

Volume 64, Number 1, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received February 19, 2024; revised May 20, 2024

1

CHATBOT DESIGNED FOR INTERNATIONAL STUDENTS

Carla-Mihaela BULZESCU1, Lacrimioara GRAMA2

1,2Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania

 1Bulzescu.Ga.Carla@student.utcluj.ro, 2Lacrimioara.Grama@bel.utcluj.ro

Abstract: The main purpose of this paper is to present a chatbot developed for international students. It provides guidance on a
range of challenges, including safety, culture shock, housing, language, and academic notes. For this purpose, a dataset of 72
question-and-answer intents was developed from scratch, designed to assist students. The training phase uses the dataset to create
the neural network model. The chatbot makes use of established rules and techniques for natural language processing to predict
the appropriate responses to user’s demand. Two Python-based versions of the chatbot are developed: one with a user interface,
designed using a Flask server connected to a front-end section, and one with a compiler-based method that can handle speech
input and output. Both versions achieved high accuracy during the training phase, suggesting good forecasting for the purpose
upon which the chatbot was designed.

Keywords: chatbot, artificial intelligence, neural network, natural language processing, text to speech.

I. INTRODUCTION
Globally, there is a growing demand for chatbots, especially
in the education sector. Students frequently spend time and
energy on a lot of websites, and did not the needed
information, mostly when studying abroad. Artificial
Intelligence (AI) chatbots are developed to converse with
people and respond to specific queries, saving time and
effort.
 Over the span of years, Python chatbots have grown
exponentially, reaching almost the top of the charts in the
technical and commercial world. Companies from a wide
range of industries are deploying these intelligent bots since
they are excellent at simulating human speech and
cooperating with people [1].
 A chatbot is an astute, conversational computer software
which employs voice, text, or both to conduct
conversations. It is versatile enough to carry out a variety of
activities since it takes in a lot of data and reacts with
conversational output [2].
 Modern AI-based chatbots can detect similar
conversations using data collection, machine learning, and
natural language processing. They can perform tasks such as
information provision, personalized product
recommendations, and routine task automation [3].
Nowadays, chatbots have made great advancements and can
now converse with one another like people. They can mimic
human behavior by sharing personal experiences, being
patient, confusing and even misleading.
 In the 1960s, the first chatbot, ELIZA, was developed by
Joseph Weizenbaum to imitate a psychologist using pattern
matching [4]. Today, chatbots are used for communication
on various online platforms, often for amusement or
specialized purposes. Natural language processing is used in
educational inquiry chatbot applications to understand and
respond to user questions. Chatbots can be rule-based, self-
learning, text-to-text, or speech-to-voice [5].

 Since ELIZA, virtual assistants have evolved, leading to
personal assistants like Apple's Siri, Amazon's Alexa, and
ChatGPT. Siri, created in 2010, supports video, audio, and
images, and uses various online resources to provide
suggestions and answer user requests. However, it has
limitations, such as the need for an internet connection,
support for multiple languages, and difficulty hearing strong
accents or background noise [6].
 In [7] the opinions of educators and students in Krabi,
Thailand, regarding the use of ChatGPT for educational
purposes are examined. The study found that ChatGPT
offers quick feedback and is generally viewed favorably in
education. Although technology has the potential to lighten
the burden, teachers expressed worries concerning the
accuracy of the content and loss of interpersonal
engagement, other major issues including data safety and
confidentiality.
 In 2019, a university chatbot, UNIBOT, was released to
provide information about admission procedures and
university activities. However, UNIBOT cannot fully
understand customer queries due to SQL-generated
questions [5].
 Chatbots can be categorized into rule-based and self-
learning models [8]. Rule-based chatbots follow pre-set
rules and are often underpowered. Self-learning chatbots use
machine learning algorithms and are divided into retrieval-
based and generative models. Retrieval-based models use
predefined answers and are precise, while generative models
use modern algorithms and natural language processing to
create dynamic conversations.
 The goal of this work was to develop a chatbot which is
intended to support international students who are moving
to another country to further their studies. It is not intended
to be a general bot, i.e. as ChatGPT, who can compose
various written content (such as essays, post for social
media, articles, code, etc.). The present chatbot uses

Volume 64, Number 1, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 2

predetermined rules and natural language processing
methods but lacks advanced features. It was designed to
answer some general questions that students who study
abroad might have.
 Two Python-based implementations of the chatbot are
presented: a user-friendly interface built on the Flask
framework and a chatbot that processes speech input and
output using a compiler method. Both versions offer
valuable insights for international students studying in new
countries. To support them with a variety of questions they
could have about living arrangements, culture shock,
language, university-related matters, and other topics, a
database with a set of question-answer intents was built.
 Both implementations are user-centered applications,
like CiSA [9]. Compared to CiSA, our application presents
also a chatbot that processes speech input and output, and it
is not restricted only to the campus life.
 The paper is organized as follows: first the dataset is
described in Section II; then, in Section III, the
implementation of the chatbot’s versions is discussed;
experimental results are presented in Section IV, while the
conclusions are dragged in Section V.

II. DATASET
Various datasets can be found on open data sites and are
accessible to the public, but in this case, the dataset was
created entirely from scratch to meet the needs of the
targeted audience.
 Our dataset contains 72 intent objects with questions,
each of which has multiple answers [10]. The dataset is in a
JavaScript Object Notation (JSON) format, which is very
convenient for data management and use in web
applications. The code for creating and reading JSON data
can be written using any programming language, making it
adaptable and compatible with various systems and
architectures [11]. The file is organized in a specific way
and follows a particular scheme. It contains a list of intents,
where intents are a key to an array of intent items. Each
item includes keys for tags, patterns, and responses:

• tags represent a string corresponding to the label or
category;

• patterns are an array of questions that the user can
ask;

• responses represent a set of answers that the chatbot
can deliver for the specified intent.

 An example of such an intents object can be seen in Fig.
1. Here, the word “mental” marks the tag because it is an

essential word that can be detected in every question of this
intent item, so that the chatbot can use the tag to give proper
answers.
 The queries and worries that students frequently have
when studying internationally are addressed by the dataset
utilized for this chatbot. These questions center on major
elements that have a big impact on the entire experience and
their purpose is to help students with housing, language,
culture shock, staying healthy, adjusting to a new university,
and making new friends. By addressing these subjects, the
bot tries to help individuals navigate the difficulties and
unknowns involved with studying abroad.
 The 72 intent objects from the dataset [10] are:
academic, accommodation, affordable, bank, best, bring,
club, cope, cultural, differences, disappointment, distracted,
do, do not, easier, entertainment, events, exams,
expectations, expenses, explore, exploring, facilities, favor,
feedback, find classes, food, friends, goodbye, greetings,
growing apart, habits, healthy, help, improve, interviews,
involved, job, language, library, manage, mental, name,
name1, need, need help, news, no answer, no help, notes,
organized, phone, presentation, public, purpose, register,
sense, shock, shops, sick, speak, stay, subjects, supervisor,
support, thanks, things, tips, transportation, workplace,
written.

III. SOFTWARE ARHITECTURE
The chatbot uses predetermined rules and natural language
processing (NLP) methods but lacks advanced features. Our
chatbot application, based on Python, it is implemented in
two different ways: one uses the Flask framework to set up
the user-friendly interface, and the other is a compiler-based
one, where the chatbot combines text-to-speech technology
with speech recognition to record user input and deliver
audio replies to the user.
 Python was chosen as the primary programming
language, and PyCharm as the integrated development
environment for its creation. Sublime Text Editor was used
for editing the front-end section, offering features like
syntax highlight, automated indentation, document type
recognition, and a sidebar.
 The structure of the project, as depicted in Fig. 2 [10],
consists of Python, the programming language used to write
most of the code, the dataset that was developed in JSON
format, some shared files across the two implementations,
and the files that differ between the implementations.

Figure 1. Example of an intent object.

Volume 64, Number 1, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 3

Figure 2. Organizational structure.

A. Shared files across the two implementations
As illustrated in Fig. 2, the two versions share a set of
common files written in Python that function in the same
manner in both cases (nltk_utils.py, model.py, and train.py).
Initially, to be pre-processed and used for the training phase,
the text representing the intents in the JSON file went
through several steps. A fully connected neural network
(NN) model was built, and then the bot was trained on it and
the prepared data.
 Every distinct function in a fully linked layer is made up
of a neuron that transforms the vector of inputs linearly
using a weights matrix. The product undergoes a non-linear
conversion using an activation function that encloses the dot
product within the layer’s input and weights matrix, and so
the output vector is obtained.
 In what follows we will try to describe the three
common files between the two implementations.
1) The nltk-utils.py file contains text formatting functions

for NLP and an AI field that converts data into strings.
The file imports the required libraries and provides
preprocessing functions like tokenization and stemming.
The tokenize function divides a sentence into a
collection of tokens/words using the
nltk.word_tokenize() function as its input. The stem
function stems from a word, meaning it finds the root of
the word and converts the word to lowercase before
returning it as a stemmed word. The next step in an NLP
pipeline, after text processing, is the feature extraction
stage, and in this case the bag-of-words technique has
been used. With the help of the bag_of_words function,

a tokenized sentence which is provided as input along
with an array of recognized words, can be represented as
a bag of words. At the beginning, the function fills an
array of words with zeros. For every word that appears
in the sentence, after it was stemmed, the associated
place in the bag of words collection is changed to one. A
tokenized sentence which is provided as input along
with an array of recognized words, can be represented as
a bag of words.

2) The model.py file contains an artificial NN model used

for chatbot training. The NN module is loaded from a
Python library to ofer the existing NN layers and
functionalities; as an instance of module class a
NeuralNet subclass is created. A constructor is built, and
three linear transformation layers are generated. The
same three arguments that were provided to the original
constructor (input_size, hidden_size, and num_classes)
are passed to each layer as input and output neurons.
Repeating the process, a linear transformation layer is
given to the input, and a ReLU activation function to the
layer’s output. The network’s final output is restored,
and it shows what is happening when the second ReLU
function output is subjected to the linear transformation
of the third layer.

3) The train.py file trains the NN model; intents are

obtained from the JSON file and three lists are created
for the words, tags and “xy” pairs, representing the
patterns and tags associated with the intent objects.

Volume 64, Number 1, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 4

Every sentence corresponding to patterns from the JSON
file is then passed by the code. Each of the patterns are
tokenized, its components are added to the words list,
and the tokenized phrases and tags are added to the “xy”
list. The words are stemmed, lowered, and sorted and
duplicates are removed. The tag list stored the ordered
tags. The bag-of-words format is used to transform
sentences representing patterns while iterating through
the “xy” list to build the data for training.
Hyperparameters like input, hidden or output size,
learning pace, and epochs count are set to control the
NN's layout and training. Two primitives are included to
enable the use of both prepared and newly generated
datasets. A data loader is created to manage batching
and shuffling of data used for training. The input,
hidden, and output parameters already defined are
supplied to a particular instance of the constructed
model and the Adam optimizer is initialized. The
machine learning performance of the classification
model is measured by cross-entropy loss. The preset
number of epochs are used for the training phase. The
data used for training is fed into the model in batches,
during each epoch and both forward pass and loss are
determined. Next, the gradients of the optimizer are set
to zero before beginning the second pass in reverse. The
step function of the Adam optimizer is then used for
updating the parameters that comprise the model and the
loss amount is set to be printed after one hundred
epochs.

B. Flask framework backend implementation
The Flask web application framework was used to develop
the user interface, which is divided into two sections: the
files which are shared by the two implementations (see
subsection III.A), as well as a file titled chat.py for the
chatbot’s interface functionality and a script app.py to set up
the Flask web server (they are found in the application’s
backend). The files that made up the front-end section
(base.html, style.css, and app.js) were edited using the
Sublime Text Editor.
1) The chat.py file develops the basic interface, includes

the essential libraries, packages, and functions. The
JSON file's intents are loaded in the same manner as in
the train.py script. A console-based implementation
links the interface to the server so that the user can test
the chatbot before connecting to the Flask application.
The chatbot asks for further assistance after an inactivity
period; to keep track of user actions, a variable is
updated with the current time.

2) The app.py script configures the Flask web application
server. The app variable is initialized with a Flask class,
and origins can be provided for content loading. The
response variable stores the JSON entity as an answer,
and the server can be tested locally using a function.

3) The base.html file is responsible for delivering an

internet browser user interface. It includes a head section
with metadata, a title bar, and an icon. The body section
outlines the bot's interface and is styled with Cascading
Style Sheets (CSS). A chat container displays user
messages, and a JavaScript (JS) file handles user input.
The HyperText Markup Language (HTML) file

automatically refreshes the chat box with the bot's
answer, ensuring a continuous conversation experience.

4) The style.css script is used to style the front-end section

of the chatbot, applying styles to elements based on their
type. The cascading approach allows multiple style rules
to be applied to a single element, with higher specificity
selectors preceding lower specificity selectors. Media
queries can also be used to adjust the interface on
different devices.

5) The app.js file is the final script from this part, defining

a class called Chatbox that manages the chatbot's
interaction with the user. It initializes properties and
configurations, including the open and send buttons,
event listeners, input field, and interval loop. The
Chatbox's status is switched between active and inactive
states, and user input is added to the array of messages.

C. Compiler-based implementation
The second implementation of the chatbot combines text-to-
speech (TTS) technology with speech recognition to record
user input and deliver audio replies to the user. The NN
model is trained to receive user input and provide responses
based on predetermined intents and can handle user
inactivity. The compiler-based chatbot is based on the same
shared files (see subsection III.A). The model is trained on
the same JSON file, and it does not have a front-end section
because it only runs in the console. These files are used in
the creation of the bot, along with the chat.py script, which
is modified to include the TTS and speech recognition
features.
 A speech engine was created using the pyttsx3 package,
and the chatbot would respond with an arbitrary response if
the predicted tag had a likelihood greater than the
predetermined threshold of 0.75.
 The main loop continuously monitors the microphone for
user input, converting audio into text with the speech
recognition module, providing an answer, and breaking the
loop if the identified phrase contains predefined sentences,
such as “see you later” or “goodbye”. The bot interacts with
the user, writes a response in the console, and plays audio. If
voice recognition misses collecting input, the user is asked
for additional assistance.

IV. EXPERIMENTAL RESULTS
The chatbot implementation process involves testing both
versions, with the nltk-utils.py and model.py files being
launched first.

A. Training phase
The chatbot is trained using the defined functions and the
model. The results from the training phase can be seen in
Fig. 3, which shows 162 patterns, 72 tags, and 238 stemmed
words.
 The model is trained using the entire dataset, with each
tag fed into the NN model. The model runs for 1000 epochs,
with the most recently reached loss value being displayed as
“Final loss”. A value ranging from zero to one represents
the loss, with zero representing the ideal model, so the
objective is usually to bring the model as close to zero as
possible.

Volume 64, Number 1, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 5

Figure 3. Training phase results.

From Fig. 3 it can be stated that the model exhibits high
accuracy, since the loss is 0.0004 after 400 epochs and zero
after 700 epochs. The user is informed of the completion of
the training process.

B. Flask Framework testing
The user can test the chatbot in a console-based main loop
before connecting to the Flask web application. The data.py
file contains training data for the chatbot. The main loop is
executed and, in the console, the “Let’s chat! (type ‘quit’ to
exit)” message appears inviting the user to start the
conversation. If at some point the client wants to finish the
chat, they merely need to type the word “quit” in the
terminal and the process will stop.
 Any conversation will start with “You:” for the user’s
perspective, followed by “Bot answer:” for the bot’s
perspective. It can be noticed that the bot responds to
greetings accurately and can respond to the questions it was
taught to answer. Moreover, the bot will ask if additional
help is required once the 10 second period of inactivity has
passed. In case the response is affirmative, the dialogue can
continue and if it is negative, the chatbot bids the user
farewell and concludes the exchange. An illustration of the
bot testing phase in the console is shown in Fig. 4.

Figure 4. Flask implementation testing.

 The front-end component of the web application needs
to be linked to the Flask server through the app.py script.
The Flask framework enters debug mode, allowing the
front-end component to establish a connection between the
application and the web browser. The scripts are changed
using Sublime Text Editor, which also allows for the
installation of a package called Browser Sync. This plugin
synchronizes connections and code updates across devices,
speeding up the workflow.
 Fig. 5 shows what will be initially displayed on the page
in the web browser after it has been loaded in a new window
tab. In the browser’s top bar, users can see the title and
chatbot icon that were defined in the HTML file. The button
that displays the user interface and is in the lower right
corner of the page initially displays a blank page. It needs to
be pressed to turn it on and start the interface. If the button
is pressed again while chatting with the bot, the interface
can always be returned to its inactive state.

Figure 5. Web browser – initial view.

Volume 64, Number 1, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 6

 An interaction between the user interface and the bot can
be observed in Fig. 6. A greeting message and an icon have
been placed in the interface’s top part.

Figure 6. Chatbot conversation flow example.

 The bot functions exactly as it would if a user was to test
the interface in the terminal. It replies to greetings, offers
responses to user input, requests more assistance after a
certain period of inactivity, and deals with circumstances
where the user needs more assistance or not.
 The input field and send button can also be seen in the
figure, along with a scrolling bar that was also implemented
in the front-end section, and the button that changes the
interface’s state.

C. Compiler-based implementation testing
After the training phase is fulfilled, the final file that must
be executed for the chatbot to function is chat.py. TTS and
speech recognition tools are used in this version, which
operates in the PyCharm terminal. An example of a user-
chatbot interaction using TTS and voice recognition is
shown in Fig. 7. The bot displays a greeting, invites the user
to ask for help, and then processes user input and generates
a response. If the user responds affirmatively, the
conversation continues, otherwise the bot ends the
interaction.

Figure 7. Compiler-based chatbot interaction.

V. CONCLUSIONS AND FUTURE WORK

Through this paper a chatbot to assist international students
moving to another country for further studies was discussed.
To support students with a variety of questions they could
have about living arrangements, culture shock, language,
university-related matters, and other topics, a database with
a set of 72 question-answer intents was built.
 The proposed chatbot comes in two versions: a user
interface-based one built using the Flask framework that is

Volume 64, Number 1, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 7

linked to the frontend section, and a compiler-based one that
uses text-to-speech and speech recognition to streamline
user interaction and relies on audio as a form of
communication.
 The dataset used for training was created from scratch
and the chatbot makes use of established rules and
techniques for natural language processing to predict the
appropriate responses to the user's queries. Both bot
versions achieved high accuracy during the training phase,
indicating good forecasting for the purposes upon which it
was designed.
 In intelligent messaging systems used in education,
chatbots are becoming more prevalent, and will inevitably
develop in power and grow more intelligent as artificial
intelligence and machine learning fields are progressing.
The achieved results and accuracy levels support the
assertion that there are many implementation options for
chatbots and depending on the dataset, they may be
exploited in various industries.
 Future development of the chatbot described in this
paper could benefit from enhancing the user interfaces and
expanding the database to provide more sophisticated
assistance for international students. Later, the bot might be
incorporated in an Android application that would be
handier for the users and it could also include the input-
output audio features.

REFERENCES
[1] K. Goyal, “Top 12 Commerce Project Topics & Ideas in 2023
[For Freshers],” upGrad blog.
[2] N. K. Chauhan, “Create a voice chatbot in python using NLTK,
Speech Recognition, Google (text-to-speech) & Scikit-learn,”
Medium, Dec. 14, 2021.
[3] T. Capacity, “How does an AI chatbot work, and what does it
mean for the future?,” Capacity, Apr. 11, 2023.
[4] M. Lundell Vinkler, P. Yu, “Conversational Chatbots with
Memory-based Question and Answer Generation,” Dissertation
Thesis, Department of Science and Technology, Linköping
University, The Institute of Technology, 2020.
[5] R. Parkar, Y. Payare, K. Mithari, J. Nambiar and J. Gupta, “AI
And Web-Based Interactive College Enquiry Chatbot,” 13th
International Conference on Electronics, Computers and Artificial
Intelligence (ECAI), Pitesti, Romania, 2021, pp. 1-5, doi:
10.1109/ECAI52376.2021.9515065.
[6] E. Adamopoulou, L. Moussiades, “Chatbots: History,
technology, and applications,” Machine Learning with
Applications, vol. 2, 2020, doi: 10.1016/j.mlwa.2020.100006..
[7] P. Limna, T. Kraiwanit, K. Jangjarat, P. Klayklung, P.
Chocksathaporn, “The use of ChatGPT in the digital era:
Perspectives on chatbot implementation,” Journal of Applied
Learning & Teaching, vol. 6, no. 1, May 2023.
[8] D. Maina, “How to create an AI Chatbot in Python and Flask”,
DEV Community, Feb. 2022.
[9] J. Heo, J. Lee, “ CiSA: An Inclusive Chatbot Service for
International Students and Academics,” HCI International 2019 –
Late Breaking Papers, Lecture Notes in Computer Science, vol
11786. Springer, Cham, doi: 10.1007/978-3-030-30033-3_12.
[10] C.M. Bulzescu, “Chatbot support for international students,”
Diploma Thesis, Faculty of Electronics, Telecommunications and
Information Technology, Technical University of Cluj-Napoca,
Romania, July 2023.
[11] L. Bassett, ”Introduction to JavaScript Object Notation: A To-
the-Point Guide to JSON,” 2015.
https://www.amazon.com/Introduction-JavaScript-Object-
Notation-Point/dp/1491929480.

