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Abstract: Polarimetric Synthetic Aperture Radar (PolSAR) imaging has emerged as a powerful tool for remote sensing 
applications, providing valuable insights into the physical properties of observed targets. Among various methods employed 
for PolSAR image analysis, the Local Binary Patterns (LBP) algorithm has gained significant attention due to its robustness 
and efficiency in texture classification tasks. However, conventional LBP approaches often encounter challenges in capturing 
complex texture patterns and preserving discriminative information inherent in PolSAR images. In this paper, we propose an 
integration of the classical Extended Local Binary Patterns (ELBP) method into a framework specifically designed for PolSAR 
image analysis. The ELBP method integrates advanced feature extraction techniques based on multiresolution analysis to 
enhance the discriminative power of texture descriptors. By exploiting the polarimetric information embedded in PolSAR 
images, the ELBP method effectively captures intricate texture characteristics while preserving spatial context. Comparative 
analyses against state-of-the-art texture analysis techniques demonstrate the efficiency of the ELBP method in terms of 
classification accuracy.  
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I. INTRODUCTION 
Radar images obtained with a Synthetic Aperture Radar 
(SAR) system that possesses polarimetric capabilities are 
referred to as polarimetric SAR images (PolSAR). 
Polarimetric SAR systems can emit and receive radar 
signals in multiple polarization states concurrently, in 
contrast to conventional SAR systems that can only 
transmit and receive radar signals in a single polarization, 
usually horizontal or vertical direction. The corresponding 
polarization states, which include horizontal (HH), vertical 
(VV), and cross-polarized (HV or VH) images, represent 
the rich data gathered from the scene’s scattering properties 
[1]. 
 Different parameters, in terms of type and number, can 
be derived from the scene under observation based on the 
organization of information in the polarimetric SAR 
images. These parameters may include the vegetation 
characteristics, or the specific target classification, the 
roughness of the observed area or the moisture content. The 
polarimetric SAR images have been used in different 
fields, such as military reconnaissance, forestry, 
agriculture, disaster relief or environmental monitoring.  
 The PolSAR sensors are very suitable for continuous 
monitoring of a scene, the polarimetric systems being 
capable of collecting the information regardless of the 
weather conditions (clouds, fog) or the period of the day 
(night or daytime). Also, the polarimetric SAR signals 
have the ability to penetrate through vegetation, providing 
information about the underlying terrain or objects 
obscured by foliage. This type of collected information, 
providing richer data in terms of scattering properties 
allows for advanced analysis techniques for material 
discrimination in a scene [1].  
 Due to its abundant information, different types of 
features can be extracted from the PolSAR images. These 
features are derived from complex data and are used for 

various purposes such as classification, target detection, 
and parameter estimation. Statistical descriptors and 
texture features are some of the popular feature extraction 
methods applied on polarimetric data, as presented in [2], 
[3] and [4]. Features derived from statistical analysis of 
polarimetric data include mean, variance, covariance, 
correlation, entropy, while the texture features can be 
derived from the gray-level co-occurrence matrices 
(GLCM), wavelet transforms, or Local Binary Patterns 
(LBP). The mentioned methods can extract the features 
from the PolSAR data that can be used independently or 
combined into a single feature vector. In order to validate 
the efficiency of the extracted features, machine learning 
algorithms are often employed, typically the Support 
Vector Machines (SVM) classifier. 
 The GLCM and LBP methods are used to extract 
valuable information from a rich data set. Due to the 
capability of providing information regarding the texture 
properties as contrast, correlation, energy or homogeneity, 
the GLCM [5] method has proven to be sensitive to the 
spatial arrangement of backscatter values in PolSAR 
images, allowing for the characterization of textural 
features, as presented in [6]. In paper [6], a fused feature 
vector was proposed, based on the most common texture 
information extraction techniques, the GLCM and LBP 
approaches, which resulted in good accuracy, for the SVM 
classifier. 
 The structure of the paper is as follows: in Section II, 
we introduce our approach within the framework of 
polarimetric SAR remote sensing. Section III is devoted to 
experimental validation, where we present the 
classification results on real, respectively simulated 
PolSAR images, where varying ages of maritime pine 
forest is observed, with different acquisition resolutions. 
Lastly, the concluding section summarizes our findings 
and outlines potential avenues for future research. 
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Figure 1. Polarimetric SAR image classification framework. 

 
II. PROPOSED METHOD 

The proposed machine learning methodology for this 
study, for polarimetric SAR image classification is 
depicted in Fig. 1, where from the PolSAR database, the 
three polarizations are used, HH, HV and VV, to evaluate 
the efficiency of the feature extraction ELBP method. In 
this paper, on each individual polarized image, a 
preprocessing stage is applied, followed by the ELBP 
feature extraction method where specific features are 
extracted. Then those features are concatenated into a 
single feature vector, as in [7], then fed to a SVM classifier.  
 
A. PolSAR data acquisition and preprocessing  
 In polarimetric synthetic aperture radar imaging, 
polarization refers to the orientation of the transmitted and 
received radar waves with respect to the Earth's surface, in 
which the systems utilize antennas capable of transmitting 
and receiving signals in different polarizations. During 
data acquisition, the radar system emits electromagnetic 
waves towards the Earth's surface which scatter in various 
directions. The radar system then receives the 
backscattered signals that carry the information about the 
surface characteristics of the observed area. 
 In PolSAR systems, the received signals are recorded in 
the form of complex-valued matrices, where each element 
represents the amplitude and phase of the signal in a 
specific polarization channel. Thus, a scattering matrix 
(𝑆) outlines the manner in which a target scatters after 
coming into contact with an electromagnetic pulse, 
by integrating into the matrix the emitted and 
backscattered signals' horizontal and vertical polarization 
phases. When electromagnetic waves from a source 
interact with surface-placed scatterers, backscattered 
electromagnetic waves are produced. These backscattered 
waves are determined by the physical characteristics of the 
objects in the acquired scene, such as their spatial 
dimensions or the type of the material, within a specified 
range in the direction of the flying path, known as azimuth 
in SAR terminology.  
 A mathematical expression can be used to describe the 

relationship between the incident, denoted by 𝐸ℎ
𝑖  and 𝐸𝑣

𝑖 , 
for the horizontal and vertical directions, and the scattered 
electromagnetic waves, 𝐸ℎ

𝑠 and 𝐸ℎ
𝑠, for a given 

wavenumber 𝑘 = 2𝜋/𝜆 and a certain distance 𝑟 between 
the target and the receiver: 
 

[
𝐸ℎ
𝑠

𝐸𝑣
𝑠] =

𝑒−𝑗𝑘𝑟

𝑟
[
𝑆ℎℎ 𝑆ℎ𝑣
𝑆𝑣ℎ 𝑆𝑣𝑣

] [
𝐸ℎ
𝑖

𝐸𝑣
𝑖
] = 𝑆 [

𝐸ℎ
𝑖

𝐸𝑣
𝑖
] 

(1) 

 
 The scattering matrix (𝑆) from equation (1) quantifies 
the scattering attributes of the fixed targets and includes 

complex coefficients. Two different receiving antennas are 
used to measure the associated coefficients in order to 
detect the vertical and horizontal reflected polarized 
waves, respectively [8]. The diagonal coefficients are 
assumed to be equal if the sender and the recipient are in 
the same location, indicating that the information 
contained in the HV and VH polarization is the same. 
 By combining information from different polarization 
states, PolSAR imaging can provide a richer understanding 
of the scattering properties and surface characteristics of 
the observed area. In this situation the analysis of multiple 
polarization channels allows for more accurate 
classification of the data. 
 Our method transforms the diagonal, respectively the 
vertical scattering coefficients logarithmically as 
illustrated in the following equation, for HH, VH and VV 
[6]: 
 
𝐼ℎℎ = 10𝑙𝑜𝑔 (𝑆ℎℎ ∙ 𝑆ℎℎ

∗ )
= 10𝑙𝑜𝑔[𝑅𝑒2(𝑆ℎℎ) + 𝐼𝑚

2(𝑆ℎℎ)] 
 

 

𝐼ℎ𝑣 = 10log (𝑆ℎ𝑣 ∙ 𝑆ℎ𝑣
∗ )
= 10𝑙𝑜𝑔[𝑅𝑒2(𝑆ℎ𝑣) + 𝐼𝑚

2(𝑆ℎ𝑣)] 
 

 
(2) 

𝐼𝑣𝑣 = 10log (𝑆𝑣𝑣 ∙ 𝑆𝑣𝑣
∗ )
= 10𝑙𝑜𝑔[𝑅𝑒2(𝑆𝑣𝑣) + 𝐼𝑚

2(𝑆𝑣𝑣)] 
 

 

The logarithmic transformation from equation (2) is 
applied in the preprocessing stage from Fig. 1, for the three 
polarizations, to improve the data quality by transforming 
the multiplicative noise that characterize the PolSAR 
images into an additive noise. 
 
B. Extended LBP feature extraction approach 
 The Local Binary Patterns [9] technique was used for 
PolSAR image processing due to the complex textures 
preset in this type of database as a result of radar wave 
interactions with many sorts of surfaces and materials. 
Because local patterns of intensity variations within the 
image are encoded, the LBP approach efficiently captures 
these textures. Based on the strong capability to extract 
information from any type of data that contains texture, the 
LBP method has evolved in new methods such as Extended 
ELBP [10] or SSELBP [11]. 
 For the LBP method a binary set is constructed for a 
particular center pixel by comparing its gray value, denoted 
by 𝑡𝑐, to that of its neighbors, 𝑡𝑖. Then, the function 𝑠(∙), 
attributes a value of 0 or 1, for each neighbor inside a 
specified area [9]: 
 

𝑠(𝑡𝑖 − 𝑡𝑐) = {
1,         𝑖𝑓 𝑡𝑖 − 𝑡𝑐 ≥ 0
0, 𝑖𝑓 𝑡𝑖 − 𝑡𝑐 < 0.

 
(3) 



 

Volume 64, Number 1, 2024                                                     ACTA TECHNICA NAPOCENSIS                                                                                                                        

Electronics and Telecommunications 

________________________________________________________________________________ 

22 
 

A set of data points with uniform spacing within a circle 
with radius 𝑅 is defined in order to determine which pixels 
are adjacent to the centered pixel. By placing 𝑃 neighbors 
evenly around the circle of radius 𝑅, the LBP code is 
created: 

𝐿𝐵𝑃𝑃,𝑅(𝑡𝑐) = ∑𝑠(𝑡𝑖 − 𝑡𝑐) ∙ 2
𝑖

𝑃−1

𝑖=0

. 
 

(4) 

 
 Thus, the probability distribution of the 2𝑝 LBP patterns 
can be used to describe a texture image. By varying the 
parameters (𝑅, 𝑃), the LBP operator has been extended to 
multiscale analysis, allowing for any radius and number of 
pixels in the neighborhood.  
 However, the LBP method has some limitations due to 
the sensitivity of different patterns to the orientation of the 
image, which can limit their effectiveness in tasks where 
rotation invariance is crucial. To eliminate these issues a 
rotational invariant LBP was developed [9]  by considering 
multiple rotations of the local neighborhood pattern and 
selecting the most representative pattern among them. By 
capturing texture information in a rotationally invariant 
manner, this variant of LBP enables more robust texture 
analysis in situations where the orientation of the image 
may vary: 
 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 (𝑡𝑐) = min{𝑅𝑂𝑅(𝐿𝐵𝑃𝑃,𝑅 , 𝑖)| 𝑖

= 0,1,2…𝑃 − 1}, 

(5) 

 
where 𝑅𝑂𝑅(∙) ensures that a step circular bit-wise right 
shift is performed on the  𝐿𝐵𝑃𝑃,𝑅, in order to preserve only 
the patterns with rotationally unique codes. Based on the 
notion of uniform and non-uniform patterns, a grouping of 
those LBP codes is proposed in [9], where the uniform 
patterns are grouped in 𝑝 + 1 different rotation invariant 
patterns. Those groups are dependent on the 𝑈(∙) function 
designed to count the bitwise transitions from the 0 bit to 
the 1 bit, respectively from the 1 bit to the 0 bit, to ensure 
that the corresponding categories of LBP codes represent 
rotational invariant uniform descriptors 𝐿𝐵𝑃𝑃,𝑅

𝑟𝑖𝑢2: 
 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2(𝑡𝑐)

=

{
 
 

 
 
∑ 𝑠(𝑡𝑖 − 𝑡𝑐),      𝑖𝑓 𝑈(∑ 𝑠(𝑡𝑖 − 𝑡𝑐)

𝑃−1

𝑖=0

) ≤ 2

𝑃−1

𝑖

𝑃 + 1,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
0

 

 
 
 
(6) 

 
 The ELBP method is designed as the extension of the 
LBP concept by considering a wider range of pixel 
comparisons, leading to a richer representation of local 
texture patterns. The ELBP method uses three descriptors 
CI, NI, and RD capable of capturing more complex texture 
variations compared to traditional LBP by including 
additional neighboring pixels in the pattern encoding 
process [10]. The following equations represent the three 
descriptors determined for the ELBP method: 
 

CI(tc
∗) = s(tc

∗ − β),  
 
 
 

NIR,P(tc
∗) = ∑s(tR,P,n

∗ − βR,P)

P−1

k=0

∙ 2n, 

RDR,R−1,P(tc
∗) = ∑s(tR,P,n

∗ − tR−1,P,n
∗ ) ∙

P−1

k=0

2n 

(7) 

 
In equation (7), for the CI descriptor, the tc

∗ represents the 
central pixel, while β represents the average of the entire 
image. For the NI descriptor instead of averaging the gray 
value of the entire image, the operator creates the code by 
averaging the intensities of the surrounding pixels in a 
window size of wR ×wR dimension, considering the local 
mean βR,P calculated in the local window. For the RD 
operator, the code is generated by comparing the brightness 
of pixels placed on a different radial direction, where the 
one radius has a smaller value than the other radius, both 
centered on the central pixel. 
 

III. EXPERIMENTAL RESULTS  
A. Datasets 
 For the experimental evaluation, a simulated and a real 
PolSAR image was used, containing maritime pine forest 
stands, with different ages. In order to determine the impact 
of the three descriptors on the classification accuracy for 
various polarizations, we tested the ELBP approach using 
a real L-band airborne PolSAR image similarly to [2] and 
[12] as shown in Fig. 2. During the ONERA RAMSES 
campaign in 2004, this data was taken above the French 
Nezer forest, representing maritime pine tree forests stands 
with 1 meter resolution. The data contains pine trees that 
range in age from 5 to 48 years, distributed in 62 forest 
stands, which were categorized by experts into four age 
groups: less than 10 years, between 10 and 20 years, 
between 21 and 30 years and more than 30 years [2]. 
 In Fig. 2 a section of the real data is shown, for the 4 
polarizations, HH, VH, HV and VV, for a patch in which 
the pine trees are 15 years old. Using the PolSARproSIM 
program [13], an aerial system operating in the L band was 
simulated in order to create simulated PolSAR images.  
 

  
                  a)           b) 

  
                   c)            d) 

Figure 2. A segment of a real PolSAR image pine trees 
(1m resolution) having 15 years, for different 

polarizations, at:  
a) HH, b) HV, c) VV, d) VH 
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The incidence angle for the simulated dataset is fixed at 
45°, with varying azimuth resolutions of 0.5, 1, 2, 3, and 5 
meters. Using the same experimental approach as in [12], 
polarimetric SAR images representing pine tree forest 
stands aged between 5 and 32 years have been generated 
for every individual resolution, for the HH, HV, VH and 
VV polarizations similarly to the real PolSAR data. In Fig. 
3 a simulated PolSAR image is illustrated with 1 meter 
resolution, for all four polarizations, similar to the real data, 
where the pine trees are 15 years old.  
 By analyzing Fig. 2 and Fig.3, we can observe that the 
information from the HV and VH polarization is similar. 
Based on this, for the experimental evaluation, we consider 
only the information from the HH, HV, respectively VV 
polarizations.  
 
B. Implementation 

The machine learning workflow with the SVM 
classifier shown in Fig. 1 was implemented using Matlab. 
With the SVM, a one-versus-one coding scheme and a 
linear kernel are used to train the data for the multiclass 
classification problem. The training dataset contains 50% 
polarized images from the PolSAR database, the remaining 
images being used for the testing data set. To provide mean 
accuracy values and standard deviations, we partitioned the 
training and testing sets 100 times. In order to test the 
performance of the ELBP method, the three descriptors 
were used only for the HH, HV and VV polarizations.  

For the ELBP descriptors, the neighbors were set at 𝑃 =
8, while the radii have taken different values of 2, 4, 6 and 
8. For the experiments presented in this study, we use only 
the radii of 2, respectively 4, for the descriptors, due to the 
multiresolution analysis of the data, by concatenating the 
histograms from multiple resolutions in a single histogram, 
representing the feature vector used in classification [7]. 
For the experimental evaluation different combinations of 
descriptors were created as joint histograms using the 
mentioned radii. For the second part of the evaluation a 
Gaussian filtering stage is added, after the data 
preprocessing stage. 

 

 
 

a)  b) 
 

  
c) d) 

 
Figure 3. An example of a synthetized PolSAR image at 1 
meter resolution, for different polarizations, for pine trees 
of 15 years old: a) HH polarization, b) HV polarization, 

c) VV polarization and d) VH polarization. 
 

For the filtering method, different values for sigma 
were testes from which only the value of 𝜎 = 0.5 was used 
to evaluate the influence of the filtering stage, under the 
same experimental conditions, for both real and 
synthesized PolSAR data. 

The overall accuracy (OA) is used as the evaluation 
parameter in this study, along with a decision level fusion 
with majority voting algorithm. The majority voting 
algorithm is used due to its capacity to allow multiple 
models to ensure that the best decision is made based on 
accuracy obtained for each stand, resulting in more 
accurate predictions. The decision level majority voting 
algorithm is designed to consider, for each individual 
polarization, HH, HV and VV, the corresponding label for 
each individual stand, label attributed in the classification  

 
Table 1.  SVM classification results for a synthetized PolSAR data using different combinations of ELBP coefficients 

with radii 2 and 4 for the HH, HV, VV polarizations and decision level fusion with majority voting  
  CI_RD CI_NI NI_RD CI_NI_RD 

0.5m HH 99.80 ± 0.73 99.49 ± 1.37 98.37 ± 2.20 98.06 ±1.46 

HV 98.80 ± 1.41 95.23 ± 3.79 89.86 ± 3.36 96.69 ± 2.25 

VV 99.60 ± 1.00 99.17 ± 1.59 98.26 ± 1.99 99.20 ± 1.52 

Majority voting 99.51 ± 1.08 99.37 ± 1.26 97.97 ± 1.96 97.97 ± 1.54 

1m HH 99.91 ± 0.48 100.0 ± 0.00 100.0 ± 0.00 99.31 ±1.47 

HV 99.45 ± 1.41 97.23 ± 2.35 97.37 ± 2.59 98.49 ± 1.70 

VV 99.03 ± 1.36 99.89 ± 0.56 99.60 ± 1.08 98.34 ± 1.63 

Majority voting 99.89 ± 0.56 99.94 ± 0.40 99.94 ± 0.40 98.66 ± 1.54 

2m HH 95.48 ± 3.22 88.40 ± 4.45 87.80 ± 4.80 86.26 ± 3.89 

HV 85.62 ± 4.84 67.86 ± 5.71 72.03 ± 4.49 79.34 ± 4.50 

VV 88.69 ± 4.84 86.14 ± 4.46 84.86 ± 4.05 85.80 ± 4.33 

Majority voting 93.34 ± 3.25 88.57 ± 4.00 85.74 ± 3.67 87.11 ± 2.77 

3m HH 50.22 ± 7.33 45.86 ± 6.67 53.77 ± 7.72 52.29 ± 7.41 

HV 77.17 ± 5.70 50.29 ± 7.49 52.23 ± 6.77 65.40 ± 5.15 

VV 72.57 ± 7.06 46.34 ± 8.67 52.14 ± 7.71 53.97 ± 6.83 

Majority voting 76.46 ± 6.82 51.09 ± 7.82 58.57 ± 6.67 63.77 ± 6.21 

5m HH 38.31 ± 6.94 45.74 ± 7.42 50.91 ± 7.29 53.09 ± 6.36 

HV 59.11 ± 6.76 59.89 ± 6.51 55.20 ± 5.32 66.06 ± 4.78 

VV 36.74 ± 7.28 35.00 ± 7.76 39.34 ± 7.31 37.89 ± 6.42 

Majority voting 51.26 ± 6.66 51.86 ± 7.33 55.37 ± 6.20 57.86 ± 6.32 
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Table 2. SVM classification results for a Gaussian filtered synthetized PolSAR data using different combinations of 
ELBP coefficients with radii 2 and 4 for the HH, HV, VV polarizations decision level fusion with majority voting 

  CI_RD CI_NI NI_RD CI_NI_RD 

0.5m HH 99.74 ± 0.82 98.86 ± 2.07 97.34 ± 2.73 98.23 ± 1.71 

HV 99.09 ± 1.40 96.26 ± 3.78 89.23 ± 3.30 97.11 ± 2.45 

VV 99.63 ± 0.97 98.54 ± 1.88 98.06 ± 1.90 99.06 ± 1.91 

Majority voting 99.63 ± 0.97 99.51 ± 1.15 97.06 ± 2.52 98.46 ± 1.69 

1m HH 99.71 ± 0.86 99.57 ± 1.10 100.0 ± 0.00 99.74 ± 1.00 

HV 99.14 ± 1.32 97.40 ± 2.99 95.34 ± 3.19 98.71 ± 1.43 

VV 99.66 ± 0.93 99.86 ± 0.63 99.97 ± 0.29 98.57 ± 1.44 

Majority voting 99.71 ± 0.86 99.94 ± 0.40 99.97 ± 0.29 98.89 ± 1.40 

2m HH 87.11 ± 5.16 83.23 ± 6.23 83.60 ± 5.47 82.14 ± 4.78 

HV 84.20 ± 4.42 65.11 ± 6.48 71.54 ± 5.63 80.14 ± 4.15 

VV 88.83 ± 3.81 82.69 ± 5.21 81.94 ± 4.77 85.91 ± 4.60 

Majority voting 92.17 ± 3.89 86.00 ± 5.71 86.26 ± 3.76 87.89 ± 3.28 

3m HH 45.31 ± 8.01 43.80 ± 6.84 47.49 ± 6.78 47.34 ± 5.90 

HV 79.43 ± 4.92 53.51 ± 6.52 56.11 ± 6.23 69.89 ± 4.34 

VV 67.77 ± 6.49 51.80 ± 8.31 51.97 ± 6.77 56.14 ± 6.48 

Majority voting 73.54 ± 6.49 55.83 ± 7.09 60.06 ± 6.46 66.69 ± 5.76 

5m HH 30.29 ± 6.95 44.86 ± 7.26 53.20 ± 7.25 50.71 ± 6.90 

HV 62.66 ± 6.19 57.46 ± 6.47 61.00 ± 6.26 65.11 ± 5.42 

VV 38.86 ± 7.13 40.20 ± 7.51 41.74 ± 6.13 43.49 ± 5.59 

Majority voting 48.20 ± 5.80 53.34 ± 6.08 58.71 ± 6.36 57.71 ± 5.71 

 
 

stage. For each stand, the voting algorithm is designed to 
find the majority of a sequence of elements, in our case the 
corresponding label for a specific stand, along the three 
polarization images. Thus, the majority voting algorithm 
will return the value, in our case, the label, which occurs 
more often among the three polarizations. After the 
decision level fusion is performed, an overall accuracy is 
computed for all 100 iterations. 

 
C. Results  

The results in this section are presented for the 
synthesized PolSAR image at various resolutions, without 
Gaussian filtering in Table 1, followed by the filtering 
stage, in Table 2.  

By analyzing Table 1, for all the polarizations, we can 
observe that the best performance for any combination of 
coefficients, CI, NI and RD resulted at smaller values of 
resolution. When the resolution of the polarimetric images 
decreases from 0.5 meters to 5m, the overall accuracy starts 
to decrease. This is due to the fact that at lower resolutions, 
the ELBP descriptors are not capable of extracting 
discriminant features from the polarimetric data. The 
ELBP descriptors were applied on each individual 
polarimetric image, on which different joint histograms, 
with 2 and 4 radii, were evaluated: CI_RD, CI_NI, NI_RD, 
respectively the joint histograms of all the descriptors, 
represented by CI_NI_RD. By analyzing only the 0.5-
meter resolution, for all the joint histogram combinations 
of descriptors, we can observe that based on the type of 
polarization, the specific coefficients offered good 
classification results, placed in a certain interval. For 
example, for the CI_RD concatenation, the classification 
results oscillate at ~99% for all three polarizations. In the 
case of CI_NI, we can observe that the information 
contained in the HH polarization resulted in a better 
classification result, represented by a difference of ~4% 
compared to the HV polarization, respectively a very 
similar result compared to the VV polarization. When 
combining the NI_RD concatenation of coefficients, a 

decrease in classification is observed, in comparison with 
CI_RD and CI_NI, while the same behavior of decreasing 
overall accuracy results remains as in the case of CI_NI. 
By concatenating all three ELBP coefficients, CI_NI_RD 
an overall accuracy of ~98% is obtained, a value 
comparable to the CI_RD feature vector concatenation. For 
the rest of the resolutions, the classification results present 
the same behavior in terms of the capability of the 
coefficients of extracting the information from the different 
polarized images, due to information stored in each 
individual image. By taking into consideration the decision 
level fusion with majority voting, the best results can be 
considered the one given by the concatenation of CI and 
RD, with good overall classification results, especially for 
the 0.5- and 1-meter resolutions. In [6], the authors have 
assessed the use of a LBP and GLCM in a machine learning 
workflow, in which only the HV polarization was 
considered. The results obtained in this study are 
comparable with the ones presented in [6]. Taking into 
consideration only the 0.5-meter resolution, discussing the 
HV polarization, our proposed framework resulted in a 
performance of ~98.80% for the feature vector 
concatenation of CI_RD, representing an increase of ~2% 
compared to the GLCM method, or an increase of ~3% 
when a concatenation between GLCM and ELBP is used. 

In Table 2, in terms of experimental results, a Gaussian 
filtering stage is added to study the influence of a filtering 
method in terms of performance. By analyzing Table 2, we 
can observe that the filtering method ensures an increase in 
performance on certain polarized images, while in other 
does not, in terms of classification results. This is true for 
all the resolutions, for any combination of ELBP 
descriptors, even when a decision level majority vote is 
considered. This means that the CI_RD ELBP joint 
descriptors, from Tabel 1 and 2, are effective in extracting 
the most valuable features, especially from the HH 
polarization when the 0.5 and 1 m resolutions are 
considered, or HV polarization when the resolution of the 
image is at 3 and 5 meters. 
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Table 3.  SVM classification results for a real PolSAR data of 1m resolution, using different combinations of ELBP 

coefficients with radii 2 and 4 for the HH, HV, VV polarizations, without, respectively with Gaussian filtering  
  CI_RD CI_NI NI_RD CI_N_RD 

 

without filtering 

HH 88.38 ± 3.66 84.41 ± 6.34 81.22 ± 2.76 84.84 ± 3.51 

HV 85.41 ± 4.12 85.56 ± 4.98 81.59 ± 3.87 85.88 ± 3.45 

VV 89.38 ± 5.46 85.28 ± 5.55 79.84 ± 3.83 82.91 ± 4.13 

Majority voting 91.03 ± 4.59 88.78 ± 4.77 81.72 ± 3.12 85.53 ± 3.49 

 

with filtering  

HH 90.53 ± 3.57 87.09 ± 4.46 81.44 ± 2.58 84.66 ± 3.87 

HV 85.88 ± 4.86 84.94 ± 5.21 81.06 ± 3.71 86.94 ± 3.56 

VV 85.97 ± 4.75 82.28 ± 5.86 79.50 ± 4.20 83.63 ± 4.29 

Majority voting 90.47 ± 4.43 87.22 ± 4.42 81.66 ± 3.25 86.84 ± 3.27 

In Table 3, under the same experimental evaluation, 
based on Fig. 1, the real PolSAR data is evaluated, 
considering the same joint histogram of different ELBP 
descriptors, for the radii 2 and 4, for each individual 
polarized image. As shown in Table 2, Table 3 has also the 
results considering the same Gaussian filtering. By 
analyzing Table 3, we can observe that the best 
performance is obtained for the concatenation of CI and 
RD ELBP descriptors, as discussed in the case of 
synthetized PolSAR data. When a filtering stage is added, 
the same conclusion remains for the Gaussian filtering 
capable of improvements in terms of performance for 
certain polarization images.  

 
IV. CONCLUSIONS 

In this paper we have assessed the performance of the 
ELBP method for the PolSAR database. An evaluation was 
done based on each individual HH, HV and VV polarized 
image on which three descriptors of the ELBP method 
were used to extract relevant features present at different 
resolutions, represented by the joint histogram 
concatenation of CI, NI or RD. The proposed classification 
framework was evaluated considering a real polarimetric 
image and a synthetized PolSAR database generated 
starting from the real data set, at various resolutions. Based 
on the results presented in this study we have observed that 
the joint multiresolution histogram of CI_RD descriptors 
provides the best performance in terms of overall 
classification, when the resolution of the image is 0.5 m or 
1 m, obtained from the HH polarization, while the HV 
polarization returns the best results at 3m, respectively 5 m 
resolution. In the second part of the experiments, a 
Gaussian filtering stage was added. The filtering method 
managed to increase the performance of the classier only 
for several polarized images.  
 In this study the ELBP method, through its 
concatenation of its descriptors, combined with the 
decision level fusion with majority voting algorithm 
presented higher classification results compared with other 
state of the art methods, such as LBP and GLCM 
variations. Thus, the ELBP represents a valuable feature 
extraction method that can be applied on complex 
polarimetric databases due to its good multiscale feature 
extraction capabilities. 
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