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Abstract: This paper compares the various feature sets for speech signal such as cepstral-based and acoustically-driven parameters 

to analyze and see how robust they are in different noise environments. Despite the success of the cepstral-based features in the 

tasks of speech processing, they are still susceptible to noise. In this work, we explored how to extend MFCC-based feature sets 

with other acoustically-driven parameters to add some robustness for the segmentation of speech. Experiments conducted on 

TIMIT dataset using the standard HMM/GMM framework show that better performance can be achieved if cepstral-based 

features are combined with acoustic parameters. 
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I. INTRODUCTION 

One of the important aspects of speech for computer science 

is speech recognition, which is an attempt to automate the 

“understanding” of speech by machines. The ability of a 

computer to “understand” speech and act accordingly would 

potentially reduce the human-load and the risk in human-

dependent applications. The real applications of automatic 

speech recognition (ASR) systems are widely used in 

telecommunication, medicine, and military. Although, the 

success of such systems is notable, they all suffer from noisy 

environment and the performance degrades significantly. 

And because of this instability, they hardly can substitute 

human in the applications where the responsibility is high. 

Therefore, the robustness of such systems plays very 

important role. One question that consequently arises is that 

whether there is a unique representation of speech signal 

which helps human extract only the information he needs. 

So our concern is the quest for better (in the sense of 

robustness) description of speech, which will benefit the 

current systems and prevent them from failing in the 

presence of noise, that is, will provide some stability and 

reliability in the speech recognition process. 

Our hypothesis is that the combination of cepstral 

coefficients and acoustic parameters can be beneficial for 

the ASR systems in the sense of robustness. On the other 

hand, we are looking for the reliable and, yet, simple 

acoustic parameters, which are cheap to extract and, 

therefore, leaving a computational gap for the later stages. 

And as a task of speech processing, we focus on the 

segmentation of a speech signal into two wide classes – 

sonorant and obstruent, which comprise broad phoneme 

classes of American English language. The sonorant class 

consists of vowels, liquid and glides (semivowels), nasals, 

whereas the obstruent class consists of fricatives, affricates 

and stops [1]. We also add non-speech parts (e.g. silence) of 

a speech signal into obstruent class. The accurate realization 

of this task is crucial for the systems that extract the 

phonetic constituents from these regions, because the error 

in this stage will propagate further causing pyramidal effect 

on error rates. To get competitive performance, we will 

invoke HMM-based approach using GMM as the 

observation probability density function, since this approach 

has proved to be computationally feasible and successful in 

speech recognition tasks. 

The rest of the work is organized as follows. In Section 2 

we discuss related work done by other researchers regarding 

our problem. Section 3 is dedicated to the analysis of data. 

Here we provide the description and behavior of several 

acoustic parameters on the input data. Sections 4 and 5 

present the results obtained and their careful discussion. 

And, finally, Section 6 concludes the work. 

 

II. RELATED WORK 

There are almost no work done on segmentation of speech 

signal using such a combination of parameters, although 

there are applications where cepstral coefficients and APs 

are used together to solve one common problem but each in 

the different subtasks, for instance, using the first parameters 

as a feature set and the second as a threshold for the 

obtained result. Therefore, we believe that our contribution 

and impact to the ASR systems carries a significant 

importance and will be truthfully appreciated. 

The problem of sonorant-obstruent segmentation has 

attracted researchers for its importance in the general 

hierarchy of tasks in the automated speech recognition 

systems based on the phonetic transcriptions, syllable and 
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sub-word detections from the broader regions of interest. 

Hence, the correctness of the segment boundaries directly 

affects the performance of such detectors and the 

mismatches made in the initial stages are difficult to recover 

later on. An example of such systems is a work done by A. 

Jansen and P. Niyogi [2], which laid as a basic source of 

ideas and was a motivation for the current work.  

The approach proposed uses the notion of distinctive 

features and exploits the idea of landmark detectors, which, 

they claim, could be an alternative to the modern HMM-

based approaches. A hierarchical model is based on the 

number of feature detectors that output a set of candidate 

landmarks, which are, then, probabilistically integrated to 

construct the most likely sequence of broad classes. 

Although the model built is up to the broad-class level, it 

explicitly includes the sonorant-obstruent segmentation 

stage. For the segmentation, an SVM was trained on 39-

dimensional mel-frequency cepstral coefficient feature sets. 

The accuracy was estimated with the measure they 

proposed, which is, basically, the percentage of the 

phonemes that fall into corresponding sonority regions given 

the threshold of being “accepted” by those regions (for 

details, see the section “Experimental Results”). In spite of 

the high performance for different thresholds, what 

interested us most is that the difference between the 

respective sonorant and obstruent measures is high and 

grows significantly as the threshold is increased. One of the 

reasons could be that the segmenter assigns wider regions 

for one class while narrower for the other, what makes such 

a difference in the measures. Therefore, the question of the 

quality of the segmentation arises. Another issue that was 

not considered in this paper is noise. 

In [3] a frame-based SVM classification using the 

general-purpose MFCCs is built, where the problem of noisy 

condition is addressed. For that, authors estimate signal-to-

noise ratio from the frame energy histograms, noticing that, 

for stationary noise, there is going to be two peaks: one 

corresponds to the accumulations of non-speech frames 

containing only noise, and the other – to the speech plus 

noise portion. The difference between these two peaks gives 

a measure that is a “good indicator” of SNR. Then, based on 

this measure they vary adaptively the parameter λ in the 

classification rule: 

 

 x i ∈ {sonorants} ⇔ w0

T
x i + b0 > λ .            (1) 

 

Unclear part of this work is a map from SNR to optimal 

threshold during the training stage. Another problem is that 

the comparison of the results for noisy data was made 

between different settings of λ, but not with the results 

obtained on clean data. For example, the difference in 

performance between clean and pink noise added data goes 

above 10%, what requires the explanation how “good” or 

“bad” it is, i.e. the measure of accuracy estimation was not 

given. In addition, this type of approach doesn’t take into 

account the noisiness of the extracted feature sets. 

An alternative to these two papers in terms of data 

representations is a work by A. Juneja and C. Espy-Wilson 

[4]. Their method is based on the extraction of different 

acoustic parameters and passing the relevant parameters to 

SVMs trained for each broad class. Although it is not very 

clear how some of the parameters are obtained (third 

formant of a speaker, or probability of voicing), the idea of 

separating the parameters according to the broad class 

should really be appreciated. The attempt to compare the 

performances of their system with HMM-MFCC-based one 

fails in that they built not quite a competitive model for the 

second system, which has the performance not comparable 

to the state-of-the-art HMM-based systems.  

Some other studies using APs as a basis of speech 

representation are described in [5-7]. All the parameters 

extracted are quite simple yet natural, however, the 

robustness to noise should be inspected carefully. For 

example, Wiener entropy may not reflect structural 

properties of a signal in the presence of noise as well as the 

periodicity estimation of noisy and non-stationary signals is 

an extremely difficult task, what shows the works such as  

[8, 9]. Therefore, it is not sufficient to use such a small 

number of parameters (3-4), for the systems that will be 

exposed to an adverse conditions and the noise level is 

considerably high.  

There are also studies of slightly different manner. For 

instance, it is worth mentioning the work [10], which 

combines the power of statistics with the ideas of edge 

detection in computer vision.  Another approach [11] uses 

no linguistic knowledge, but rather machine-learning 

algorithms based on clustering and dynamic programming 

techniques. In [12], a noise adaptive speech recognition 

system is built with acoustic models trained on noisy data, 

which is not common to the traditional approaches, where 

the training set is a clean speech. 

The analysis of all works shows that cepstral-based 

approaches rightfully became popular among speech 

recognition community, but the need for more robust 

representation suggests augmenting them with additional 

cues such as acoustic parameters. Although another 

approaches like [6, 12] are possible to overcome noisy 

environment, we focus, more, on proper description of a 

speech signal. Here we do not discuss any work related to 

HMM; one may refer to [13, 14].  

 

III. DATA ANALYSIS 

Among the commonly used acoustic parameters we selected 

and analyzed four computationally easy to extract 

parameters:  a maximum energy location (frequency), an 

energy concentration up to 1 kHz, Wiener entropy and a 

zero crossing rate of the autocorrelation function. Figure 1 

shows the distribution of the parameters across the 

phonemes within each sonority class. 

The location of the maximum energy (ME) in the 

spectrogram can be a cue in distinguishing between the 

sonorant and obstruent phonemes. Sonorant phonemes 

mostly have peak energy below  1500 Hz,  however,  the   
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Figure 1. The distributions of the acoustic parameters across the obstruent (left) and sonorant (right) phonemes in the 

clean TIMIT samples. 
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Figure 2. The distributions of the acoustic parameters across the obstruent (left) and sonorant (right) phonemes with 

normally distributed noise added (µ=0, σ=50, ~30dB).
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range for obstruent phonemes varies much (see first row in 

Fig. 1). The vast majority of obstruent phonemes having low 

peaks are voiced phonemes like /b/ or /z/. Clearly, this 

parameter is good only in saying what is not a sonorant 

phoneme if the peak is high enough.   

The second parameter, which we refer to as “energy 

ratio” (ER), is simply the ratio between the energy up to 

1000 Hz to the total energy. The motivation for that is, 

again, the property of sonorants to have most of the energy 

in the low frequencies, and the reverse is for the obstruent 

phonemes. Although this statistics nicely separates two 

classes (see the second row in Fig 1.), the intersection of two 

histograms is still significant.  

Wiener entropy (WE) is a measure of the width and 

uniformity of the power spectrum and defined as: 

 

 log(S( f ,t))df −log( S( f ,t)d∫∫ f ) ,               (2) 

 

where S(f, t) is the energy in time-frequency domain. Since 

the sonorants have their energies high and concentrated in 

the lower frequencies, the value of this parameter tends to be 

small and far from zero, whereas the obstruent phonemes 

have their energies uniformly spread along the frequency 

axis up to 8000 Hz, what creates the flatness in power 

spectrum and, hence, pulls the entropy value towards zero. 

This can be seen in the Fig 1.  

Similar measure, in the attempt of reflecting the 

structure, is a zero crossing rate (ZCR), the number of times 

the signal crosses zero to the total number of samples. It is 

an indirect measure, which reflects more-or-less the periodic 

structure of a signal. The sonorants being periodic will have 

this value low and the obstruents as well as noise will have it 

high. In addition, it should be noted that the value of a 

period for the sonorants is relatively high, due to the low 

frequency range, what is also a reason why ZCR is low for 

the sonorants. In our experiments we use the ZCR of the 

autocorrelation function, because the autocorrelation 

function has a smooth shape and theoretically the same 

period as the initial signal. Again, as in the case with the 

maximum energy, sonorants grouped compactly, while the 

obstruents do not show nice order, moreover, they fall also 

into lower “sonorant” region. The analysis shows that this 

intersection is caused by voiced obstruent phonemes, which 

have quasi-periodic shape.  

In addition, we constructed the same distributions as in 

Fig.1 but with the normally distributed noise added, having 

mean µ=0 and standard deviation σ=50, which roughly 

corresponds to ~30dB (see Fig. 2). Although the discussion 

of these diagrams will be made in the next section, it is 

worth noticing the significant changes in some of them, for 

instance, ER and WE. On the other hand, Figures 1 and 3 

tell us that only two of four parameters, namely, ER and 

WE, sound promising to be used for separating the sonority 

classes. So, the important question here is how robust these 

parameters are if noise is added to the data. 

 
 

Figure 3. The distribution of the phonemes in the ER-WE 

plane (green points are sonorants, blue - obstruents). 

 

The same analysis was made with MFCC features. For 

that, the MFCC vectors extracted from all the training 

samples were mapped using Principal Components Analysis 

(PCA) to a new space, where they were separated by the 

hyper-plane obtained as a result of Fisher’s linear 

discriminate analysis (FLDA) [17]. Figure 4 shows the 

distributions of the vectors extracted from clean samples (a) 

and from noisy samples with noise level of 0dB (b) in the 

plane of the first two principal components (round markers 

correspond to the sonorant vectors, crosses – to the 

obstruent). Noisy data were transformed to the coordinate 

system of the clean data via PCA transform matrix. The 

lines on the graphs are the separating lines computed by 

FLDA. The change in the distribution is noticeable. 

Although it is not shown here, but the same shrinkage is 

seen along the other axis. Figure 5 compares the dynamics 

of the distribution of the vectors along the first principal 

component in the different noise environments. 

Table 1 shows the results of the FLDA test for the other 

statistics. Here, we reflect how the separability of data 

changes by each parameter at noise level of 0dB. The first 

row is the separation error rate (% of wrong separated data 

out of all data) of the clean data obtained by FLDA, the 

second row is the separation error rate (with respect to the 

FLDA on clean data) of the noisy data, and the last row is 

the separation error rate obtained by retrained FLDA 

performed on the same noisy data. From this table we see 

that in general the separability of data decreases, though, it 

is still high for MFCC, ME and ER. Another interesting 

thing is that the error rate is high if we try to predict from 

the settings obtained on clean data, whereas if we retrain the 

system on noisy data the error rate decreases showing the 

better separation.  
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(a) 

 
(b) 

 

Figure 4. The distributions of the MFCC vectors in the 

plane of the first two principal components: a) the vectors 

were extracted from clean samples; b) the vectors were 

extracted from noisy samples with noise level of ~0dB 

(round markers correspond to the sonorant vectors, 

crosses – to the obstruent). 
 

 
 

Figure 5. The distributions of the MFCC vectors along 

the first principal component in the different noise 

environments. 

 

Table 1. The separation error rate, in %, obtained by 

FLDA for each parameter in clean and noisy 

environment. 

 

Error rate, % ME ER WE ZCR MFCC 

clean 28 10 39 28 13 

noise, 0db 21 52 52 60 20 

retrained on 

noisy data 26 25 49 44 18 

 

IV. EXPERIMENTAL RESULTS 

4.1. Baseline system 

To have a proper baseline with a reasonable performance, 

we selected the work done in [2] and tried to reproduce its 

results on the same 100 samples. We have built in Matlab 

7.5 (R2007b) and HMM Toolbox [15] the HMM-based 

model using GMM as the observation probability density 

function with analogous settings. From each “sx” and “si” 

train utterances of TIMIT database, we extracted 13 mel-

frequency cepstral coefficients every 10 ms over a 25 ms 

Hamming window, with subtracted cepstral mean computed 

over the all frames. In addition, we computed the deltas and 

the acceleration coefficients of the obtained MFCC vectors 

to capture their dynamic properties. Thus, we got a 39 

dimensional cepstral feature set per utterance. Then each 

frame was labeled using the transcriptions according to the 

broad class it belonged to: vowels, semivowels, nasals, 

semivowels, fricatives, stops or silence. The extraction of 

the cepstral information was done using the MFCC Toolbox 

written by Daniel P. W. Ellis [16]. Expectation-

Maximization (EM) algorithm was used to train the system. 

As a primary metric to assess the performance of the 

model, we use one that is described in [2], namely:  

1. Cson = percentage of the individual sonorant 

phonemes for which at least a fraction Fmin of its duration 

falls into a single sonorant segment as determined by 

algorithm. 

2. Cobs = percentage of the individual obstruent 

phonemes for which at least a fraction Fmin of its duration 

falls into a single obstruent segment as determined by 

algorithm. 

The rationale of this measure is that no matter how 

precise the phonetic transcription of a speech signal is, 

human is still able to identify the given phoneme even if we 

shrink a little the exact boundaries of it. Of course, the 

measure of “shrink a little” has its own limit depending on 

the characteristics of the phoneme and the perceptual ability 

of a human. Nonetheless, since we build our approach on the 

phonetic transcription of the utterances, we need to be aware 

of this phenomenon and permit to vary the acceptance level 

for the phonemes, in our case the value of Fmin.  However, 

the most relevant values of Fmin are around 0.5, which 

means that we guess at least the center of a phoneme. 

Another positive side of this measure is that it reflects the 

quality of the segmentation: a “good” segmentation will 
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have both Cson and Cobs balanced, i.e. the difference 

between them is low.  We explain it with a simple example. 

Suppose the algorithm predicted the whole signal as one big 

sonorant region, then, of course, we would have Cson = 

100%, whereas Cobs = 0%, for all values of Fmin. Clearly, this 

is not what we desire to achieve. On the other hand, exact 

match of the prediction with the real transcription would 

make both Cson and Cobs equal to 100%, which is ideal. So, 

generally for a “good” segmentation the difference ∆=(Cson-

Cobs) should be small and close to constant for all values Fmin 

in [0,1]. Therefore, we prefer this measure to the commonly 

used string edit distance, which doesn’t have such nice 

properties.  

Table 2 compares both systems for the different values 

of Fmin. 

 

Table 2. Performances of the system done in [2]  

and our baseline system 

 

System built in [2] Our baseline system  

Fmin Cson, (%) Cobs, (%) Cson, (%) Cobs, (%) 

0.10 98.5 95.4 97.5 91.7 

0.33 96.6 92.9 96.1 90.6 

0.50 95.0 89.3 93.4 89.2 

0.67 93.4 85.8 88.9 86.9 

0.90 82.1 68.7 71.3 77.6 

 

4.2. Performance in clean and light noise environments 

We made 7 different combinations of feature sets and tested 

them with our system on all testing samples to see their 

behavior in clean and light noise conditions (~30dB). The 

testing is performed on the all 1344 test utterances of “sx” 

and “si” type in TIMIT database. There are two purposes of 

these experiments: 1) to see how the performance changes if 

we add various acoustic parameters to the general-purpose 

MFCC-based feature set; 2) to estimate the robustness of 

these combination in the presence of light noise. The 

combinations are: 

- MFCC (39 dimensional feature set, baseline) 

- ER + WE (2) 

- MFCC + ER + WE (41) 

- MFCC + ME + ER (41) 

- MFCC + ME + ER + WE (42) 

- MFCC + ME + ER + WE + ZCR (43) 

- MFCC + ME + ZCR (41) 

The results are given in Table 3 and 4. For each system, 

we show the obstruent and sonorant prediction rates, as 

described in previous section. The important thing to notice 

in these numbers is not only the values Cson and Cobs but also 

the corresponding difference ∆=Cson-Cobs for a particular 

value of Fmin as well as its dynamics: the smaller the values 

and the more uniform the change, the better performance of 

a system is.   

From Table 3 we can see that the performance for the 

third system (MFCC+ER+WE) much better than that of the 

first one with MFCCs only. However, Figure 6 shows that 

the second (ER+WE) and the last (MFCC+ME+ZCR) 

systems have more-or-less stable behavior in term of 

evolution of ∆. The system with all the parameters included  

also seems stable for most of the values of Fmin. 

 

Table 3. The performance of the system with different 

feature sets in clean environment. 

 
Fmin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

MFCC 

Cobs, 

(%) 90.30 89.85 89.28 88.69 87.91 86.88 85.49 82.87 76.37 61.86 

Cson, 

(%) 97.83 97.30 96.39 95.28 93.59 91.14 87.68 82.32 72.21 54.69 

ER + WE 

Cobs, 

(%) 91.50 90.37 89.12 88.02 86.54 84.58 81.85 77.91 69.78 55.41 

Cson, 

(%) 94.86 94.38 93.85 93.19 92.45 91.22 89.02 84.52 74.35 57.40 

MFCC + ER + WE 

Cobs, 

(%) 94.46 94.15 93.74 93.20 92.43 91.04 88.94 85.08 77.14 61.47 

Cson, 

(%) 98.00 97.52 96.84 95.82 94.29 91.63 87.78 81.70 71.09 55.03 

MFCC + E + ER 

Cobs, 

(%) 89.47 88.63 87.60 86.64 85.60 84.09 82.09 79.11 73.17 62.03 

Cson, 

(%) 95.46 94.78 93.80 92.63 90.79 87.08 82.04 75.03 65.52 53.66 

MFCC + ME + ER + WE 

Cobs, 

(%) 86.74 85.75 85.03 84.45 83.67 82.60 81.08 78.25 72.85 62.61 

Cson, 

(%) 94.32 93.45 91.97 90.26 87.91 84.62 80.13 73.52 63.81 52.62 

MFCC + ME + ER + WE + ZCR 

Cobs, 

(%) 92.53 92.10 91.36 90.31 88.79 86.68 83.73 79.46 72.27 60.53 

Cson, 

(%) 95.46 94.81 93.78 92.45 90.68 88.42 85.31 80.04 70.17 55.89 

MFCC + ME + ZCR 

Cobs, 

(%) 92.15 91.53 90.54 89.23 87.60 85.22 82.00 77.58 65.93 53.48 

Cson, 

(%) 95.59 95.03 94.09 92.80 91.14 88.99 86.01 81.18 72.31 58.36 

 

 
 

Figure 6. The dynamics of ∆ = Cson-Cobs for each system 

in clean environment. 
 

If in the clean conditions we can see comparable 

performance of all the systems to that of the baseline 

(MFCC), then in noisy conditions only few can compete 

with the baseline system (Tab. 4). There is a significant shift 
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in performance from Cson to Cobs, due to the fact that noise 

has the properties of the obstruent phonemes. On the other 

hand, it is interesting that the last system not only 

outperforms the baseline but also shows some stability of ∆ 

value. The forth has lower performance than the last’s but 

still somewhat stable. Figure 7 shows the change in ∆ value 

only for the best 3 systems, which we chose to be the 

candidates for the next set of experiments. 
 

Table 4. The performance of the system with different 

feature sets in noisy environment. 
 

Fmin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

MFCC 

Cobs, 

(%) 93.43 93.13 92.68 92.20 91.51 90.56 89.23 87.38 82.58 69.24 

Cson, 

(%) 92.51 91.19 89.64 87.86 85.53 82.77 78.84 73.12 62.70 45.04 

ER + WE 

Cobs, 

(%) 99.82 99.81 99.80 99.79 99.73 99.62 99.53 99.35 98.97 95.70 

Cson, 

(%) 23.29 22.59 21.82 20.97 19.88 18.44 16.60 13.69 9.62 3.81 

MFCC + ER + WE 

Cobs, 

(%) 97.56 97.49 97.34 97.19 96.94 96.46 95.61 94.21 91.36 82.32 

Cson, 

(%) 84.36 82.50 80.14 77.38 74.21 70.33 64.67 56.75 44.57 29.00 

MFCC + ME + ER 

Cobs, 

(%) 90.97 90.28 89.27 87.82 86.38 84.55 82.34 79.17 73.59 62.98 

Cson, 

(%) 93.52 92.61 91.43 89.90 87.71 84.00 78.79 71.99 62.59 50.41 

MFCC + ME + ER + WE 

Cobs, 

(%) 93.99 93.50 92.83 92.30 91.84 91.30 90.68 89.55 86.98 79.07 

Cson, 

(%) 82.29 80.53 78.18 75.21 71.39 67.16 62.05 54.90 44.96 33.91 

MFCC + ME + ER + WE + ZCR 

Cobs, 

(%) 96.44 96.30 96.10 95.79 95.39 94.59 93.38 91.61 88.00 78.96 

Cson, 

(%) 81.80 79.91 77.53 74.76 71.45 68.04 64.06 58.32 48.32 33.93 

MFCC + ME + ZCR 

Cobs, 

(%) 92.44 91.93 91.29 90.13 88.78 86.55 83.48 79.00 66.99 53.50 

Cson, 

(%) 94.59 93.64 92.22 90.49 88.68 86.43 83.53 79.21 70.76 56.38 

 

 
 

Figure 7. The dynamics of ∆ =Cson-Cobs for the best 3 

systems in noisy environment. 

 

4.3. Performance in heavy noise 

Based on the results of the previous experiments, we chose 

three best feature sets, which we tested in different noisy 

conditions. As a noise we used normally distributed noise 

with different means and standard deviations corresponding 

to various signal-to-noise ratios (SNR); the parameters are 

shown in the Table 5. 
 

Table 5. The parameters of normally distributed noise. 
 

SNR, dB Mean, µ Standard deviation, σ 

25 50 50 

20 0 100 

10 0 300 

0 0 800 

 

The results are given in the Tables 6-9. A careful reader 

may notice that although there is more and more shift 

towards obstruent measure as more noise increased, the 

shifts for the systems with APs are relatively lower than that 

of the baseline. And even when all three systems fail in the 

noise of 0dB, the sonorant rate is still comparably high for 

the last system – twice as much as baseline’s. 
 

Table 6. The performance of the best candidates 

 in noise of 25 dB 
 

Fmin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

MFCC 

Cobs, 

(%) 93.16 92.88 92.49 92.08 91.48 90.56 89.28 87.33 82.42 69.19 

Cson, 

(%) 92.56 91.32 89.73 87.91 85.77 82.85 78.80 73.23 63.16 45.20 

MFCC + ME + ER 

Cobs, 

(%) 92.93 92.51 92.03 91.22 90.18 88.48 86.23 83.11 77.85 67.80 

Cson, 

(%) 90.75 89.68 88.23 86.36 83.81 79.84 74.29 67.10 57.53 45.19 

MFCC + ME + ZCR 

Cobs, 

(%) 92.41 91.94 91.31 90.37 89.24 87.48 84.87 81.26 70.65 58.15 

Cson, 

(%) 92.35 91.23 89.53 87.64 85.43 83.10 79.86 75.06 66.35 51.49 

 

Table 7. The performance of the best candidates 

 in noise of 20 dB 
 

Fmin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

MFCC 

Cobs, 

(%) 95.06 94.89 94.56 94.23 93.70 92.96 92.01 90.63 87.13 76.02 

Cson, 

(%) 83.88 82.14 80.26 78.13 75.48 72.36 68.23 61.83 51.45 34.62 

MFCC + ME + ER 

Cobs, 

(%) 92.15 91.57 90.64 89.55 88.34 86.44 84.17 80.95 75.33 64.71 

Cson, 

(%) 88.82 87.58 85.77 83.62 80.98 77.31 71.94 65.05 56.23 44.59 

MFCC + ME + ZCR 

Cobs, 

(%) 92.93 92.61 92.04 91.27 90.18 88.25 85.48 81.31 69.51 55.95 

Cson, 

(%) 91.50 90.30 88.54 86.32 84.13 81.71 78.74 74.35 65.74 51.47 
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Table 8. The performance of the best candidates 

 in noise of 10 dB 

 
Fmin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

MFCC 

Cobs, 

(%) 98.03 97.94 97.79 97.65 97.45 97.12 96.68 96.16 94.82 88.82 

Cson, 

(%) 49.95 48.29 46.38 44.33 41.95 39.12 35.36 30.33 23.15 13.13 

MFCC + ME + ER 

Cobs, 

(%) 96.57 96.32 95.99 95.68 95.14 94.32 93.02 90.97 87.17 78.44 

Cson, 

(%) 55.57 53.89 51.65 49.19 46.52 43.29 39.52 34.91 28.92 20.80 

MFCC + ME + ZCR 

Cobs, 

(%) 96.30 96.05 95.77 95.43 94.94 94.00 92.56 89.96 80.63 69.07 

Cson, 

(%) 67.53 65.87 63.79 61.49 59.15 56.82 54.01 50.29 42.94 29.84 

 
Table 9. The performance of the best candidates 

 in noise of 0 dB 

 
Fmin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

MFCC 

Cobs, 

(%) 99.66 99.64 99.59 99.53 99.47 99.35 99.18 98.95 98.65 95.63 

Cson, 

(%) 14.04 13.29 12.57 11.74 10.88 9.71 8.34 6.75 4.59 1.98 

MFCC + ME + ER 

Cobs, 

(%) 99.36 99.32 99.23 99.15 99.06 98.93 98.62 98.26 97.48 93.79 

Cson, 

(%) 13.33 12.50 11.68 10.69 9.79 8.86 8.04 6.96 5.34 2.89 

MFCC + ME + ZCR 

Cobs, 

(%) 99.22 99.18 99.10 98.98 98.82 98.51 98.09 97.53 91.83 86.41 

Cson, 

(%) 23.62 22.54 21.36 20.20 19.22 18.06 16.90 15.03 11.54 6.02 

 

V. DISCUSSION 

We start our discussion from the histograms in the Figures 1 

and 2. They answer to some questions about the acoustic 

parameters as well as pose new questions concerning them. 

First of all, from Figure 1 we can see that some of the 

statistics (like ER or WE) have the property of separating 

two sonority classes and the others don’t (ME or ZCR).  

Also from both figures we notice another property that if the 

noise is added to a speech signal some statistics shift along 

the axis and change their shapes a lot while some don’t do 

this much. As a result, these two properties directly or 

indirectly affect the performance and the robustness of the 

system.  

The effect of separating property can be, clearly, seen for 

the second and third systems used in clean environment. The 

performance of the second system is comparable with that of 

the baseline yet only two features were used, and the 

performance of the third is the best among all systems. The 

answer to our initial hypothesis – whether or not the 

combination of the parameters is good – would be obvious if 

there were no noise. The same systems immediately fail 

once they are exposed to noise. However, the other statistics 

that don’t show this nice separating property but somehow 

immune to noise, i.e. don’t change much in noisy condition, 

happen to increase the robustness of a system if used 

together with something that has this separating property. 

The examples are the fourth and the last systems, which, 

indeed, exploit the power of both feature sets. 

The experiments show that it is this “shifting” property 

what makes the systems to have a tendency to classify most 

of the phonemes to the obstruent class as more noise is 

added. In fact, it is this statistics that “shift” not the 

phonemes itself, i.e. the representation of data is poor. Many 

of the research works based on the landmark detectors rely 

on the fact that the there is a chance to at least capture the 

essence of a phoneme such as nuclei of the syllable or the 

closure-burst transitions of the stops [2, 5, 6] and they work 

fairly well. Since human can do this tasks more-or-less 

robustly, there must be a “good” representation of a speech 

signal, for instance, the peak of maximum energy (ME) 

proved to be such a representation. Figure 8 shows the 

histograms of the distributions of APs for both classes in the 

noise level of 10dB. Notice the drastic changes in most of 

the statistics. 

As for the MFCCs, they are nothing but the same kind of 

statistics as APs and have their own “limit of use”. The 

shrinkage shown in Fig. 4 and 5 is an evidence of that. The 

last set of experiments shows slow degradation of the 

performance accompanied with the gradual shift of the 

performance towards the obstruent measure, and at the noise 

level of 0dB it shows that these features become useless. 

Although the AP statistics can be more-or-less robust to 

noise, the whole system fails because of this “limit of use” 

of the MFCCs. So, the question remains open if there is an 

alternative to MFCCs, which has longer “limit of use” and 

has nice separating property. 

Another important question is that how reasonable the 

model is. It turns out that the well-known GMMs, which try 

to locate the objects in some space, in fact, are powerless, 

when those object start “shifting”.  Not only do they shift but 

also change their shape, i.e. the distribution in that space. 

The same problems will experience all models that are based 

on the “static” properties of data unless a “better” 

representation of it is found or they take into account its 

“dynamic” properties. Table 1 clearly shows that there can 

be some gains if the model can adaptively change its settings 

with respect to noise level.  

Summarizing, we restate that there is a trade-off between 

separating quality and robustness of the acoustic parameters, 

and depending on the environment used respective feature 

should be granted. As far as noise concerned, since it affects 

the behavior of the features causing changes in shape and 

position in a given space, the statistical models should take 

into account these dynamics in order to be applicable in the 

adverse conditions  
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Figure 8. The distributions of the acoustic parameters across the obstruent (left) and sonorant (right) phonemes with 

normally distributed noise added (µ=0, σ=300, ~10dB). 
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VI. CONCLUSION 

In this paper, we analyzed several acoustic parameters to see 

how robust they are in the noisy conditions and estimated 

their performance combined with cepstral coefficients in the 

task of segmentation of continuous speech into sonorant and 

obstruent regions. The results show that if the “dynamics” of 

the analyzed statistics in noise is taken into account, one can 

achieve better performance of a system.  

As a future work it is planned to investigate some other 

acoustic parameters and build an adaptive system that would 

adjust to changing nature of the parameters in noise. 
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