
 

Volume 64, Number 1, 2024                                                    ACTA TECHNICA NAPOCENSIS                                                                                                    

Electronics and Telecommunications 

________________________________________________________________________________ 

 

Manuscript received March 31, 2024; revised May 28, 2024   

26 

 

WEBRTC AND PJSIP IN ASTERISK: A CLOUD-BASED APPROACH 

 
Denisa-Oana SELIN1, Alin-Tudor SFERLE1, Tudor-Mihai BLAGA1, Daniel ZINCA1, Virgil DOBROTA1 

1Communications Department, Technical University of Cluj-Napoca, Romania  
Corresponding author: Virgil Dobrota (e-mail: Virgil.Dobrota@com.utcluj.ro) 

 
 

 
 

Abstract: This paper presents our design of launching WebRTC and PJSIP in an IP-based Private Branch Exchange instance 

running in OpenStack private cloud. This implementation was done using Ubuntu 20.04 LTS-based Asterisk in a Triangle 

topology (browser-server-browser). The major contributions were the following: (1) design how to integrate open-source 

software devices working with WebRTC in a private cloud; (2) security and encryption ensured by generating certificates and 

setting them appropriately in the terminals; (3) metrics monitoring along with call logs available directly in the browser by 

integrating Asterisk with Grafana Cloud. We had three scenarios: (1) PJSIP-to-PJSIP; (2) WebRTC-to-WebRTC; (3) PJSIP-

to-WebRTC.  

 
Keywords: PJSIP; private cloud; WebRTC. 
 

I. INTRODUCTION 
Call control protocols such as Session Initiation Protocol 

(SIP) and Web Real-Time Communication (WebRTC) 

have become an important benchmark in communications 

over Internet due to the development of multimedia 

technologies. The protocol stack in Figure 1 briefly shows 

the interworking between SIP/ WebRTC and all the other 

protocols at Application, Transport and Network Layers 

[1]. Note that Stream Control Transmission Protocol 

(SCTP) over Datagram Transport Layer Security (DTLS) 

is needed for data channel, whilst Secure Real-time 

Transport Protocol (SRTP) for non-media data.  

 

 
Figure 1. SIP, WebRTC and other protocols. 

  
 SIP protocol is an Application Layer protocol 
responsible for initiating, modifying, and terminating the 
session and underlies various multimedia applications and 
VoIP systems. Being a text-based implementation as the 
more popular HTTP protocol, SIP will benefit from 
multiple types of request messages, divided into several 
methods (REGISTER, INVITE, BYE, ACK, CANCEL, etc.) 
and multiple types of responses split into classes that show 
the state following the request (e.g., 202 Accepted, 300 
Multiple Choices, 403 Forbidden etc.) [1], [2]. The main 
purpose of WebRTC according to [3] is to develop 
multimedia applications directly from the browser, without 
installing additional software and providing peer-to-peer 
connectivity between users. The authors of [4] present a 
videoconferencing system using Scaledrone, a push 
messaging service that makes it simple to add real-time 

functionality to your website or mobile app. When it can, 
Scaledrone uses WebSockets, but when it is not possible, 
it resorts to older methods such as XMLHttpRequest 
(XHR) streaming, JSON with Padding (JSONP) queries, 
etc. According to [5], a reliable, secure, and feature-rich 
videoconferencing solution that meets the needs of today's 
organizations and people was developed using WebRTC 
technology, React JS and Video SDK. The authors have 
designed a modern and easy-to-use interface thanks to an 
efficient front-end framework. 
      The main components of the Asterisk are presented in 
Figure 2: PJSIP (PJ coming from the surname of its creator 
B. Prijono), audio and video codecs, CDR drivers, file 
format and system configuration drivers. The PJSIP library 
aims to incorporate various protocols: SIP, Session 
Description Protocol (SDP), RTP, Session Traversal 
Utilities for NAT (STUN), Interactive Connectivity 
Establishment (ICE).   

   

DIAL PLAN

Command Line 
Interface

Manager Interface

PBX CORE

DAHDI PJSIP WebRTC H323

CDR Drivers
Audio & Video 

Codecs
File Format 

Drivers

System 
Configuration 

Drivers

Applications Resources

 
Figure 2. Asterisk architecture. 

 Call Detail Records has as its main purpose to store call 
history at table or database level and after analyzing the 



 

Volume 64, Number 1, 2024                                                    ACTA TECHNICA NAPOCENSIS                                                                                                   

Electronics and Telecommunications 

________________________________________________________________________________ 

27 
 

stored tables statistics can be made on network usage, user 
charging, call duration. System compatibility and reliable 
communication are established by using various audio 
(GSM, iLBC, LPC10, Speex) and video (VP8, H.264) 
codecs that will encode incoming signals into bits, which 
are then decoded at the destination [3], [6], [7], [8], [9]. 
 We noticed that there are few new comming 

commercial solutions, running both WebRTC and SIP, to 

be used in modernising the telecommunications solutions 

in general, and in  education in particular. For instance, in 

[20] Alcatel-Lucent Enterprise shows Unified 

Communications as a Service  (UCaaS) and 

Communications Platform as a Service (CPaaS). As they 

are rather very expensive, we wanted to investigate how to 

design and to integrate open-source software phones in a 

private cloud, e.g., in OpenStack. The second objective 

was to solve the security and encryption issues by 

generating certificates and setting them appropriately in the 

terminals. As we envisaged the solution to be used for 

charging the secure telecom services offered, we had to 

design the metrics monitoring along with call logs 

available directly in the browser by integrating Asterisk 

with Grafana Cloud. Overall, the pretext was to have an 

implementation of a videoconferencing solution using a 

cloud instance of Asterisk. By the time this paper was 

submitted, the Cyber Mega Phone browser application has 

proved to be a suitable environment for evaluating the 

performance.  

 The rest of the paper is organized as follows: Section II 

presents the related work; Section III describes the 

implementation solution, followed by the experimental 

results. The last section presents the conclusions and future 

work. 
 

II.  RELATED WORK 

Due to the development and increased interest in 

multimedia services and real-time communication through 

IP networks or various web applications, new technologies 

(WebRTC) have been implemented alongside the old ones 

(SIP) for users to have a pleasant experience and easy to 

use services. In the paper [10], an integrated 

communication prototype was built and tested consisting 

of various software components such as: Kamailio SIP 

proxy server which has embedded WebSocket protocol, 

webrtc-to-sip gateway for signaling and media services. 

Using the Apache web server and the WebRTC client that 

was developed as an application using JavaScript libraries 

(JsSIP, sipML5) to provide the required SIP and 

WebSocket encoding features, various test scenarios were 

carried out. Thus, following the capture and analysis of the 

topology in order to interconnect two or more users, it was 

found that the sessions initiated between peers in terms of 

web browsers are functioning, between non-peers being 

more difficult to manage due to different key exchange 

mechanisms (SRTP-SDES/ DTLS-SRTP). In addition, the 

presence of a gateway was found necessary for a 

connection between a WebRTC client and a SIP client 

(registered in the Jitsi application). 

Currently, IP-based services are used by many users, 

pupils/students, teachers and not only, and along with good 

real-time communication, the bases of future technologies 

and implementations are not missing protocols and 

standards such as SIP and WebRTC. Thus, according to 

[11] a merger between SIP and WebRTC is desired in order 

to implement a gateway between the two. It works by 

turning the IP-PBX into a WebRTC capable device. When 

instantiating a call from a user WebRTC gateways have the 

role of determining whether the user can be reached in this 

way, otherwise a different format such as SIP is required. 

For security, WebRTC uses SRTP in online data exchange, 

and negotiations use STUN and ICE to determine when a 

data transfer can be initiated. The configured gateway will 

ensure media transmission quality, flexibility, 

optimization, graphical interface, unified communications 

and guaranteed functionality. The analyzed results show 

that there are no losses/errors in the network, and in case of 

packet loss this is not observable. Latency is low and 

distance between users is not an impediment. 

 The article [12] analyzes the network performance in 

audio/ video communications, both SIP and WebRTC, 

observing the advantages and disadvantages of each of 

them. For both protocols prototypes were created as 

follows: in WebRTC development a virtual machine with 

Ubuntu 18.04 LTS operating system as server, node.js web 

server and Google Chrome browser were used as software 

resources, and in SIP development a machine was used 

virtual with the FreePBX system as the SIP server, the Bria 

softphone as the communication application and the 

Google Chrome web browser. Based on the previous 

configurations, the star test topology was created with a 

peer-to-peer connection using 2 clients, 4 clients, 6 clients 

and performance parameters such as throughput, jitter, 

packet loss were analyzed using Wireshark application. 

Analyzing the captures and performance parameters, it is 

observed in the case of WebRTC that the yield, jitter and 

packet loss are better than in the case of SIP, this being also 

influenced by other factors such as the codec, signaling, the 

platform used. 

Quality in VoIP-based services analyzed in [13]  can be 

of two types: objective and subjective. Considering the 

objective way in measuring the quality of VoIP services 

and given network performance, it is closely related to the 

quality of service (QoS), and the subjective way in 

measuring user satisfaction after using the services is 

closely related to the quality of experience (QoE). In 

measuring the quality of services, the main objective 

parameters are: lost packets, latency, jitter. In measuring 

the quality of the experience, the main subjective 

parameter analyzed is: Mean Opinion Score (MOS). The 

study analyzed numerous scientific references in order to 

identify the quality parameters and make a report on the 

observed results. 

 The authors of [4] present a video conferencing system 

using Scaledrone, a push messaging service that makes it 

simple to add real-time functionality to your website or 

mobile app. When it can, Scaledrone uses WebSockets, but 

when it's not possible, it falls back on older methods like 



 

Volume 64, Number 1, 2024                                                    ACTA TECHNICA NAPOCENSIS                                                                                                   

Electronics and Telecommunications 

________________________________________________________________________________ 

28 
 

streaming XMLHttpRequest (XHR), JSON with padding 

(JSONP). In addition, the video conference uses a thermal 

camera that, unlike regular cameras, can detect people 

without the need for them to move, based on the detected 

energy (which it will later process and produce the image). 

This camera and related sensors will be attached to the 

Raspberry Pi. The browser used was Mozilla Firefox 

through which the application was tested. Thus, when 

initiating a video conference between two users, they will 

be able to communicate, the instance being successfully 

created, and to test the thermal camera, it was necessary to 

activate an I2C and VNC server along with a Python script. 

After running the code, the temperature values and the 

thermal image can be observed, being considered an 

important point for reducing human interaction during the 

pandemic. In addition, it is found that for a low bandwidth 

the latency is low, and the costs of implementing such a 

solution along with data security present important points 

of interest and advantages among users. 

 According to [5], a reliable, secure communication 

system and a safe, secure and feature-rich video 

conferencing solution to meet the needs of today's 

organizations and people has been developed using 

WebRTC, React JS and Video SDK technology. The 

authors have designed a modern and easy-to-use interface 

thanks to an efficient front-end framework. The application 

contains a login page where users only need to enter their 

name to join a meeting, screen recording functionality to 

be edited or adapted in various ways in later uses, chat for 

text message communication between participants and 

integration with various platforms to streamline media 

services. 

 The paper [14] aims to test the main video conferencing 

applications that use WebRTC, using KITE as the test 

engine, which runs numerous tests daily to report them to 

a web page. In this testbed consisting of virtual machines 

for the five client applications, tested separately in the same 

AWS at a private cloud, several scenarios were followed 

(constant increase in the number of participants, increase 

in transmission speed). In addition, functions have been 

implemented to determine bit rates, check video for each 

application and evaluate the quality of the transmission. 

These tests were done using the Java-based KITE utility, 

along with Selenium WebDriver for browser access and 

testing. After analyzing and performing the tests, it was 

found that in the case of Kurento if the number of 

participants increases above a certain value (about 40) the 

RTT increases suddenly, and for a larger number of users 

the bit rate is low, improving together with the transmission 

quality for shortly after about 100 participants are in the 

video conference. In the case of Jitsi, the stoppage of the 

video transmission is found if a number of more than 200 

participants join, and for the other SFUs, a similar behavior 

is found following the tests. Thus, after testing, a 

comparative analysis can be made between the SFUs used 

in order to determine which best matches the users' 

requirements, following which it is possible to improve 

these services in the future. 

 How to implement WebRTC and video conferencing 

signaling mechanisms and improve quality in application 

design is the main focus of that article [15]. The testbed 

aims to analyze the video conferencing system using 

networks such as LAN and WAN and the web browsers 

Google Chrome and Mozilla Firefox. Various 

functionalities have been introduced in the implemented 

application, among which we mention the possibility of 

using the full screen, pausing audio and video during the 

conversation, establishing connections between 

counterparts using various approaches and procedures in 

establishing a communication. WebSocket is used as 

signaling protocol and four types of signaling messages are 

developed such as: initiator, receiver, peerChannel, SDP 

exchange. As for the quality of the experience, it was 

analyzed through different users who evaluated aspects 

such as: the quality of audio, video, the ease of use of the 

application, the quality of the connection, the desire to 

reuse these technologies, the results being located at a high 

score and a score of good to excellent. 

 Some recent commercial proposals showing the 

potential benefits of using WebRTC were published in 

[21], [22].  
 

III. IMPLEMENTATION 

This chapter presents SIP and WebRTC capabilities in 

implementing various scenarios (video conferencing 

application, peer-to-peer calling, SIP-WebRTC calling) 

using an Asterisk instance in a private cloud. The testbed 

includes Asterisk PBX version 20.0.1 under Ubuntu 20.0.4 

LTS distribution as OpenStack cloud instance having IP 

address: 10.8.8.173. The architecture of the adopted 

solution is shown in Figure 3. A triangular topology 

contains a core server and several browsers. Thus, the 

general configurations were performed at the level of the 

pjsip.conf file, respectively the dialplan at the level of the 

extensions.conf file, and configurations such as the 

generation of certificates, the creation of an HTTPS server 

and the setting of a transport mode via WebSocket being 

necessary for the WebRTC standard to be functional.  

 The applications used to interconnect between users 

were both browser applications and software applications 

with softphone functionality (browser-based applications: 

Cyber Mega Phone, MizuTech-VoIP; installed softphones: 

Blink, Zoiper5). 

 
Figure 3. Proposed architecture 



 

Volume 64, Number 1, 2024                                                    ACTA TECHNICA NAPOCENSIS                                                                                                   

Electronics and Telecommunications 

________________________________________________________________________________ 

29 
 

The first step in setting up the work environment was 

to access the private cloud within UC Labs through an 

OpenVPN client, with the import of the appropriate file 

client-licenta.ovpn, along with the credentials (user 

and password). It is out of the scope of this paper to present 

in detail the initial configuration but see it in [7]. 

 

A. Configuring Asterisk for WebRTC  

A major difficulty of the whole work was to properly 

configure WebRTC clients. Three major steps were 

required: (1) creating an Asterisk HTTPS TLS server 

(including generation of certificates with the appropriate 

keys); (2) creating a PJSIP WebSocket for transport; and 

(3) creating a PJSIP endpoint, creating the WebRTC client 

with the corresponding registration address, and the 

specific authentication. As a first step we generated self-

signed certificates to prevent attacks on the server (see 

Figure 4), to avoid compromising the security of the 

system, and, finally, to ensure encryption of streams [3].  

 
$ sudo mkdir /etc/asterisk/keys  

$ sudo contrib/scripts/ast_tls_cert -C 

10.8.8.173 -O "My Organization" -b 2048 -d 

/etc/asterisk/keys 

Figure 4. Generating the certificates  

 

Figure 5 shows that a new keys directory is created in 

which the certificates are stored and by means of the 

ast_tls_cert script located in the contrib/scripts 

directory, the certificate was generated including options, 

such as IP address, organization name, key length (e.g., 

2048 bits) and the file in which they are stored. 

 
$ ls -l /etc/asterisk/keys  

total 32 

-rw------- 1 root root 1399 Apr 1 08:40 

asterisk.crt 

-rw------- 1 root root  928 Apr 1 08:39 

asterisk.csr 

-rw------- 1 root root 1675 Apr 1 08:39 

asterisk.key 

-rw------- 1 root root 3074 Apr 1 08:39 

asterisk.pem 

-rw------- 1 root root  161 Apr 1 08:39 ca.cfg 

-rw------- 1 root root 1781 Apr 1 08:39 ca.crt 

-rw------- 1 root root 3311 Apr 1 08:39 ca.key 

-rw------- 1 root root  112 Apr 1 08:39 tmp.cfg 

Figure 5. Generating the certificates  

Figure 6 highlights the configuration with the HTTP 

server being enabled, specifying the IP address and the port 

to receive connection requests (0.0.0.0: for all available 

network interfaces; 8088: for HTTP connections). Also, we 

enabled the TLS encryption, the paths to the generated 

certificate and to the private key in the keys directory [16]. 
[general]  

enabled = yes  

bindaddr = 0.0.0.0 

bindport = 8088 

tlsenable = yes  

tlsbindaddr = 0.0.0.0:8089 

tlscertfile = /etc/asterisk/keys/asterisk.pem 

tlsprivatekey = /etc/asterisk/keys/asterisk.key 

Figure 6. http.conf configuration file 

The current status of the implemented HTTP server is 

displayed in the Asterisk’s console, as in Figure 7. 
 

asterisk*CLI> http show status  

HTTP Server Status:  

Prefix: Server: Asterisk/20.0.1  

Server Enabled and Bound to 0.0.0.0:8088 

HTTPS Server Enabled and Bound to 0.0.0.0:8089  

Enabled URI’s:  

/httpstatus => Asterisk HTTP General Status  

/phoneprov/... => Asterisk HTTP Phone 

Provisioning Tool 

/metrics/... => Prometheus Metrics URI  

/static/... => Asterisk HTTP Static Delivery  

/ws => Asterisk HTTP WebSocket 

Figure 7. Status of the HTTP server 

 

Configuring a Secure WebSocket (WSS) for encrypted 

communication between WebRTC and Asterisk clients is 

mandatory in this architecture. Figure 8 shows the second 

step, i.e., the selection of a transport using the WSS 

protocol listening on all available network interfaces. This 

was done in the pjsip.conf file located in the 

/etc/asterisk directory [16]. 
 

[transport-wss]  

type = transport 

protocol = wss 

bind = 0.0.0.0 

Figure 8. Cyber Mega Phone: WebSocket configuration  

 
The third step was the creation of a registration address, 

the client authentication and a PJSIP endpoint [16]. Figure 

9 shows the configuration mode for client authentication, 

as well as for the Address of Record (AOR) to represent 

the contact information, the maximum number of contacts 

of the customer and the removal of previously created 

contacts when adding a new one. On the other hand, it is 

needed to configure the WebRTC client: e.g., the 

authentication, the way in which it is performed (username, 

password) and the definition of the user and password for 

the authentication of the client. 

 
[308]  

type = aor 

max_contacts = 5 

remove_existing = yes 

[308]  

type = auth 

auth_type = userpass 

username = 308 

password = … 

Figure 9. Registration address and authentication  

 

The configuration mode of the PJISIP endpoint with its 

related settings are presented in Figure 10. Thus, after 

specifying the endpoint type, it is associated with the AOR 

configuration and that of the previously generated 

authentication, Audio Visual Profile Feedback (AVPF) is 

used to monitor the quality of streams in real time and 

adjust various parameters (codec, rate) to ensure the quality 

of the transmission. Next, encryption of media streams is 

ensured by means of DTLS along with setting the files 



 

Volume 64, Number 1, 2024                                                    ACTA TECHNICA NAPOCENSIS                                                                                                   

Electronics and Telecommunications 

________________________________________________________________________________ 

30 
 

corresponding to the certificates together with specifying 

the path to them, checking the certificate for the validity of 

its fingerprint to prevent possible attacks that could take 

place and setting the option for DTLS to highlight the role 

of the endpoint- (client or server). To establish a 

connection with WebRTC clients, it is necessary to enable 

ICE support to verify connectivity for NAT traversal, and 

the exchange of information and flows between users is 

efficient due to the use of optimal transport parameters. In 

addition, RTCP multiplexing ensures that RTP and RTCP 

packets are transmitted on the same port to reduce the 

resources used. Calls received by the configured client are 

made as specified in the call plan in the defined context, 

and media streams are handled by the Asterisk server 

acting as an intermediary in the exchange of streams 

between two communicating parties. Regarding the 

codecs, a first step would be to disable all of them, followed 

by enabling the desired ones only, (VP8, ulaw, and H264). 

Regarding the audio and video streams, the maximum 

number of them allowed for an endpoint is set to the value 

of 15, but it may differ depending on various factors, 

application, etc. [3]. 

 
[308] 

type = endpoint 

aors = 308 

auth = 308 

use_avpf = yes 

media_encryption = dtls 

dtls_ca_file = /etc/asterisk/keys/ca.crt 

dtls_cert_file = /etc/asterisk/keys/asterisk.pem 

dtls_verify = fingerprint 

dtls_setup = actpass 

ice_support = yes 

media_use_received_transport = yes 

rtcp_mux =yes 

context=local 

direct_media = no 

disallow = all 

allow =! all,ulaw,vp8,h264 

max_audio_streams = 15 

max_video_streams = 15 

Figure 10. PJSIP endpoint configuration 

Following the configurations made in the pjsip.conf 

file regarding the client authentication, the registration 

address and the endpoint, a similar procedure will be 

followed to define the other clients, finally checking the 

status regarding the endpoints created as in Figure 11. 

 
asterisk*CLI> pjsip show endpoints 

Endpoint:  <Endpoint/CID> <State> <Channels> 

I/OAuth: <AuthId/UserName> Aor: <Aor> 

<MaxContact> Contact: <Aor/ContactUri> <Hash> 

<Status> <RTT(ms)> Transport: <TransportId> 

<Type> <cos> <tos> <BindAddress>Identify: 

<Identify/Endpoint> Match: <criteria> 

Channel:  <ChannelId> <State> Time> 

Exten: <DialedExten> CLCID: <ConnectedLineCID> 

=============================================== 

Endpoint: 30080 In use 1 of inf InAuth: 

30080/30080 Aor: 30080 5 Channel: PJSIP/30080-

00000002/ConfBridge Up 00:00:07 

exten: video-conference CLCID: ""  

=============================================== 

Endpoint:  client_webrtc Not in use 0 of inf 

InAuth:  client_webrtc/client_webrtc 

Aor:  client_webrtc Contact:  

client_webrtc/sip:12479683@10.8.0.6:65027;  

eba4dde794 NonQual         

Figure 11. Checking the status of endpoints 

 

Figure 12 shows how to configure the dialplan stored 

in /etc/asterisk in terms of video conferencing 

application or calls between users. For this, the extension 

video-conference was defined, and when a call is 

realized, it is forwarded to the bridge conf. In addition, 

communication between users can be carried out using the 

Dial, the call being interrupted if there is no response 

within 20 seconds. 

 
exten  => video-conference,1,Answer() 

  same => n,ConfBridge(conf) 

  same => n,Hangup() 

exten => client_webrtc,1,Dial(PJSIP/ 

client_webrtc, 20); 

exten => 3008,1,Dial(PJSIP/3008,20); 

exten => 3007,1,Dial(PJSIP/3008,20); 

exten => 30080,1,Dial(PJSIP/30080,20); 

exten => 308,1,Dial(PJSIP/308,20); 

Figure 12. extensions.conf file 

 

B. Configuring the VoIP Terminals 

The following softphones were involved in this testbed:  

Cyber Mega Phone and MizuTech (directly in the 

browser), and, respectively, Zoiper5 and Blink. The 

certificates generated on the Asterisk were downloaded 

locally using WinSCP.  In the case of the browsers, it was 

necessary to access the privacy and security settings, 

followed by the certificate management, where the needed 

file was imported. For installed client applications, 

certificates were imported from the phone-specific settings 

menu. 

See in Figure 13, the steps to install and to configure 

the application Cyber Mega Phone. Thus, the current 

directory was changed to the one responsible for storing 

static HTTP files. Next, we cloned the application based on 

the code and related files in [17]. The last command had 

the role of changing the ownership of the directory and its 

contents for proper operation by granting the appropriate 

permissions [3]. The http.conf configuration file is in 

Figure 14. 

 
$ cd /var/lib/asterisk/static-http 

$ sudo git clone 

https://github.com/asterisk/cyber_mega_phone_2k.

git 

$ sudo chown -R asterisk:asterisk 

cyber_mega_phone_2k 

Figure 13. Cyber Mega Phone: permission grants 

 
[general] 

enabled = yes 

bindaddr = 0.0.0.0 

bindport = 8088 

tlsenable = yes 

tlsbindaddr = 0.0.0.0:8089 

tlscertfile = /etc/asterisk/keys/asterisk.crt 

tlsprivatekey = /etc/asterisk/keys/asterisk.key 

enablestatic = yes 

redirect = /cmp2k 



 

Volume 64, Number 1, 2024                                                    ACTA TECHNICA NAPOCENSIS                                                                                                   

Electronics and Telecommunications 

________________________________________________________________________________ 

31 
 

/static/cyber_mega_phone_2k/index.html 

prefix= … 

sessionlimit = 100 […] 

Figure 14. Cyber Mega Phone configuration: HTTP 

 
New functionality was added, regarding redirecting the 

client to the destination page with the possibility of 

accessing static files directly from the server. Then the 

modules were reloaded, and the application was accessed 

at https://<IP_address>:8089/cmp2k. The 

configuration of the WebRTC client is contained in Figure 

15, i.e., the setting of the id, name, password, IP address 

and extension. 

 

 
Figure 15. Cyber Mega Phone: WebRTC client using the 

confbridge-based extension 

 

The configuration of the other WebRTC client, 

MizuTech, is illustrated in Figure 16. There was a 

registration part (IP address, username, and password, 

callee) and additional settings such as: caller id, display 

name, proxy server (encryption secured using TLS, IP 

address and port: 5061). Also, the details related to the 

WebRTC server referred to the secure version of 

WebSocket along with the IP address and port frequently 

used in these types of connections [18]. 

 

 
Figure 16. MizuTech: WebRTC client 

 

For the Blink SIP client, we needed, according to 

Figure 17, details such as server IP address, username 

along with port and the required transport protocol. A 

tricky setting was related to the certificate and to import it 

to secure communication. 

As the other SIP client, ZoIPer5, is well-known, herein 

we skip the description of its configuration, but details 

about it can be found in [19]. 

 

 
Figure 17. Blink: SIP client 

 
IV. EXPERIMENTAL RESULTS 

The scenarios were the following: (1) PJSIP-to-PJSIP with 

Blink and Zoiper5; (2) WebRTC-to-WebRTC with Cyber 

MegaPhone directly in the browser; (3) PJSIP-to-WebRTC 

using an installed software phone and the MizuTech VoIP 

browser application. Metrics monitoring along with call 

logs were available directly in the browser by configuring 

and integrating Asterisk with the Grafana Cloud 

environment. 

 

A. PJSIP-to-PJSIP with Blink and Zoiper5 

To test the connectivity between two SIP users, their 

registration was done in Blink and Zoiper5 softphones. 

After the successful registration of the users, the call 

initiated by one of the clients, the SIP protocol being 

analyzed by making captures from the moment of the 

conversation through the Wireshark application. Next, 

Figure 18 and Figure 19 illustrate the SIP flows generated 

with the requests and messages corresponding to the 

actions. Following the requests for the purpose of 

establishing the communication session, the periodic 

change of the status and the messages generated was 

observed. The status regarding the attempt and the request 

was received by the recipient, the call being signaled and 

the recipient's device ringing. The call was accepted 

(status: OK), and the start of audio data transmission was 

signaled via RTP protocol, indicating the number of 

transmitted packets and the duration.  

 

 

 

 

 



 

Volume 64, Number 1, 2024                                                    ACTA TECHNICA NAPOCENSIS                                                                                                   

Electronics and Telecommunications 

________________________________________________________________________________ 

32 
 

 
Figure 18. PJSIP-to-PJSIP flow graph.  

 

To end the session, the "BYE" method was involved 

along with a sequence number and following the 

confirmation response, the session successfully ended. 

Note that both RTP packets and SIP signaling were not 

encrypted. 

 

 

 
Figure 19. PJSIP-to-PJSIP signaling.  

 

Although the quality of the experience was good, the 

major drawback in the first experiment was related to the 

security of communication. For instance, we were 

allowed to view the SIP flows, to capture the RTP 

messages, to store and to playback them.  

 

 

B. WebRTC-to-WebRTC with Cyber MegaPhone 

directly in the browser 

WebRTC-WebRTC communication was performed 

within the video conference according to the settings 

described in the implementation section. During the 

video conference, the number of users might vary. The 

Cyber Mega Phone application interface looked like in 

Figure 20. We experienced a high level of quality for 

both video and audio, being slightly reduced as new users 

accessed extensions and joined the conference. In 

addition, we had the possibility to use the application in 

full screen, along with classical settings of putting on/off 

the microphone and/or the camera. 



 

Volume 64, Number 1, 2024                                                    ACTA TECHNICA NAPOCENSIS                                                                                                   

Electronics and Telecommunications 

________________________________________________________________________________ 

33 
 

 
Figure 20. Cyber Mega Phone: application interface 

As the communication was encrypted, along with the 

signaling, functions such as viewing the call stream or 

playing the content were not possible anymore. Thus, the 

captures illustrated the TLS handshake process in 

establishing a secure connection between peers. Initiation 

of the TLS handshake by the client was done through the 

"Client Hello" message sent to the server containing 

information about the TLS version, supported cipher 

suite, session ID number. In response to the previous 

message, the server sent the "Server Hello" message 

along with the chosen options (version, random ID 

number, cipher suite). Following the negotiations, the 

exchange of certificates and keys between the server and 

the client, the messages (see Figure 21) were encrypted 

according to the negotiated options. 

 

 

 

 
Figure 21. WebRTC-to-WebRTC signaling.  

 

Figure 22 presents a TLS segment in detail, with 

information about the header (frame number and length), 

IP addresses (source and destination), transport layer 

protocol (TCP) with specific source and destination 

ports. As for the TLS protocol, its version was TLS 1.2, 

the size of the encrypted data in bytes was 25, and the 

encrypted data was stored as a string according to the 

negotiated cipher suite options. Thus, the use of peer-to-

peer communication with WebRTC ensured the security 

of services through encryption. 

 

 

 
Figure 22. Example of a TLS segment  

 

C. PJSIP-to-WebRTC using an installed software 

phone and the MizuTech VoIP browser application. 

This experiment used a SIP client (Blink or Zoiper5) and 

an WebRTC client (Mizu Tech VoIP app) available in the 

browser. The first step was the registration of clients with 

the related settings and making calls between users. The 

connection between clients was successfully established 

and the audio quality was good and no delays were 

reported when receiving or making a call. But as a 

downside, the in-app video option in the browser was not 

available. Also, in this experiment, similar to the 

previous one, the signaling and data were encrypted, 



 

Volume 64, Number 1, 2024                                                    ACTA TECHNICA NAPOCENSIS                                                                                                   

Electronics and Telecommunications 

________________________________________________________________________________ 

34 
 

making impossible to playback the call streams. Figure 

23 shows the packets captured during communication, 

noting the presence of encryption protocols. Attempting 

to establish connectivity and obtaining NAT information 

were initiated following STUN requests. 

 

 

 
Figure 23. PJSIP-to-WebRTC signaling.  

 

Data was transmitted via the TLS and the response 

from the initiated request included the IP address and port 

from the address mapping after NAT traversal. A series 

of requests and responses were followed by the 

generation of a "Client Hello" message to negotiate 

parameters for the secure connection. The detailed 

analysis of a DTLS segment was captured in Figure 24. 

It includes the component elements within DTLS, e.g., 

type of data within a record (handshake), version (1), 

length in bytes etc.  

 

 

 
Figure 24. Example of a DTLS segment  

 

 

 

 

 

 



 

Volume 64, Number 1, 2024                                                    ACTA TECHNICA NAPOCENSIS                                                                                                   

Electronics and Telecommunications 

________________________________________________________________________________ 

35 
 

V. CONCLUSIONS AND FUTURE WORK 

This paper presented a simple and efficient open-source 

implementation of VoIP services based on SIP and 

WebRTC. By the time this work was carried out, we were 

not aware of similar solutions open-source publicly 

available. We proved that peer-to-peer communication 

PJSIP-to-PJSIP did not ensure the security of media 

communication between users, as the flow was 

unencrypted. In addition, it was needed to install 

additional software (e.g., softphones with multiple 

signaling, authentication options and codecs). As an 

alternative, the development of web applications through 

WebRTC proved to be more efficient and secure, as the 

flow was fully encrypted. Combining SIP (predominant 

in IP-based telecommunications) with the new coming 

WebRTC ensured the quality of the transmission and 

provided customers with a pleasant and secure 

experience in using the services. Overall, we appreciate 

the success of the solution by analyzing the signaling, the 

quality of experience and the security issues.  

Once we have access to similar implementations 

(commercial and open-source) we can continue this work 

by comparing its VoIP key performance parameters 

(transfer rate, delay, jitter) with those of the others in 

similar testbeds. Also, we want to expand the topology to 

a trapezoidal one (Browser1, Server1, Server2, 

Browser2), and to involve hardware devices too. We plan 

to implement a high-performance videoconferencing 

system using Cisco Collaboration Platforms in the cloud 

instead of the Asterisk-based one.  
 

ACKNOWLEDGMENT 

An initial expanded version was presented by D.O. Selin             

as B.Sc. thesis in July 2023. A preliminary version was 

presented at 18th Electronics and Telecommunications 

Students Symposium (SSET) in May 2023.  

 

 

REFERENCES 
[1] R.R. Roy, “Handbook of SDP for Multimedia Session 
Negotiations: SIP and WebRTC IP Telephony”, CRC Press, 
2020. 
[2] R.R. Roy, “Handbook on Session Initiation Protocol: 
Networked Multimedia Communications for IP Telephony”, 
CRC Press, 2016. 
[3] J.V. Meggelen, R. Bryant, L. Madsen, “Asterisk – The 

Definitive Guide”, 5th Edition, O’Reilly, 2019 
[4] G. Suciu, S. Stefanescu, C. Beceanu and M. Ceaparu, 
"WebRTC role in real-time communication and video 
conferencing," 2020 Global Internet of Things Summit 
(GIoTS), Dublin, Ireland, 2020, pp. 1-6, doi: 
10.1109/GIOTS49054.2020.9119656. 
[5] S. Ajay, et.al, "Integrable Video Conferencing APP", 
International Research Journal of Modernization in 
Engineering Technology and Science, Vol. 05, Issue 04, April-
2023. 
[6] D.O. Selin, V. Dobrota, “Evaluation of WebRTC and SIP 
Performance in a Private Cloud”, in 18th Student Symposium 
on Electronics and Telecommunications, SSET 2023, 
Technical University of Cluj-Napoca, 2023. 
[7] D.O. Selin, “WebRTC and SIP Using Asterisk in the 
Cloud”, B.Sc. in Telecommunications Technologies and 
Systems, Technical University of Cluj-Napoca, 2023. 

[8] “About PJSIP”, PJSIP, 2023, [Online], Available:  
https://www.pjsip.org/about.htm. 
[9] “Codec”, TKO Video Conferencing, 2023, [Online], 
Available:http://www.video-
conferencing.com/definition/codec.html. 
[10] P. Segec, P. Paluch, J. Papan and M. Kubina, "The 
integration of WebRTC and SIP: Way of enhancing real-time, 
interactive multimedia communication," 2014 IEEE 12th IEEE 
International Conference on Emerging eLearning Technologies 
and Applications (ICETA), Stary Smokovec, Slovakia, 2014, 
pp. 437-442, doi: 10.1109/ICETA.2014.7107624. 
[11] G.P. Shreya, P. Pradhyumna and Mohana, 
"Internetworking Gateway between WebRTC to SIP to 
Integrate Real-Time Audio Video Communication," Third 
International Conference on Inventive Research in Computing 
Applications (ICIRCA), Coimbatore, India, 2021, pp. 1480-
1485, doi: 10.1109/ICIRCA51532.2021.9544559. 
[12] S.K. Akmal, A.G. Putrada, F. Dawani, "A Network 
Performance Comparison of WebRTC and SIP Audio and 
Video Communications," 2021 Volume 4 Journal of 
Information Technology and Its Utilisation, 2021, pp. 1-5, doi: 
https://doi.org/10.30818/jitu.4.1.3939. 
[13] B. Adhilaksono, B. Setiawan, "A study of Voice-over-
Internet Protocol quality metrics", Sixth Information Systems 
International Conference (ISICO 2021), IETF, July 2008. 
Procedia Computer Science Vol.197, 2022, pp.377-384, doi: 
https://doi.org/10.1016/j.procs.2021.12.153. 
[14] E. André, N. Le Breton, A. Lemesle, L. Roux and A. 
Gouaillard, "Comparative Study of WebRTC Open Source 
SFUs for Video Conferencing," 2018 Principles, Systems and 
Applications of IP Telecommunications (IPTComm), Chicago, 
IL, USA, 2018, pp. 1-8, doi: 
10.1109/IPTCOMM.2018.8567642. 
[15] A.T. Kalil, S.A. Mahmood, “Peer-to-peer media streaming 
with HTML5”, International Journal of Electrical and 
Computer Engineering (IJECE) Vol. 13, No. 2, April 2023, pp. 
2356~2362, doi:10.11591/ijece.v13i2.pp2356-2362. 
[16] G. Joseph, “WebRTC”, Asterisk, 2018, [Online], 
Available: 
https://wiki.asterisk.org/wiki/display/AST/WebRTC.    
[17] Cyber Mega Phone GitHub repository, 2024, [Online], 
Available: https://github.com/asterisk/cyber_mega_phone_2k 
[18] “WebPhone Online Demo”, Mizu VoIP Solutions, 2024, 
[Online], Available: https://www.mizu-
voip.com/Software/WebPhone/WebphoneOnlineDemo.aspx. 
[19] V. Dobrota, “Unified Communications in Cloud”, 
Technical University of Cluj-Napoca, 2024, [Online], 
Available: https://el.el.obs.utcluj.ro/cuc/. 
[20] “Network modernization in education”, Alcatel-Lucent 

Enterprise, 2024, [Online], Available: https://www.al-

enterprise.com/en/. 

[21] “The First Sales-Oriented Unified Communications Solution”, 

Wildix, 2024, [Online], Available:  https://www.wildix.com/. 

[22] “Embrace the Future: WebRTC Revolutionizes Contact 

Center Communication”, NobelBiz, 2024, [Online], 

Available: https://nobelbiz.com/omnichannel-contact-

center/unified-agent-desktop/integrated-webrtc/. 

 

https://www.pjsip.org/about.htm
http://www.video-conferencing.com/definition/codec.html
http://www.video-conferencing.com/definition/codec.html
https://doi.org/10.30818/jitu.4.1.3939
https://doi.org/10.1016/j.procs.2021.12.153
https://github.com/asterisk/cyber_mega_phone_2k
https://www.mizu-voip.com/Software/WebPhone/WebphoneOnlineDemo.aspx
https://www.mizu-voip.com/Software/WebPhone/WebphoneOnlineDemo.aspx
https://el.el.obs.utcluj.ro/cuc/
https://www.al-enterprise.com/en/
https://www.al-enterprise.com/en/
https://www.wildix.com/
https://nobelbiz.com/omnichannel-contact-center/unified-agent-desktop/integrated-webrtc/
https://nobelbiz.com/omnichannel-contact-center/unified-agent-desktop/integrated-webrtc/

