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Abstract: Exploring spatial-spectral data frequently involves classifying hyperspectral images using convolutional neural 
networks. Due to the high complexity of the data and the scarcity of available training samples, hyperspectral image 
classification presents significant difficulties. In the context of supervised classification, we find that traditional experimental 
designs are frequently misused in the spectral-spatial processing context, resulting in unfair or biased performance evaluation, 
particularly when training and testing samples are selected at random from the same dataset. Under these circumstances, the 
dependence caused by the overlap between training and testing samples may be artificially increased, in breach of the data 
independence assumption upheld by supervised learning theory. In order to prevent an unbiased classification result, we 
present in this paper a controlled strategy designed to minimize the overlap between the samples present in the training and 
the testing data sets. The proposed controlled sampling strategy ensures a more trustworthy generalization of the CNN model 
by minimizing the issues present in the random sampling approach, such as the inability to determine whether or not an 
increase in classification accuracy is due to the spatial information incorporated into a classifier or to an increase in the overlap 
between training and testing data sets. Experiments performed with a wavelet CNN on different HSIs, namely Indian Pines, 
Pavia University, and Salinas, ensure the generalization of the data under the assumption that the training and data sets are 
independent from one another, based on a controlled strategy. Considering the high dimension of the HSI image, as a pre-
processing step, the evaluation of the proposed framework is done by PCA and FA methods.    
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I. INTRODUCTION 

Machine learning is an important field in image analysis 
that focuses on self-reliance and independent learning by 
means of computers and deep learning methodologies to 
examine various types of data. Unlike machine learning, 
which uses simpler concepts, in-depth learning employs 
artificial neural networks, which are designed to mimic 
how people think and learn in the real world. Even with 
such state-of-the-art hardware, training a neural network 
can take a very long time depending on the complexity of 
the data set and the amount of parameters that make up the 
network. Deep learning algorithms require a large amount 
of data in order to deliver trustworthy results [1] . 
 The field of remote sensing has many uses for 
hyperspectral imaging (HSI), including studying the 
atmosphere and monitoring vegetation. The output of 
hyperspectral sensors includes a wide range of bands with 
wavelengths from the visible to the near-infrared spectrum, 
providing rich spectral and spatial information for data 
analysis. Inadequate spatial data resolution and redundancy 
are two factors that have a substantial impact on the 
performance of hyperspectral image classification (HSI), 
which depends on how data is organized in the spatial and 
spectral domains [2]. 
 Recent years have seen notable progress in remote 
sensing thanks to the convolutional neural network (CNN) 
when data analysis is performed. Regardless of 
the complexity of their training algorithms and the 
numerous parameters for the designed network, CNNs 
have become preferable as effective training and 
testing methods [3]. Architectures like SVMs, 2D CNNs, 
3D CNNs, and 3D-2D CNNs are only a few of the different 

methodologies that are designed to process large 
collections of data [4]. Other techniques for manipulating 
the HSI, aside from 3D-2D CNNs and FuSENet, do not 
account for the dependencies between the spectral and 
the spatial data, which typically leads to unsatisfactory 
performance. Despite the fact that 3D-2D CNNs deal with 
the spatial and spectral information taken from the HSI 
cube, their model performance appears to be limited. In 
comparison to 2D CNNs, 3D CNNs require more 
computational resources. As a result, the approaches 
involving only 2D CNN architectures with the ability to 
extract both spatial and spectral characteristics are 
preferable. 
 The SpectralNET [4] architecture, which represents a 
wavelet CNN, is a variant of the 2D CNN architecture that 
utilizes spatial and spectral information for multi-
resolution HSI classification. This architecture is designed 
to highlight the spectral features using a wavelet CNN, 
where the layers are obtained based on the wavelet 
transform [5]. The decision to use a wavelet transform is 
based on the fact that it ensures a lesser computation time 
in comparison with the 3D CNN model. To minimize the 
high dimension of each data set, the principal component 
analysis and factor analysis approaches are utilized as a 
pre-processing phase.  
 PCA, or principal component analysis, is a scaling 
approach commonly used to condense large data sets into 
a manageable amount of variables while maintaining the 
majority of the data's information [6]. Smaller datasets 
allow machine learning algorithms to examine data 
considerably more rapidly and easily since they can be 
explored and observed more easily [7]. 
 Factor analysis, often known as FA, is a method of 
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handling data collection and condensing it into a smaller 
data set that is easier to handle and grasp. It is a method 
used to determine hidden patterns present in the data, 
reveal how they interact, and emphasize the traits that 
many of the patterns in the image share [8]. When dealing 
with data that has three dimensions or more, PCA or FA 
are preferable in terms of data reduction methods while 
preserving the relevant information [6]. 

 
Figure 1. Hyperspectral image representation with 

spatial and spectral features. 
  
 In a supervised learning classification, traditionally, a 
random sampling selection is used to separate the 
corresponding samples or add them to the train and to 
the test data sets for the neural architecture. Different 
methods were implemented, such as random sampling and 
various controlled sampling strategies [9], for the high 
dimensional data sets. In circumstances where we have a 
relatively small number of samples available in the data 
sets, the main goal is to achieve the highest classification 
accuracy possible under those challenging conditions. As 
previously indicated in [9] and [10], this is an obstacle that 
deep learning algorithms still need to overcome for spatial-
spectral approaches. 
 This paper is organized as follows. In section II the 
existing methods for extracting and classifying the data are 
presented in more detail, along with the sampling strategy. 
In section III we proposed the classification chain and a 
controlled strategy for separating the training samples and 
the testing samples. In section IV the experimental results 
and the corresponding analysis are described. Section V 
brings the conclusions. 
 

II. RELATED WORK 

A. The spectral–spatial representation of HSI  
 A hyperspectral image is a three-dimensional data cube, 
as depicted in Fig. 1, in which the information is distributed 
along one-dimensional spectral and two-dimensional 
spatial data. Hyperspectral image sensors have the 
capability to collect hundreds of spectral channels, 
resulting in an image composed of N rows, M columns, and 
B channels. Spectral bands, in particular, express their 
information over the wavelength ranges, while each 
individual band incorporates attributes such as shape 
features and correlation between adjacent pixels in 
different orientations [11].  
 We consider the hyperspectral image comprised of 
many B bands, where each band is stacked on top of the 
others. In this high dimensional data, each pixel is 
represented by a collection of attributes, represented by 
the light intensities dependent on wavelength values.  
 In the hyperspectral image, every pixel from the data set 
is represented as a vector with spectral and spatial 
information. Each value in this vector represents a specific 
spectral signature selected from the stacked spectral bands. 
 
 

B. Spectral-spatial architecture for HSI classification 
 The conventional kernels used in the traditional CNN 
architecture, known as convolution and pooling layers, are 
2D wavelet-derived kernels. As seen in Fig. 2, the 
SpectralNet framework from [4] is developed on several 
levels of wavelet decomposition applied on the input HIS 
patch, with the traditional CNN layers infused with wavelet 
decomposition. As presented in [12], the wavelet transform 
has proven that is a good feature extractor for the HSI 
classification due to its capacity of extracting relevant 
features from data in a relatively faster manner compared 
with the traditional convolutional layers.  
 

 
Figure 2. The SpectralNET model architecture. 

 
The spectral and spatial properties from an HSI are 

therefore revealed when the wavelet transform is combined 
with the CNN model. These features are then concatenated 
channel by channel and fed into the 2D CNN's dense 
classification layers. To lessen the computation burden of 
classifying the high-dimensionality data, the model uses 
a pre-processes data stage to reduce the dimension of the 
data. After the pre-processing step, the selected patches are 
extracted and fed into CNN. According to [4], the spectral 
characteristics produced by wavelet transform need less 
computational effort than a 3D CNN. 
 Conventional 2D CNNs may be viewed as a constrained 
form of multi-resolution CNNs that can take into account 
both spectral and spatial information [13]. A 2D CNN's 
convolution and pooling layers have been established, 
based on research [14] as filtering and down sampling. 
This opens up the possibilities for multi-resolution CNN, 
in which convolution is done by a pair of wavelet kernels, 
obtained by extracting the low (L) and high (H) 
components from the data through a 2D wavelet 
decomposition.  
 The Haar wavelet components for the input patch are 
employed as follows: the low components are used as a 
scaling function passing from one level to another [15], 
while the high components are used as kernels for the 
convolution section [16]. 
 Specifically, the following kernels are utilized: 

𝑘𝐿,𝐿 = [
1 1
1 1

] 𝑘𝐿𝐻 = [
−1 −1
1 1

]  
 
(1) 

𝑘𝐻,𝐿 = [
−1 1
−1 1

] 

 

𝑘𝐻,𝐻 = [
1 −1
−1 1

] 

 
In Fig. 3, an example of such a decomposition based on the 
kernels from equation (1) is illustrated. After the pre-
processing is applied, and the dimension of the data is 
reduced, a patch selection based on a window size is 
performed. The patches obtained are then sent through 
the wavelet transform to be decomposed into sub-bands, 
which are then sent through a convolution layer capable of 
extracting the features.  
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Figure 3. Wavelet decomposition for a patch. 
 
At the subsequent layer, the wavelet transform decomposes 
the sub-band once more and feeds it to the next stage of 
the convolution layer. This procedure is carried out for 
each level, with CNN still gathering spectral and spatial 
information from the HSI patch. With all the information 
extracted along the wavelet decomposition and 
convolution layers; a decision will be made through a 
dense layer at the end of the model. 
 

C. Controlled Sampling for Classification 
Accuracy Estimation 

 Supervised techniques for classifying hyperspectral 
images focus on clustering hyperspectral pixels or 
dimensional vectors that belong to the same class based on 
similar spectral responses or knowing that they may have 
similar characteristics present in the spatial domain if the 
pixels are adjacent. On the basis of these assumptions, a 
trained classifier can be used to predict the labels of 
previously unseen samples, referred to as the testing data 
set. However, if the training and testing samples are not 
carefully chosen, this principle may not always hold true. 
In the case of supervised classification, the traditional 
approach for classification results in unfair performance 
evaluation, which is mainly caused by the random division 
of the hyperspectral data set into the training and testing 
samples. 
      This approach will result in a biased outcome since 
the testing samples may be spatially adjacent to 
the training samples. The spatial correlation between the 
samples indicates that the independence assumption 
between the train and test data sets is untrue [17]. Due to 
the presence of highly similar samples in the training data 
set, this overlapping phenomenon often results in 
exaggerated classification accuracy, meaning that the 
information from the testing data set could be employed in 
the training step. For the spatial operations, we must ensure 
that the selected patches based on a window size do not 
overlap with one another, as illustrated in Fig. 4. When 
employing patch-based representation, as in [18], the 
independence of the training and testing sets must be taken 
into account by ensuring a corresponding distance between 
the patches, from the point of view of the central pixel. 
 

III. PROPOSED ARCHITECTURE 
The proposed architecture for HSI classification is the one 
illustrated in Figure 6, where the CNN 2D wavelet model 
is used. Therefore, the spatial and spectral information of 
the hyperspectral images is identified using two methods: 
the pre-processing stage, namely the Haar wavelet 
integration, and the 2D CNN model is used.  

 
Figure 4. Representation of the overlapping phenomenon: 
interdependence between the samples in the context of a 

spatial operation, between two patches centered on a 
pixel. 

Figure 5. Example of the training data set samples per 
class for two selection strategies: (a) controlled sampling, 

(b) random sampling. 
 
The SpectralNET [4] framework can be separated into 

3 stages: 
• The first stage is represented by the pre-processing of the 
data, where a reduction of the dimensionality is 
implemented. Also in this stage, the data is sectioned in 
patches based on a given window size. 
• In stage two, the selected patch from the previous stage is 
sent into the wavelet CNN architecture in order to process 
them through the wavelets, alongside the convolutional 
layers for the spatial information. At this stage, the patches 
are chosen at a distance equivalent to the patch dimension, 
ensuring that in the train data set, we do not have patches 
that overlap. Each selected patch is then fed to the 
following stages for 2D wavelet decomposition and 
convolution layers. This stage of the model has a 4-level 
wavelet decomposition of the input HSI patch. 
•In stage three we have the classification of the obtained 
vectors from the previous stage with the corresponding 
labels for the data in question. The patches were selected 
and labeled as training or testing patches based on the 
controlled strategy proposed.  
 The proposed controlled strategy in this paper is based 
on the dimension of the patches used to extract the 
information from the data which is then sent into the CNN. 
For the controlled strategy, we first select a pixel for each 
class. Starting with the first selected pixel, we add to the 
training data set, the pixels placed at a distance given by 
the patch dimensions, in both vertical and horizontal 
directions. For the newly selected 4 pixels, we will add the 
next ones considering the same distance previously used. 
We repeat this process until we reach the number of 

  
(a) (b) 
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Figure 6. The proposed approach for feature extraction and classification of hyperspectral data. 

 
samples per class or until the point where the number of 
samples per class, respectively their distribution in the 
spatial domain forces us to stop the selection of samples, 
as illustrated in Fig. 5. In this case, from the selected pixel, 
which is considered the central pixel of the patch, we will 
construct the 3D patch, in such a manner that the selected 
patches are placed at a sufficient distance that they will not 
overlap, ensuring the independence between the training 
and the data sets. The controlled sampling strategy 
presented in this paper originates in [18], where the 
dimension of the window indicates which training samples 
are selected and placed inside the corresponding window, 
considering a distance between the windows. The 
same principle of distance between the training pixels is 
considered in this research. The selection used in this paper 
is designed based on the CNN architecture, as illustrated in 
Fig. 6, which employs 3D windows-sized blocks. Since the 
training set and the test set must remain independent of one 
another, the controlled sampling approach described in this 
study is designed to ensure the independence between 3D 
blocks selected by the window, based on a central pixel 
which is considered as a training samples.   
 

IV. EXPERIMENTAL RESULTS 

A. Hyperspectral datasets 
Three sets of hyperspectral data are used to evaluate 

the classification's effectiveness: Indian Pines, Pavia 
University, and Salinas.  In the research field of HSI 
classification, there are available hyperspectral databases 
[19]. These data sets reflect particularly difficult 
classification jobs because of the variety of objects present 
in the data sets, such as small man-made natural structures, 
and rural and urban regions, which are represented by a 
smaller number of samples. These databases are commonly 
used to evaluate the validity and accuracy of 
different proposed classification approaches [20]. 

 

B. Experimental configuration 
To prevent the model from overfitting, a global 

pooling average was added at the end of each convolution 
layer before sending the data into the dense layer. Our 
evaluation is based on the SpectralNET model with the 
corresponding values for the SGD as presented in [14]. In 
addition, we set the PCA method for the number of 
components to 10 for all three datasets. For the train and 
test sample selection, we choose the patches so no 
overlapping can occur, to ensure the independence 
between the two data sets for each HSI. The patches 
evaluated in this section are based on a small size patch, of 
3x3 and 5x5 dimensions. The small patch sizes for the 
controlled strategy generate a slight variation in the 

number of samples selected for the train and test, compared 
with the random sampling, since the separation is 
dimension used in the CNN architecture. conditioned by a 
distance based on the same patch. 

We exploit every class for the three scenes in order to 
evaluate the efficiency of the proposed classification model. 
Examining the sample distribution for each data set under 
the constraint that the neural network needs for the training 
process large number of samples, we observe an unbalanced 
distribution of samples per class for Indian Pines. From 
those 16 classes in total, we have a class with only 20 
labels, as the smallest one, and a class with 2455, as the 
largest one.  The Salinas scene features a more diverse and 
high sample count per class, ranging from 916 to 11271 for 
the 16 classes. The same distribution is observed in the 
Pavia University scenario, having a total of 9 classes, where 
the samples per class range from 947 to 18649. The 
corresponding distribution of samples in each class will 
impose a slightly diminished number of samples for the 
training stage.  

 

C. Results and discussions 
 The performance indicators employed to evaluate the 
performance of the proposed classification are Overall 
Accuracy (OA), Average Accuracy (AA), and Kappa 
coefficient (Kappa Accuracy) [14].  We evaluate the 
results for 10 different train and test data sets. For the 
Indian Pines database, we can evaluate the controlled 
strategy for sample selection only with the patch size of 
3x3 dimension due to the limited number of samples per 
class. In this case, in Table I, we illustrate only the results 
for PCA and FA with a random and controlled sampling 
strategy. The patch size of 3x3 dimension is represented by 
the scenario in which we can choose only 5% of the 
samples per class for the random strategy. The small 
patches are chosen to represent the diversity of each class, 
regardless of the position of various classes over the spatial 
dimension.  
 Analyzing the values from Table I, we can observe that 
for small samples per class, the two sampling strategies 
offer similar results in terms of overall accuracy. Also, if 
we compare the two pre-processing methods, we observe 
that the FA method performs better than the PCA. We will 
consider the case of the FA and Wavelet, from Table I, for 
both random and controlled strategies to analyze further 
based on the values from Table II, respectively Table III. 
 If we analyze the detailed classification of the classes 
for the two sampling strategies, we can observe that we 
obtain a similar overall classification value of ~ 60%. But 
if we analyze the precision of each class, we can observe 
that the controlled sampling, even though with small 
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samples per class, performs better than the random 
sampling. 
TABLE I. OVERALL ACCURACY (OA%) PCA AND 

WAVELET VERSUS FA AND WAVELET FOR 
INDIAN PINES WITH RANDOM, RESPECTIVELY 

CONTROLLED SAMPLING FOR 3X3 PATCH 
DIMENSION 

 PCA and 

Wavelet 

FA and 

Wavelet 

 OA Std. OA Std. 

Random sampling 59.06 ±0.34 60.77 ±0.12 

Controlled sampling 58.62 ±0.45 61.5 ±0.68 

TABLE II. CLASSIFICATION RESULTS FOR THE 
INDIAN PINES DATABASE, CONSIDERING A 
RANDOM SAMPLING TECHNIQUE, WITH FA 

METHOD AS THE PRE-PROCESSING TECHNIQUE 
 precision recall 

f1-
score 

support 

Alfalfa 0 0 0 44 
Corn-notill 0.45 0.86 0.59 1357 

Corn-mintill 0.77 0.34 0.47 789 
Corn 0.31 0.53 0.39 225 

Grass-pasture 0.92 0.46 0.61 459 
Grass-trees 0.62 0.66 0.64 693 

Grass-pasture- 
mowed 

0 0 0 27 

Hay-windrowed 0.52 1 0.68 454 
Oats 0 0 0 19 

Soybean-notill 0.59 0.23 0.34 923 
Soybean-mintill 0.71 0.65 0.68 2332 

Soybean-clean 0.24 0.23 0.24 563 
Wheat 0.97 0.65 0.78 195 
Woods 0.92 0.95 0.94 1202 

Buildings-Grass-Trees-
Drives 

0.69 0.29 0.41 367 

Stone-Steel- 
Towers 

0 0 0 88 

Kappa 55.04772 
Overall 60.77847 

Average 42.8903 
 
 This can also be seen in the value of the average 
accuracy, which goes from ~ 42 % to ~ 53 %. Furthermore, 
in the case of controlled sampling, we ensure the 
independence between the training and testing data sets, 
the classification results obtained without biased data. For 
Tables IV and V the FA pre-processing method applied 
before the CNN wavelet gives better results compared with 
the PCA method.  Since we have for Salinas a good 
distribution for all the classes with a large number of 
samples per class, we tested the controlled sampling 
strategy by setting the size of the patch to 5x5. This is also 
due to the manner in which the data is organized in terms 
of spatial distribution of classes.  
 By comparison, for Pavia University we have the same 
distribution with a larger number of samples per class, but 
those classes are distributed in the spatial dimension in 
small areas. Based on the structure of the data, we ensured 
that we have each class represented over the entire spatial 
dimension, meaning we established a patch size of 3x3. 
The good capabilities to ensure a precise classification 
based on smaller patch sizes with independence between 
train and test are seen in Table IV for Pavia University, 
respectively in Table V for Salinas. We examine the results 
for the hyperspectral data from the perspective of the 
independence between the training and testing sets, which 
may account for the benefits of the proposed controlled 

sampling technique over the random sample one. By 
analyzing the results from Table IV, respectively Table V, 
in terms of overall accuracy, the random sampling strategy 
performs better than the controlled strategy. 

TABLE III. CLASSIFICATION RESULTS FOR THE 
INDIAN PINES DATABASE, CONSIDERING A 

CONTROLLED SAMPLING TECHNIQUE, WITH FA 
METHOD AS THE PRE-PROCESSING TECHNIQUE  

precision recall f1-
score 

support 

Alfalfa 0.09 0.02 0.04 44 
Corn-notill 0.53 0.76 0.62 1395 

Corn-mintill 0.72 0.26 0.39 807 
Corn 0 0 0 236 

Grass-pasture 0.48 0.7 0.57 471 
Grass-trees 0.88 0.82 0.85 710 

Grass-pasture- 
mowed 

0 0 0 27 

Hay-windrowed 0.79 0.93 0.85 471 
Oats 0.13 0.61 0.22 18 

Soybean-notill 0.5 0.53 0.51 949 
Soybean-mintill 0.78 0.59 0.67 2411 

Soybean-clean 0.36 0.53 0.43 585 
Wheat 0.51 0.48 0.49 202 
Woods 0.85 0.73 0.79 1238 

Buildings-Grass-Trees-
Drives 

0.89 0.54 0.67 378 

Stone-Steel- 
Towers 

0.17 1 0.29 91 

Kappa 56.54307 
   

Overall 61.50703 
   

Average 53.14251 
   

  
TABLE IV. OVERALL ACCURACY (OA%) PCA AND 

WAVELET VERSUS FA AND WAVELET FOR 
PAVIA UNIVERSITY WITH RANDOM, 

RESPECTIVELY CONTROLLED SAMPLING FOR 
5X5 PATCH DIMENSION 

 PCA and 

Wavelet 

FA and 

Wavelet 

 OA Std. OA Std. 

Random sampling 90.93 ±0.02 93.39 ±0.41 

Controlled sampling 88.5 ±0.34 91.92 ±0.71 

  
TABEL V. OVERALL ACCURACY (OA%) PCA AND 

WAVELET VERSUS FA AND WAVELET FOR 
SALINAS WITH RANDOM, RESPECTIVELY 
CONTROLLED SAMPLING FOR 3X3 PATCH 

DIMENSION 
 PCA and 

Wavelet 

FA and 

Wavelet 

 OA Std. OA Std. 

Random sampling 88.63 ±0.57 90.42 ±0.22 

Controlled sampling 81.63 ±0.48 82.61 ±0.95 

But those results are misleading, due to the impossibility 
of ensuring that there is not an overlap between training 
and testing samples. Overall, the proposed controlled 
sampling strategy reveals the real discriminative ability of 
the spectral-spatial wavelet CNN, which is designed to 
extract small 3D patches containing information in both 
spatial and spectral dimensions. 
 The same issue regarding the independence between the 
training data set and the testing data sets is discussed in 
[17] and [18]. The mentioned papers discuss the manner in 
which the spectral-spatial methods usually exploit 
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information from neighborhood pixels for the same dataset 
resulting in features that overlap in the spatial domain due 
to the overlapping of the kernels. The authors from the 
mentioned papers have offered solutions to ensure the 
independence between the training and testing data sets, 
through controlled sampling strategies, as the one 
presented in this paper. The experimental results from of 
visual results for FA and Wavelet. As a comparison, for the 
random sampling technique, in terms of visual results, we 
have a better representation of the data compared to the 
controlled sampling technique. But in the case of random 
sampling, we cannot be sure that we have completely 
independent samples for the training and data sets. 

Figure 7. Comparison of the classification results on the 
Salinas scene for a patch size of 5x5 and 20% samples 

per class for training: (a) ground truth of the data set, (b) 
classification map for sampling strategy, (c) classification 

map for controlled strategy. 
 

V. CONCLUSIONS 
This paper presented the results regarding the impact of 
the sampling strategy in the context of hyperspectral image 
classification. Based on the results presented, the issues 
with random sampling were emphasized, namely that it 
does not take into account the fact that training and testing 
samples from the same data set often overlap. Moreover, 
the implementation of a controlled sampling strategy 
ensured the independence between the training and testing 
datasets, enabling reliable evaluation of the model's 
generalization capabilities. Classifiers developed using 
convolutional neural network (CNN) architectures that 
incorporate spectral and spatial information benefit from 
the controlled sampling technique proposed in this paper. 
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