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Abstract: This paper analyzes in detail two of the most popular methods of determining the loop gain of OpAmp-based feedback 

circuits through frequency-domain Spice simulations. The limitations of the simpler method – that involves breaking the feedback 

loop by inserting an independent voltage source with DC=0 and AC=1 – are highlighted in comparison with a more precise 

method, based on the Rosenstark theorem. The discussion encompasses all types of amplifiers: the traditional (V-V) OpAmp, the 

Current-Feedback OpAmp (CFB-OA), the transconductance OpAmp (OTA) and the Current – Current OpAmp with asymmetric 

inputs (such as a second-generation current conveyor). Recommendations are made based on analytical analysis and sim results.  
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I. INTRODUCTION 
The standard method for analyzing the small-signal stability 

of a feedback circuit at a given DC operating point is to 

ascertain the phase- and module-margin. For this, one has to 

determine the small-signal loop gain of the circuit – usually 

called T, the product of the forward gain of the basic 

amplifier and the gain of the feedback network. There are 

well known procedures for deriving T analytically [1]: they 

imply breaking the feedback loop but the loading effect of 

the feedback network is taken into account when calculating 

an equivalent gain of the basic amplifier, in order to 

replicate the closed-loop operating conditions. This 

approach allows for a simple and intuitive analysis. Its 

drawbacks are mainly related to its reliance on several 

approximations without providing a way of estimating their 

effects; papers such as [2] have proposed ways of dealing 

with such shortcomings and have extended the method to 

circuits with multiple inputs and outputs. 

    However, these analytical methods are not directly 

applicable for determining the loop gain of a given circuit 

through simulations: breaking the loop can result in 

significantly changing the operating point of the circuit – 

hence its small-signal behavior; the equivalent loadings of 

the basic amplifiers can be difficult to ascertain through 

simulations, let alone combining them in order to find out 

the loop gain, T. Quite a few of the methods proposed in 

literature for determining T through simulations require 

additional circuitry that make them less attractive for 

designers [3].  

    For circuits based on Operational Amplifiers (OpAmps) 

there are several simplified methods for determining T 

which are widely used in practice, due to their easy-of-use 

and effectiveness. However, no detailed analysis of their 

precision has been reported in the literature.  

    Two of the most popular such methods are thoroughly 

analyzed in this paper: a very simple approach – that 

involves breaking the feedback loop by using an 

independent voltage source with DC=0 and AC=1 – and a 

more precise one, based on the Rosenstark theorem [4]. 

    Section II deals with the case of a traditional, voltage-to-

voltage, OpAmp as the basic amplifier, Section III covers 

the case of the Current-Feedback OpAmp, Section IV 

presents the case of the Operational Transconductance 

Amplifier, while the case of the Current-Current Amplifier is 

presented in Section V. Conclusions are drawn based on 

both analytical and simulation results; finally, practical 

recommendations for designers are made. 

 
II. FEEDBACK CIRCUITS BASED ON THE 

TRADITIONAL (V-V) OPAMP 

A. A popular method for determining the loop gain, T 

Figure 1 presents a circuit that uses a generic OpAmp as the 

basic amplifier and a reciprocal two-ports network to close a 

classical series-shunt feedback loop [1]. Figure 2 shows the 

same circuit with the feedback network replaced by its 

equivalent Π network and the generic OpAmp replaced by 

the standard model of a traditional, voltage-voltage amplifier 

(V-V OpAmp): the model comprises a voltage-controlled 

voltage source with the gain avv and the input and output 

impedances Zin and Zout. 

    The standard method for determining the loop gain 

through Spice simulations of such circuits involves two 

tests, one using a test voltage-source and the other a test 

current source, both with AC = 1 and DC = 0 [5]. It is 

relatively difficult to use in practice, as it implies doubling 
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the complexity of the testbench and significant post-

processing of the sim results. 

    A simplified version of this method – and as such much 

more popular - uses only a voltage test: it  requires that the 

feedback loop is broken by inserting an independent voltage 

source VAC, with DC=0 and AC=1. The usual points for 

breaking the loop are at the inverting input of the OpAmp, 

as shown in Figure 2.a, points 1-2, or at the OpAmp output, 

as shown in Figure 2.b, points 3-4. 

VV IN L G
R

IN L F IN L G IN L OUT IN F OUT IN G OUT F G OUT L F G L G OUT

a Z Z Z
T =

Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z
  (4) 
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Figure 1. Circuit with a generic OpAmp  as the basic 

amplifier and a reciprocal network closing a classical 

series-shunt feedback loop  

 

    The small-signal loop gain T results from a frequency-

domain (AC) Spice simulation by using a simple formula: 

 

M EASU RED

AC

TEST

V
T

V
= −   (1) 

 

    It should be noted that the DC operating point of the 

circuit is not modified by the insertion of the voltage source 

VAC, as its DC value is zero. 

 

B. A precise method for finding the small-signal loop gain 

Another and, as it will be shown, a more precise method for 

determining T is based on the Rosenstark theorem; this 

theorem proposes the following formula for the closed-loop 

 gain of a feedback system with the loop gain T [1], [4], [6]: 

 

0
0
1 1

CL

GT
A A

T T
= +

+ +

   (2) 

 

where 
CL

A  is the closed loop gain, 0G  is the direct trans-

mission term, 0 / 0CL T
G A

=
= and 0A is the asymptotic gain, 

0 / =
CL T

A A
→∞

(the “ideal” gain in classical feedback 

theory). 

    It follows that the loop gain is given by the expression [5], 

[6]: 

1

1 1R

vv ii

T

T T

= −

+

  (3) 

 

where Tii is the current-current loop gain, determined with 

the basic amplifier output short-circuited to ground – for 

example using the arrangement shown in Figure 3.a – and 

Tvv is the voltage-voltage loop gain, determined with the 

basic amplifier output left open-circuited, as shown in 

Figure 3.b. 
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Figure 2.a). Model of the Figure 1 circuit when the basic 
amplifier is a V-V  OpAmp and the feedback two-port is 

replaced by its equivalent  Π network.  The loop is broken 
by inserting an independent voltage source with DC=0, 
AC=1, either at the input (between points 1-2) or at the 

output of the OpAmp (between points 3-4). 

 

Obviously, the loop can be broken at the inverting input of 

the OpAmp, using same circuitry for calculating Tii and Tvv. 

 

C. Analytical analysis of the popular (VAC) and the 

Rosenstark-based methods for determining the loop gain  

Equation 4 (shown at the top of this page) gives the loop 

gain expression determined by applying equation 3 to the 

circuits shown Figures 3.a. and 3.b. The notation TR 

indicates the Rosenstark-based method used for determining 

T. It is worth noting that the expression of TR is the same if 

the loop is broken at the OpAmp inverting input or output - 

that is, between points 1-2 or points 3-4 in Figure 3. 
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    The analytical analysis of the circuits shown in Figures 

2.a and 2.b, by following the VAC method described in 

Section II.A, yields: 

• if the loop is broken at the OpAmp input, that is VAC 
is inserted between points 1-2 as  shown in Figure 
2.a: 

G L F L OUT F OUT

AC_IN

G L F L OUT F OUT

R

R

T

T

     nom +Z (Z Z +Z Z +Z Z )
 T =

denom Z (Z Z +Z Z +Z Z )−

 (5) 

• if the loop is broken at the OpAmp output, that is, if 
the VAC source  is inserted between points 3 and 4 as 
shown in Figure 2.b: 

OUT

AC_OUT

OUT

R

R

T

T

 nom +Z E(Z)
T =

denom Z E(Z)−

  (6) 

 

where 
L IN IN F IN G F G L G

E(Z) = (Z Z +Z Z +Z Z +Z Z +Z Z )  and 

nom_TR / denom_TR represent the nominator/denominator 

of the TR expression given by equation (4), respectively. 

    The loop gain expressions should not depend on the point 

the loop is broken; this requirement is satisfied by the 

method based on the Rosenstark theorem (equation 4) but 

not by the VAC method (equations 5 and 6). However, the 

results obtained using the VAC method converge towards the 

ones obtained using the Rosenstark-based method if the 

OpAmp input/output impedance has a very large/small value 

and the loop is broken at the input/output of the OpAmp, 

respectively: 

 

Z Z Z 0 Z 0in in OUT OUT
AC_IN R AC_OUT Rlim T lim T lim T lim T;

→∞ →∞ → →

= =  (7) 

Z 0 Z 0 Z 0

Z Z Z
OUT OUT OUT

in in in

AC_IN R AC_OUTlim T lim T lim T
→ → →

→∞ →∞ →∞

= =   (8) 

 

D. Simulation results for the VAC and the Rosenstark-based 

methods for deriving the loop gain  

In general, the differences between the loop gain 

characteristics obtained by using the methods presented here 

are relatively small if the feedback network is purely 

resistive. However, the differences can become dramatic if 

the feedback network includes frequency-dependent 

impedances – as it is the case for most real-life circuits. 

    As an example, let us consider the circuit shown in Figure 

4, implemented with the (model of) the LF357 OpAmp, 

characterized by a very high input impedance (10
12
Ω). The 

feedback network consists of: RF_RC=200Ω; CF_RC=99pF; 

RF=30kΩ; ZL=1kΩ||20nF; ZG=1kΩ||1nF.  

    Figure 5 presents the loop gain characteristics yielded for 

the Figure 4 circuit by using the Rosenstark-based method 

and the VAC method. As expected, the Rosenstark-based 

method gives the same characteristics – the continuous-line 

plots – if the loop is broken at the output or input of the 

OpAmp. The VAC method gives practically same results as 

the Rosenstark-based method if the loop is broken at the 

input of the OpAmp; however, if the loop is broken at the 

OpAmp output the VAC method yields significantly different 

characteristics – the interrupted line plots in Figure 5. 

    The differences between the characteristics yielded by the 

two methods considered here may not appear large but the 

resulting values for the unity loop gain frequency (F0dB) and 

the phase margin are indeed significant. Table 1 summarizes 

the unity-gain frequency, F0dB, and the phase margin values 

for the circuit in Figure 4.  
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Figure 3. a). Circuit for deriving the current-current loop 

gain, Tii,, b). Circuit for deriving the voltage-voltage loop 

gain, Tvv, as required by the Rosenstark theorem (eq. 3) 
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Figure 4. Example of a circuit with a V-V OpAmp  basic 

amplifier and a frequency-dependent feedback network 
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Figure 5. Loop gain characteristics of the circuit shown 

in Figure 4, as obtained using the Rosenstark-based 

method (continuous line) and the VAC method with the 

loop broken at the OpAmp output (interrupted line). 
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Figure 6. Step response of the circuit shown in Figure 4 

 

Table 1. The unity-loop gain frequency and the phase 

margin obtained for the circuit shown in Figure 4 by 

using the methods for determining T compared in this 

paper 

RF_RC=200Ω; CF_RC=99pF;RF =30kΩ 

ZL=1kΩ||20nF; ZG=1kΩ||1nF 

Method 
F0dB 

[kHz] 

PhaseMargin 

[degrees] 

Rosenstark-based (TR) 1100 4.9 

VAC_IN 1100 4.5 

VAC_OUT 999 51 

 

    Figure 6 presents the step response of the circuit shown 

in Figure 4; its aspect indicates a low phase margin value, 

as given by the Rosenstark-based method (4.9
o
) and 

disproves the larger value given by the VAC method 

applied by breaking the loop at the OpAmp output (51
o
). 

 
III. CIRCUITS BASED ON THE CURRENT-

FEEDBACK OPAMP 

A. Analytical analysis of the two methods for determining T  

Figure 7 presents the standard model of a CFB-OA [6]. Let us 

substitute this model to the V-V OpAmp model in Figures 2.a, 

2.b and Figures 3.a. and 3.b., and derive the loop gain 

expression following the two methods presented in Section II. 

Both methods require the breaking of the loop, either at the 

CFB-OA input or at its output, i.e. between points 1-2 or 3-4. 

    As in the V-V OpAmp case, the Rosenstark-based method 

gives the same expression – detailed by equation 9 (shown at the 

top of next page) - for the loop gain, irrespective of the point the 

loop is broken. The corresponding expressions yielded by the 

VAC method and by breaking the loop at the CFB-OA inverting 

input, respectively at the CFB-OA output are: 
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G F L OUT L OUT F

OUT inI G L G inI L F G inI F

OUT inI G L G inI L F G inI F

R

R

R
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T

T

T

     nom +Z (Z  Z +Z Z +Z Z )  
T =

denom Z (Z  Z +Z Z +Z Z ) 

    nom +Z (Z Z +Z Z +Z Z +Z Z +Z Z )
T =

denom Z (Z Z +Z Z +Z Z +Z Z +Z Z )

−

−

(10) 

 

where “nom_TR “ and “denom_ TR “ represent the 

nominator and denominator of the TR expression given by 

equation 9. 

    For ideal input/output CFB-OA impedances one obtains: 

 

 

O UT O UTinI

AC_IN AC_O U T R
Z 0 Z 0 Z 0
lim T = ; lim T = lim T

→ → →

∞  (11) 

 

 

    Note that in this case the VAC method follows the 

Rosenstark-based one only if the loop is broken at the output 

of the CFB-OA, and its output impedance is very low.  

 

 

B. Simulation results for a “real-life” CFB-OA  

Figure 9 presents the loop gain characteristics yielded by the 

Rosenstark-based method – the continuous line plots – and by 

the VAC method applied by breaking the loop at the OpAmp 

input – the dotted line plots – and at the OpAmp output – the 

interrupted line plots for the following conditions: the basic 

amplifier is a (model of) the AD844 CFB-OA, as given by its 

manufacturer. It has the following parameters: ZinI = 50Ω; 

ZOUT = 15Ω, ZT = 3MΩ||5pF, τcm = 3ns (the time constant of 

the current mirrors which determines the second CFB_OA 

pole). The feedback network consists of RF_RC=1kΩ; 

CF_RC=4.8pF; RF=1kΩ; ZL=100pF; RG=0.9kΩ - see Figure 8. 

 

As expected, the characteristics obtained by using the 

Rosenstark-based method and by breaking the loop at the 

output or input of the OpAmp are identical. Table 2 

summarizes the F0dB and the phase margin values for the 

Figure 8 circuit by using the three approaches compared here. 

    The step response of the Figure 8 circuit is presented in 

Figure 10. Only the Rosenstark-based method gave a low 

phase margin value that corresponds to the ringing step 

response. 
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Figure 7. A simple model for the CFB-OA 
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Figure 8. Example of circuit with CFB-OA basic 

amplifier and a frequency-dependent feedback network. 
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Figure 9. Loop gain characteristics of the Figure 8 circuit 

obtained by using the Rosenstark-based method (continu- 

ous line) and the VAC method with the loop broken at the 

OpAmp input (dotted line) and output (interrupted line) 
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Figure 10. Step response of the circuit shown in Figure 8 

 

Table 2. The unity-loop gain frequency and the phase 

margin obtained for the Figure 8 circuit by using the three 

approaches for determining T compared in this paper 

RF_RC=1kΩ; CF_RC=4.8pF; RF=1kΩ; ZL=100pF; 

RG=0.9kΩ 

Method 
Low freq 

Gain [dB] 

F0dB 

[MHz] 

PhaseMargin 

[degrees] 

Rosenstark-

based (TR) 
68.53 46.65 11 

VAC_IN 88.97 49 40 

VAC_OUT 68.53 28.2 60 

 
 

IV. CIRCUITS BASED ON THE OPERATIONAL 
TRANSCONDUCTANCE AMPLIFIER (OTA) 

A. Analytical analysis of the two methods for determining T 

Figure 11 presents the standard model of an OTA. Let us 

substitute this model to the V-V OpAmp model in Figures 2.a 

and 2.b and Figures 3.a. and 3.b., and derive the loop gain 

expression following the two methods presented in Section II. 

 

Both methods require the breaking of the loop, either at the 

OTA input or at its output, i.e. between points 1-2 or 3-4. 

    The Rosenstark-based method gives the same expression 

– see equation 12 at the top of next page - for the loop gain, 

irrespective of the point the loop is broken. The 

corresponding expressions yielded by the VAC method and 

by breaking the loop at the OTA inverting input or at its 

output are: 

 

R G L F L OUT F OUT
AC_IN

R G L F L OUT F OUT

R OUT
AC_OUT

R OUT

nomT Z (Z Z Z Z Z Z )
T =

denomT Z (Z Z Z Z Z Z )

nomT Z E(Z)
T =

denomT Z E(Z)

+ + +

− + +

+

−

 (13) 

 

where 
IN F IN L G F G L IN GE(Z) Z Z +Z Z +Z Z +Z Z +Z Z=  and 

nom_TR / denom_TR represent the nominator/denominator 

of the TR expression given by equation 12, respectively. 

    For an OTA with ideal input/output impedances one obtains: 

 

in in OUT
AC_IN R AC_OUT

Z Z Z
lim T = lim T ; lim T =

→∞ →∞ →∞

∞        (14) 

T L G
R

inI L G L F G inI L F L G OUT inI L OUT F G OUT OUT inI F inI G OUT

Z Z Z
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 Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z
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    Note that in this case the VAC method follows the 

Rosenstark-based one only if the loop is broken at the input 

of the OTA, and its input impedance is very high. 

 

B. Simulation results for a commercially-available OTA 

Figure 13 presents the loop gain characteristics yielded by 

the Rosenstark-based method – the continuous line plots – 

and by the VAC method applied by breaking the loop at the 

OTA input – the dotted line plots – and at the OTA output – 

the interrupted line plots for the following conditions: the 

basic amplifier is a (model of) the LM13600 OTA and the 

feedback network consists of RF_RC=500kΩ; CF_RC=100pF; 

RF=10kΩ; ZL=19pF; ZG=100kΩ||1pF – see Figure 12. 

    The corresponding values of the low-frequency gain and 

the unity-gain frequency, as well as the phase margin values 

are summarize din Table 3. One can observe that the phase 

margin values yielded by the three approaches are very 

different, at 6
o
, 90

o
 and 81

o
, respectively. 
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Figure 11. A simple model for the transconductance 

operational amplifier (OTA) 
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Figure 12. Example of circuit with OTA LM13600 and a 
frequency-dependent feedback network 
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Figure 13. Loop gain characteristics of the Figure 12 
circuit obtained by using the Rosenstark-based method 

(continuous line) and the VAC method with the loop 
broken at the OTA input (dotted line) and output 

(interrupted line) 

 

Table 3. The low-frequency gain, the unity-gain frequency 

of the loop gain and the phase margin obtained for the 

circuit shown  in Figure 12  

RF_RC=500kΩ; CF_RC=100pF; RF=10kΩ; ZL=19pF; 

ZG=100kΩ||1pF 

Method 
Low freq 

Gain [dB] 

F0dB 

[MHz] 

PhaseMargin 

[degrees] 

Rosenstark-

based (TR) 
46.1 41.1 6 

VAC_IN 67.45 21.46 90 

VAC_OUT 83.5 22.87 81 
 

    As predicted by the analytical analysis, the characteristics 

obtained by using the Rosenstark-based method do not 

depend on the point the loop was broken. 
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Figure 14. Step response of the circuit shown in Figure 12 

 
    The step response of the Figure 12 circuit is presented in 
Figure14; as for the examples given in the previous two 
Sections, the step response aspect corresponds only to the 
phase margin value given by the Rosenstark-based method. 
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V. CIRCUITS BASED ON THE CURRENT-

CURRENT AMPLIFIER 

A. Analytical analysis of the two methods for determining T 

Figure 15 presents a simple model of a current-current 

amplifier (I-I) with asymmetric inputs, similar to the CFB-

OA shown in Figure 7. A real-life example of such a circuit 

is the second-generation Current Conveyor (CCII) [7].  

   Let us substitute this model to the V-V OpAmp model in 

Figures 2.a and 2.b and Figures 3.a and 3.b, and derive the 

loop gain expression following the two methods presented in 

Section II. As discussed before, both methods require the 

breaking of the loop, either at the OpAmp inverting input or 

at its output, i.e. between points 1-2 or 3-4, respectively. 

    Similarly to the results obtained for the three OpAmp 

analysed in the previous Sections, the Rosenstark-based 

method gives the same expression for the loop gain – see 

equation 15 at top of page 7 - irrespective of the point the 

loop is broken. The corresponding expressions yielded by 

the VAC method and by breaking the loop at the OpAmp 

inverting input or at its output are: 

 

R G L F OUT F L OUT

AC_IN

R G L F OUT F L OUT

R OUT

AC_OUT

R OUT

 nomT +Z (Z Z +Z Z +Z Z )
T

denomT Z (Z Z +Z Z +Z Z )

nomT +Z E(Z)
T

denomT Z E(Z)

=

−

=

−

(16) 

 

where 
INi F INi L G F G L INi GE(Z)=Z Z +Z Z +Z Z +Z Z +Z Z  

and the terms nom_TR/denom_TR represent the 

nominator/denominator of the TR expression given by 

equation 15, respectively. 

i OUT L G

R

INi L F INi L G INi L OUT INi F OUT INi G OUT F G OUT L F G L G OUT

a Z Z Z
T =

Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z +Z Z Z
    (15) 

 

    For an I-I OpAmp with ideal inputs or output impedances 

one obtains: 

 

INi OUT
AC_IN AC_OUT

Z 0 Z
lim T ; lim T  

→ →∞

= ∞ = ∞          (17) 

 
   Note that in this case the loop gain obtained using the VAC 

method does not get closer to the Rosenstark-based results, 
even if the OpAmp has ideal input/output impedances. 
 

B. Simulation results for a commercially-available I-I 

OpAmp 

No genuine I-I OpAmp are available commercially at the 

moment, but several current-feedback OpAmps can be 

configured as second-generation current conveyors, which in 

turn can be seen as I-I OpAmps with asymmetrical inputs 

and a current-current gain of one (0dB).   

    The AD844 is an example at hand of such a CFB-OA: its 

block diagram is presented in Figure 16. One can easily 

observe that, between the inputs and the node Z, the AD844 

comprises a current-current amplifier with the structure 

corresponding to the models shown in Figure 15. 

    Figure 17 shows a voltage amplifier implemented with  

the AD844 used as a unity-gain current-current OpAmp.  

Obviously, the loop gain of this circuit is subunitary, so the 

phase margin cannot be calculated. In order to compare 

results under same conditions as for the three types of 

OpAmps analysed in the previous Sections we have 

modified the AD844 model so that its current-current gain 

was pushed up to tens, then hundreds of units. 

    Figure 18 presents the loop gain characteristic of the 

Figure 17 circuit with the modified AD844 having a current-

current gain of 100 (40dB): the results obtained by using the 

Rosenstark-based method are plotted with continuous line 

while the ones obtained by using the VAC method are plotted 

with dotted line – when the loop was broken at the OpAmp 

input – and by interrupted line when the loop was broken at 

the OpAmp output. As predicted by the analytical analysis, 

the loop gain characteristics obtained by using the 

Rosenstark-based method do not depend on the point the 

loop is broken. 
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+

-

ZOUT

+1

iinI

a iiinI
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Figure 15. Model for current-current OpAmp with 

asymmetric inputs; an example of such a circuit is the 

second-generation current conveyor 
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Figure 16. Block diagram of the AD844 CFB-OA; 
between the inputs and the node Z it implements a 

second-generation current conveyor, CCII+. 
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Figure 17. Example of a circuit with a frequency-

dependent feedback network and the AD844 configured 

as an I-I amplifier for the main circuit amplifier  

 

Also in good agreement with the analytical analysis is the 

fact that the parameters of the frequency characteristics 

shown in Figure 18 are widely different – including the 

low-frequency gain – see equations 15 and 17. 

 

Frequency

10.0KHz 1.00MHz 100.0MHz871.2Hz 1.33GHz

-200d

-100d

0d

0

50

100

AC_OUTT

AC_OUTT

RT

R
T

AC_INT

AC_INT

dB
T

phase(T)

 
 

Figure 18. Loop gain characteristics of the Figure 17 

obtained using the Rosenstark-based method (continuous 

line) and the VAC method with the loop broken at the 

OpAmp input (dotted line) and output (interrupted line) 
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Figure 19. Step response of the circuit shown in Figure 17 

 

 

 

Table 4. The unity-loop gain frequency and the phase 

margin obtained for the circuit shown  in Figure 17 by 

using the methods for determining T  compared here  

RF=1kΩ; ZL=14pF; ZG=1kΩ||3pF 

Method 
Low freq 

Gain [dB] 

PhaseMargin 

[degrees] 

Rosenstark-based (TR) 39.57 16 

VAC_IN 66.1 50 

VAC_OUT 108.8 61 
 

    Table 4 summarizes the low-frequency gain and the phase 

margin of the loop gains presented in Figure 18. 
    Figure 19 presents the step response of the circuit shown 
in Figure 17, for the conditions described above (the AD844 
model modified so that it yields a current-current gain of 
40dB). The ringing step response is in agreement only with 
the low phase margin obtained by using the Rosenstark-
based method (16

o
) and disproves the larger phase margin 

values obtained using the VAC method (50
o
 and 61

o
). 

 
 

VI. CONCLUSIONS 

Two of the most popular methods for deriving the small signal 

loop gain of feedback circuits based on OpAmps have been 

analyzed comparatively in detail, both analytically and 

through extended sets of simulations. All four OpAmp types 

currently available commercially have been considered: the 

traditional OpAmp (V-V OA), the current-feedback OpAmp 

(CFB-OA), the Operational Transconductance Amplifier 

(OTA) and the Current-Current Amplifier (I-I OA) with 

asymmetrical inputs. 

    The comparison focused on two points: first, it was verified 

whether or not the loop gain expressions corresponding to 

these methods satisfied the theoretical requirement that they 

should not depend on the point the loop is broken. Second, the 

correspondence between the phase margin determined with 

these methods and the step response of the analyzed circuits 

was verified for an extended set of circuits.  

    Examples of circuits based on real-life OpAmps – that is, 

models of well known ICs provided by their manufacturers -  

have been presented  for each OpAmp type, highlighting the 

differences between the analysis methods under comparison. 

    It was shown that the simple and widely used VAC method – 

which involves breaking the feedback loop by inserting an 

independent voltage source with DC=0 and AC=1 – fails both 

tests described above if the feedback loop comprises 

frequency-dependent impedances, the usual real-life situation. 

    The - admittedly more elaborated but still practical - 

method based on the Rosenstark theorem provides loop gain 

characteristics that are independent on the point the loop was 

broken. This has been verified for circuits with series-shunt 

feedback using all the OpAmp types mentioned above. This  

method also passes the second test: simulations run for several 

representative circuits have shown good correspondence 

between the phase margin values obtained by using this 

method and the step response of the analyzed circuits. 

    Despite its limitations, the VAC method can be used if two 

conditions are met: i) the feedback two-port is purely resistive 
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and ii). the point at which the loop is broken is chosen by 

taking into account the relationship between the values of the 

OpAmp input/output impedances and the feedback network 

equivalent impedances. In particular, for OpAmps with 

“naturally” large input impedances – such as the traditional V-

V OpAmp and the OTA – for most practical circuits the loop 

should be broken at the inverting input of the OpAmp rather 

than at its output. The opposite applies to the CFB-OA, where 

for most practical cases it is better to use the VAC method by 

breaking the loop at the output of the OpAmp. The I-I OA is a 

special case, for which the no clear pattern was found, hence 

no conclusion could be drawn. 

    It should be noted that the results presented here have been 

obtained for a fairly general case – the feedback two-port was 

a generic reciprocal network, a class which includes all 

passive networks. Furthermore, although the analysis focused 

on circuits with the classical series-shunt feedback topology 

[1] the conclusions can be extended to a host of related 

circuits, such as the inverting OpAmp-based amplifier [2]. 
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