
mechanism in the unsecured previous code (Figure 5).

No. Time Source Destination

Protocol Length Info

 1 0.000000 192.168.1.2

192.168.1.3 TCP 66 54123 →

54545 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256

SACK_PERM=1

INFO: TCP Handshake detected

...

INFO: Initiating ARP spoofing...

...

INFO: ARP spoofing successful...

 2 0.003345 192.168.1.2

192.168.1.3 TCP 162 Telemetry

Data

Data:

 Start Bits: 01 02 03

 Longitude: 23.6236

 Latitude: 46.7712

 Altitude: 320

 IMEI: 356307042441013

 Clockwise: 0

 Number of Visible Satellites: 10

 Checksum: 0xD4

 End Bits: 0D 0A

Alert: Possible privacy leak detected. IMEI number

and precise location data intercepted.

Figure 11. MITM Attack on Unsecured Encoded Data

 The data is intercepted by the MITM and easily decoded
due to the absence of encryption. In this experiment
(MITM Attempt on SSL/TLS Encrypted Data), we use the
same setup but with the device transmitting the telemetry
data secured with SSL/TLS, as is shown in Figure 12.

No. Time Source

Destination Protocol Length Info

 1 0.000000 192.168.1.2

192.168.1.3 TLSv1.3 219 Client

Hello

INFO: TLS Handshake detected

...

INFO: Initiating ARP spoofing...

...

INFO: ARP spoofing successful...

 2 0.003456 192.168.1.2

192.168.1.3 TLSv1.3 275

Application Data

Attempting to decrypt TLS Application

Data...

ERROR: Unable to decrypt data. RSA key not

found. Invalid or missing private key!

Data:

 Encrypted Data: "2qV4fG2aA1rR..."

Figure 12. MITM Attempt on SSL/TLS Encrypted Data

 Even though the data was intercepted using the same
MITM techniques, the encryption provided by SSL/TLS
ensures that the content is unreadable without the
corresponding decryption key. This clearly demonstrates
the fundamental difference in security between
unencrypted (encoded) and encrypted data transmission.
Even if a MITM attack is successful in intercepting the
data, without the correct decryption keys, the content
remains secure when encrypted with SSL/TLS.

 In Figure 13, a diagram of the experimental MITM
attack can be seen, both unsecured using encoding and
secured using SSL/TLS encryption.

Volume 63, Number 1, 2023 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 17

Figure 13. Unsecured / Secured Data Transit Diagram

 In RSA encryption, keys are created using two primes,
p and q, to compute n = pq, serving as the modulus for both
encryption and decryption. The encryption key, e, is a
coprime with 1 < e < φ(n), where φ(n) = (p−1) (q−1), while
the decryption key, d, is e's modular inverse mod φ(n). A
plaintext, m, is encrypted to ciphertext, c, via c ≡ m^e (mod
n) and decrypted by m ≡ c^d (mod n). In SSL/TLS,
telemetry data, m, is encrypted with the server's public key
(n, e) to yield c, which, without the private key d, can't be
decrypted if intercepted. The server decrypts c back to m
using its private key (n, d). RSA's security relies on the
computational difficulty of factoring n, the product of large
primes p and q [4], [7].

 The choice of encryption solutions is driven by various
factors and motivations. One significant aspect is the
objective of ensuring robust data security, encompassing
confidentiality and integrity, particularly when handling
sensitive information. The selection process takes into
consideration established encryption algorithms with
proven security standards and suitability for the existing
system architecture. Additionally, computational
efficiency is a key consideration to minimize processing
overhead. Alternative encryption solutions could involve
asymmetric encryption algorithms like RSA or elliptic
curve cryptography, each offering distinct trade-offs
between security and performance. Furthermore,
alternative protocols such as IPsec and VPN could be
explored, tailored to specific system requirements.
Ultimately, the selection of encryption solutions is
contingent upon the desired security level, available
resources, and compatibility with the prevailing
infrastructure. This decision-making process aligns with
scientific principles by considering established
cryptographic principles, system requirements, and the
pursuit of optimal security measures.

V. CONCLUSIONS AND FUTURE WORK
In the context of IoT devices, it was important to
implement encryption algorithms instead of encoding ones
to prevent Man-in-the-Middle attacks. The preliminary
results can be used by the manufacturer of the GPS tracking
devices (Teltonika in this particular case) to improve the
security of its products. Moreover the companies working
in intelligent transportation systems can get reliable and
effective protection against attacks.
 We plan to extend the solution with encryption
mechanisms using AES-256 and security solutions (IPS/
IDS), investigating also Artificial Intelligence-based

schemes for countermeasures. These features are needed to
mitigate Denial-of-Service and MITM attacks. These could
be aligned also with the use of new generation of devices
and 5G/ B5G technologies to protect against cyber threats.

REFERENCES
[1] M. Won, "Intelligent Traffic Monitoring Systems for Vehicle
Classification: A Survey," in IEEE Access, vol. 8, pp. 73340-
73358, 2020, doi: 10.1109/ACCESS.2020.2987634.

[2] S.P. Potluri, B.P. Rao, S.K. Deshpande, “Security challenges
in the IoT world: a comprehensive survey", Journal of Ambient
Intelligence and Humanized Computing, vol. 11, no. 7, pp. 2923-
2944, 2020.

[3] N.M. Naveen, N.K. Shet, M.K. Jayanthy “A Framework for
Mitigating Man-in-the-Middle Attacks in IoT”, International
Conference on Advances in Computing, Communications and
Informatics (ICACCI), pp. 1663-1668, 2018.

[4] B. Seshasayee, S. Machiraju, R. Bhatia, “Securing IoT
Devices with TLS and DTLS”, IEEE Communications Magazine,
vol. 55, no. 10, pp. 78-85, 2017.

[5] J.J. Kim and D.G. Han, “AI-Driven IoT Security: Challenges,
Solutions, and Future Directions”, IEEE Access, vol. 9, pp.
16477-16491, 2021.

[6] S. Sudharsan, S.S. Sathya “A Comparative Analysis of IoT
Security Threats and Mitigation Techniques”, International
Journal of Advanced Science and Technology, vol. 28, no. 10, pp.
224-231, 2019.

[7] J. Abreu, M. Alves, M. Almeida, L. Nunes, “Secure
Communication for IoT Devices: TLS/DTLS with AES
Encryption”, 8th International Conference on Information,
Intelligence, Systems and Applications (IISA), pp. 121-126, 2017.

[8] G.R. Andreica, L. Bozga, D. Zinca and V. Dobrota, "Denial
of Service and Man-in-the-Middle Attacks Against IoT Devices
in a GPS-Based Monitoring Software for Intelligent
Transportation Systems," 2020 19th RoEduNet Conference:
Networking in Education and Research (RoEduNet), Bucharest,
Romania, 2020, pp. 1-4, doi:
10.1109/RoEduNet51892.2020.9324865.
[9] M. Strumskienė , T. Martišauskas “IoT Security: Teltonika
Case Study”, 2019, International Scientific Conference "Society.
Integration. Education", pp. 468-478, 2019.
[10] H. Dwivedi, “IoT Security: Protecting Your Connected
World”, Apress, 2018.
[11] S.K. Upadhyay, R.P. Mahapatra, A.K. Nayak “IoT Security:
A Review on Threats, Vulnerabilities and Countermeasures”,
International Journal of Innovative Technology and Exploring
Engineering, vol. 10, no. 9S, pp. 133-140, 2021.
[12] Teltonika, “Teltonika Data Sending Protocols”, Teltonika
Docs, 2023. [Online]. Available: https://wiki.teltonika-
gps.com/view/Teltonika_Data_Sending_Protocols [Accessed:
February 15, 2023].
[13] P. Pedamkar, “Diffie Hellman Key Exchange Algorithm”
Educba, 2023. [Online]. Available:
https://www.educba.com/diffie-hellman-key-exchange-
algorithm/ [Accessed: February 10, 2023].
[14] Quantum Backdoor, “Symmetric-key algorithm in
Cryptography”, Medium, 2020. [Online]. Available:
https://medium.com/@.Qubit/symmetric-key-algorithm-in-
cryptography-3d839bba8613.
[15] K. Robinson, “What is a public key cryptography?”, Twilio
Blog, 2018. [Online]. Available:
https://www.twilio.com/blog/what-is-public-key-cryptography
[Accessed: January 4, 2023].

https://medium.com/@.Qubit/symmetric-key-algorithm-in-cryptography-3d839bba8613
https://medium.com/@.Qubit/symmetric-key-algorithm-in-cryptography-3d839bba8613
https://www.twilio.com/blog/what-is-public-key-cryptography

