

Volume 53, Number 2, 2012 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received January 31, 2012; revised May 9, 2012

23

SIMULATION OF THE FORD–FULKERSON ALGORITHM

USING OMNET++

Paula SEVASTIAN Andrei Bogdan RUS Virgil DOBROTA

Technical University of Cluj-Napoca, Communications Department, 400027 Cluj-Napoca, Romania,
Phone: +40-264-401226, Fax: +40-264-597083,

Emails: paula_sevastian@yahoo.com, {Bogdan.Rus,Virgil.Dobrota}@com.utcluj.ro

Abstract: This paper presents a contribution to the OMNeT++ 4.1 simulator in C++ by integrating our own implementation of the

FF - Ford-Fulkerson multipath routing algorithm. In order to validate it, an eight-node testbed works with dynamic requested and

released flows on each link, updated every second. Four simple scenarios were proposed, considering all possible combinations of

fixed and/or random variation laws. Additionally, the path search algorithm BFS - Breadth First Search was implemented too.

This software package running under Fedora Core gets the input data from three files called Nodes, Connections and Params. This

mechanism provides the interworking between the C++-based FF simulator and the Java-based application in Intellij IDEA 10.5,

used as traffic variation simulator. The graphical representations of the occupied, the requested and, respectively, the released

flows are obtained by aggregating the contributions of all flows from the paths for any given source–destination pair.

Keywords: Breadth First Search, Ford - Fulkerson, multipath routing algorithm, OMNeT++

I. INTRODUCTION
The maximum flow determination has been a long term
issue in several areas (including networking) for many years.
Roughly speaking, it calculates the maximum amount of
“stuff” that can be moved from one part of a network to
another, being aware about the capacity limitations of the
links. This “stuff” could be data packets travelling over the
Internet, the water travelling through pipes or some trucks
travelling on the highways. Thus the links limitations could
refer to the bandwidth (for the Internet connections), the
pipe dimensions (for the water distribution systems) and the
average traffic speeds (for congested roads). The graph
theory is offering a mathematical support to solve the
problem of the max flow. One of the nodes (we prefer these
terms instead of vertices) in the graph is called the source
node, whilst another one is the destination (or sink). Each
link (or edge) in this graph has an associated capacity.
Limiting now the area of discussion to the current Internet,
two arguments are driving the investigations proposed in
this paper: a) the increased demand for higher transfer rates;
b) the computational time for optimal routing decisions. A
good candidate to help the well-known single path
mechanisms in place nowadays is the multi-path packet
forwarding.
 Similar studies were carried out over the years. For
instance an extended version called RMF (Randomized Max
Flow) was investigated for EH-WSN (Energy Harvesting
Wireless Sensor Networks). This network uses the nodes
which are able to harvest power from the environment
giving them theoretically unlimited power for a maximal
exploitation. The paper [6] introduces the problem of
energetic sustainability and the concept of maximum
energetically sustainable workload used in order to optimize
the routing algorithms for EH-WSNs. Within the RMF the

routing tables are calculated off-line in order to reproduce
the optimal flow distribution provided by the max-flow
approach. This is why the optimal flow values were directly
annotated in the routing tables associated with each node.
Similar studies could be found in [7], [8]. A max flow
multipath scheme based on Ford-Fulkerson, presented in [2],
was designed to reduce latency, to provide high throughput
and to balance the traffic load. It determined a set of
disjoint paths that are loop free with maximum flow, then
splitting network traffic among those paths. The simulation
proved that this solution performed better than a multi
shortest path scheme.

Our approach refers to the behavior of a simulated

network using FF (Ford-Fulkerson) routing algorithm while

a traffic variation simulator constantly modifies the existing

flows. The algorithm computes the maximum available flow

for a given source-destination pair. Note that the result is not

influenced by the paths that are used to compute the max

flow. The paper presents an original implementation of

Ford-Fulkerson in OMNET++, which relies on real-time

quality of service information obtained for each node using

cross-layer techniques. However the interaction with this

module is not covered herein, but it is related to our

previous work published in [9]. The rest of the paper is

organized as follows: Section II covers the theoretical

aspects of the Ford-Fulkerson and BFS (Breadth First

Search) algorithms. The design principles of their

OMNET++ implementations are discussed in Section III,

followed by experimental results in Section IV. Conclusions,

further work and the references are ending the paper.

Volume 53, Number 2, 2012 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 24

II. THE FORD-FULKERSON AND

THE BREADTH FIRST SEARCH ALGORITHMS
Let us define two basic concepts used by any max-flow
algorithm: residual path and augmenting path. A residual
network has exactly the same nodes as the original network,
and one or two links for each original link. If the flow along
the link ij meets the first two flow restrictions, there is a
forward link i j with the capacity equal to the difference
between the capacity and the flow and a backward link ji
with the capacity equal to the flow on ij. These maximum
flows are called residual capacities. An augmenting path is
a path from the source to the sink in the residual network,
having the purpose to increase the flow in the original
network. The path capacity of the augmenting path is the
minimum capacity of a link along it and represents the value
with which the flow in the original network will be
increased. The Ford-Fulkerson algorithm is briefly defined
as follows: it starts with no flow everywhere in the network
and it increases the total flow as long as there is an
augmenting path from source to destination in the residual
network, with available capacity on all links. In other words,
as long as there is a path from a source to a destination, with
available capacity on all links, the flow can be sent along
that path and so on. The paths with available capacity are
the augmenting paths.

Let us have the following notations: G is the graph for

the original network, S the source node, and D the sink/

destination node. For the graph Gf corresponding to the

residual network Cf (p) is the capacity for the augmenting

path, i.e. the minimum of the link capacities cf (u,v) for all

links belonging to path p. Note that C and F represents the

link capacity, respectively the maximum flow from S to D.

1. f(u,v)=0, link(u,v) in the original

network, where f(u,v) is the flow

2. while path from S to D in Gf such that

cf(u,v)>0, (u,v) p

i) Cf(p) = min {cf(u,v)|(u,v) p}
ii) f(u,v)->f(u,v)+Cf(p)
iii) F->F+Cf(p)

where Cf(u,v)=c(u,v)–f(u,v)

When no more paths are found in step 2, it means that

there are no more augmenting paths from S to D in the

residual network. This means that the maximum flow has

been found. The FF algorithm has the advantage of getting

the correct result (i.e. the maximum flow) no matter how the

sub-problem of finding the augmenting paths is solved. We

implemented FF according to the following pseudo-code:

int compute_max_flow()

max_flow = 0
while(true)

bfs (start_node)
if (augmenting path was found using BFS)

path_capacity =

get_augmenting_path_capacity()
max_flow += path_capacity

else
exit while

end while
return max_flow

end

The most commonly used algorithms for traversing a

graph and searching a node in a graph are: BFS (Breadth

First Search) and DFS (Depth First Search). The DFS

traverses the graph in such a way that it tries to go as far as

possible from the root node. In this paper we chose the BFS

algorithm, because when DFS is combined with FF, the

performances are very poor [1], [2].

The BFS aim is to traverse the graph as close as possible

to the root node, a queue being used for implementation.

BFS visits the nodes level by level, starting from the root

level (level 0), as in Figure 1.

Figure 1. Graph to illustrate the BFS algorithm

If the node 1 the root, the order in which BFS traverses

the graph is 1-2-3-5-4-6-7. Whenever a node from the graph

is visited, all its neighbors are added in a queue and the node

is marked as visited. Then the next node from the queue is

popped and the process is repeated. Thus the traversing of

the graph on levels is assured. Extra care should be given to

the marking of a node as visited when the node was firstly

visited in BFS. If this rule is not accomplished, the property

that BFS finds the shortest path from source to destination

could be lost. The BFS implementation followed the

pseudo-code:

void bfs (start_node)

queue q;
push start_node in q
while(q is not empty)

top= first element from the queue

for each unmarked neighbor node w of top

 mark w

 add w to end of q

 if w is destination node
 terminate

 else
 continue to next iteration

delete first element from the queue
end while

end

III. THE OMNET++ IMPLEMENTATION

Our implementation of Ford Fulkerson algorithm includes
two main applications: an OMNET++-based testbed and a
Java-based traffic variation simulator.
 The first part was written in C++ and realizes a network
builder and a network configurator. This means that we
chose to build the network dynamically. Thus the
information needed is read from two input files: Nodes and
Connections. The Nodes file contains information related to
the nodes (routers or hosts in general, just routers in our
case). On each line the following parameters are provided:
node index, node name, router IP, type of node (router type/
OMNeT++ module type) and the position of the node in the

Volume 53, Number 2, 2012 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 25

network given by the coordinates x and y:

1 S 192.168.1.1 project.node.FFRouterGen 230 30

The node with index 1 has the name S, the IP address

192.168.1.1 and it is an FFRouterGen module type. Its

position in the network is given by the point of coordinates

(230, 30). The Connections file contains information related

to the way the routers/nodes are connected to each other.

Each line in the file contains the indexes of the nodes that

are connected, the names of the interfaces on which they are

connected, as well as the IP addresses of those interfaces.

All the connections mentioned in this file are unidirectional:

1 ppp0 192.168.2.1

2 ppp0 192.168.2.2

The interface ppp0 of node with index 1 and IP address

192.168.2.1 is connected to interface ppp0 of node with

index 2 and IP address 192.168.2.2. For this application,

Connections file contains unidirectional links between the

nodes defined in Nodes file. The network on which FF

algorithm is simulated has exactly 8 nodes: a source router,

a destination router and 6 routers.

Figure 2. Dynamic network built from files.

For the implementation we have created two types of

modules files: a generator router called FFRouterGen.ned

and a simple router module called FFRouter.ned. Both

modules use two double variables that represent the x and

the y coordinates of the node. Their values are not set within

the configuration file, since they are read from file and set

whenever each node is created. These types of modules have

vector gates of inout type. After the network was built, the

role of the network configurator comes in. This is the part

where the FF algorithm is applied, and it uses Params as

input file containing the available capacity and the occupied

flow for each link.

Within the first iteration, the values of the flows are all

zero. During the simulation these flows are modified. This

part of the application also generates an output file called

Results including all the augmenting paths and their

capacities found by BFS.

The Params file contains information on the links from

the network. We presume the available capacity and the

occupied flow are specified for each link in the network. An

example of line from this file is the following:

1 2 10000 0.0

The links are given by the indexes of the nodes

(specified in Nodes file). In this example, the link between

node with index 1 and node with index 2 will have the

maximum capacity 10000 kbps and the initial occupied flow

0. If we check Nodes file, we will see that this is the link

between S (source) and router R2. The Results file contains

the results given by the FF algorithm simulation with BFS

for finding the augmenting paths. A line from the file has the

following form:

S-Routeri-Routerj-…-Routerk-D Path_Capacity

If the algorithm does not find any augmenting path, then

the file will be empty.
 The traffic variation simulator is a Java application in
Intellij IDEA 10.5 that uses Nodes, Params and Results as
input files. It computes a new occupied flow for all the links
in the OMNeT++ network. Then it modifies the Params file
by overwriting the old flow values with the new ones.
Params is the input file for the OMNeT++ simulation of FF
algorithm. By choosing either button Fixed or Random, the
user may insert a fixed or a random value (in percentages) to
be used in order to compute the new flow. There are two
types of values: Requested Flow and Released Flow. In
order to compute the new value of the flow, the following
formula is applied:

Fij_currently_occupied = Fij_previously_occupied + Requested Flow –

Released Flow (1)

where: Fij_previously_occupied represents the value of the flow

from node i to node j read from the input file Params;

Fij_currently_occupied is the current flow that will occupy the i- j

link in the next OMNeT++ simulation of the FF. This is

computed by adding some value that has the significance of

a Requested flow and subtracting another value with the

significance of Released flow. Requested Flow refers to a

percentage of the maximum flow for each link computed

with FF and BFS. It actually represents how much flow from

the maximum occupied is going to be added to the current

(previously) occupied flow for the next simulation of FF

algorithm. Supposing x is the value inserted by the user, then

the Requested flow can be expressed as:

Requested Flow = x% * Fij_augmenting (2)

Fij_augmenting represents the value of the flow that is read from

the Results file. Remember that every line contains the

augmenting path and its corresponding flow. Released Flow

refers to a percentage from the previously occupied flow on

each link. It represents the quantity of flow that can be

subtracted from the current (previously) occupied one.

Volume 53, Number 2, 2012 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 26

Suppose y is the value inserted by the user, then the formula

is the follwing:

Released Flow = y% * Fij_previously_occupied (3)

If we choose the Fixed button, the values used to

compute the new occupied flow are that ones inserted by the

user. If the Random button is pressed, then the values used

by the application to compute the new flow are random

values between 0 and those inserted by the user.

IV. EXPERIMENTAL RESULTS

The purpose of the OMNeT++ simulation application and of

the traffic variation simulator is to study the way flows

behave and modify in a given network. We are referring to

the simulation of the FF algorithm that constantly maximizes

the flow that can be sent across the network. The traffic

variation simulator constantly modifies the occupied flow

across the links of the network.
 The Java GUI application has the additional role to write
data into a .csv extension file called ParamsHistory. Data
written in this file is represented by all the new flow values
and the requested flow ones. By using this file we actually
keep track on the changes in the flows.
 The OMNeT++ application computes the un-occupied
flow that can be sent across this network every one second,
using the flows from the input file Params. The Java
application modifies the flows it every one second, in this
way simulating a traffic variation. These represent the
occupied flows in each link/connection from the given
network.

The initial conditions for the network are the following:

all initial flows are 0 and all links have a capacity of 10 000

[kbps]. Within the first iteration of the simulation there will

be no flows everywhere, since we want to find out the

maximum flow that can be sent from the source across the

network. For the next iterations, the occupied flow will not

be zero anymore, but we still want to see how much can the

path be augmented.

Scenario 1 - Fixed Requested Flow & Fixed Released

Flow: This is not very realistic but it has been used to

calibrate the OMNET++-based implementation. Every

second, the new occupied flow is computed using the same

percentages from the available flow and from the previous

occupied one. This formula used to compute the new or

current occupied flow actually implements the behavior of a

negative feedback (that ensures the stability of the system).

After a short period of time (a few seconds) the value of the

released flow becomes equal to the value of the requested

flow, the current occupied flow from the links becoming

constant.

Scenario 2 - Fixed Requested Flow & Random Released

Flow: The Java application computes the new occupied flow

using the same percentage for the requested flow and a

random percentage for the released flow. In this scenario,

the requested flow will never get equal to the released one.

Figure 3 corresponds to flow values computed for a fixed

value of 10% from the available flow and a random value

from 0 to 80% from the previously occupied flow. Observe

that most of the time the released flow is smaller than the

requested one. This is a case when the links will not be fully

occupied and there will be always available flow to be used

to augment the occupied flow.

Taking into consideration the quantity of the released

flow is not the same for the consecutive iterations. Thus the

variation of the occupied flow depends highly on the

variation of the released flow. The requested flow does not

vary that much as the requested one. Anyway, for high

values of released flow, the occupied one decreases whereas

for small values, it increases visibly.

Taking into consideration the quantity of the released

flow is not the same for the consecutive iterations, it can be

seen that the variation of the occupied flow depends highly

on the variation of the released flow. The requested flow

does not vary that much as the requested one. Anyway, for

high values of released flow, the occupied one decreases

whereas for small values, it increases visibly.

Figure 3. Scenario 2: current occupied flow, released and requested flows

Volume 53, Number 2, 2012 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 27

There is a case where no more augmenting paths can

appear but, due to the randomness of the released flow, the

values of the flows will modify immediately. In order to

graphically demonstrate this situation, we chose a high value

as the percentage from the available flow (95%), which is a

fixed value, and a small value as the maximum percentage

from the previously occupied flow (2%). The variations of

the occupied, requested and released flows is presented in

Figure 4. The value -1 for the requested flow means that the

link was fully occupied and the FF algorithm could not find

any more augmenting paths. The value of the requetsed flow

is -1 within [26,30s] interval, meaning that the link is fully

occupied and there is no more flow to augment. This also

happens because the released flow is 0 in that interval.

When flow is released, the value of the requested flow

immediately becomes positive. This happens automatically,

since the released flow represents a very small random

percentage from the previously occupied flow.

Scenario 3 - Random Requested Flow & Fixed Released

Flow: The percentage from the available flow needed to

compute the requested flow is a random number and the

value of the percentage used to compute the released flow is

a fixed number. For this scenario, the only way to obtain a

situation were no augmenting paths are found (the occupied

flow is maximum) is the situation in which the released flow

is 0.

Figure 5 corresponds to a large domain for percentages

to compute the requested flow (from 0% to 40%) and to a

high value to compute the requested flow (75%). In this

scenario, there will always be some released flow after each

simulation, so FF with BFS algorithm will always find paths

on which the flow can be augmented. The only way to

produce a maximum occupied flow or to fully use the

resources of the network within this scenario is to reset the

value for the released flow. The variations of the flows can

be seen in Figure 6.

Figure 4. Scenario 2: high percentage for requested flow and low percentage for released flow.

Volume 53, Number 2, 2012 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 28

Figure 5. Scenario 3: the occupied, the requested and the released flows.

Figure 6. Scenario 3: the occupied, the requested & the released flows (initially zero, later on non-zero).

To show the case when if the value of the occupied flow

is maximum, no augmenting paths are found, in Figure 7 we

plotted the variation of the requested flow for interval

[1,16s].

Figure 7. Scenario 3: the requested flow for [1,16s].

Because the released flow is 0 for that interval, the value

of the available flow decreases (with small variations) until

it gets to 0. This is when the requested flow is equal to -1

and it means that there are no more paths found. The interval

[18,27s] in Figure 6 corresponds to a non-zero percentage

value used to compute the released flow and values

belonging to [0, 65%] interval for the requested flow. It can

be seen that the occupied flow decreased immediately and

available flow appears again in the network

Scenario 4 - Random Requested Flow & Random

Released Flow: Both the percentage value used to compute

the requested and released flows are random values. This is

the case when it is quite hard to find moments when there

are no augmenting paths. Figure 8 shows the random

variation of the occupied flow, whilst Figure 9 presents the

variation of both the requested flow and of the released one.

Figure 8. Scenario 4: the occupied flow.

In this scenario it is the least probable to obtain a

maximum traffic flow for the whole network. Due to the

random percentages, there will always be a released flow

and the occupied one will be different for every simulation.

The worst case that could happen would be the situation in

which the value of the requested flow is very high and the

one for the released flow. This case could lead to a flow in

the network that could not be augmented in the next

iteration. But this situation will be remediated within the

next second of time, when different percentages from the

occupied and from the available flows are computed.

Volume 53, Number 2, 2012 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 29

Figure 9. Scenario 4: the requested & the released flows

V. CONCLUSIONS

The multipath routing processes for a given network

involving Ford-Fulkerson algorithm demonstrates its

benefits in computing the maximum available link flows

and, implicitly, the total available network flow. The

solution took advantage of the BFS algorithm to find the

shortest paths from a source to a given destination. The flow

of each path found using BFS can be augmented with the

minimum available flow of all the links belonging to that

path. The process of finding paths with BFS is repeated until

no more augmenting path can be found. When this happens,

we can state that Ford-Fulkerson algorithm found the

maximum available flow of that network. The experiments

covered all four possible combinations of fixed and/or

random variation laws for the requested and released flows.

 Although we can give an interpretation of the results, our

main purpose was to validate the software packages and the

formulas proposed herein. Our future work envisages the

involvement of more realistic approaches: a) the variation

laws should be according to real traffic models (e.g. Pareto);

b) the values for the link flows should be eventually

obtained by cross-layer techniques from a real network. In

this latter case, the FF implementation could be detached

from OMNET ++ simulator and partially the code could be

reused in real routers.

REFERENCES

[1] H.T. Cormen, E. C. Leiserson, R.L. Ronald, S. Clifford,

Introduction to Algorithms, Second Edition, MIT Press, 2001

[2] R. M. Ahmed, J. Fratwell Rod, C. Brahem, “MFMP: Max Flow

Multipath Algorithm”, IEEE Second UKSIM European

Symposium on Computer Modeling and Simulation, 8 Sept.2008

[3] H. D`Arcy, “Intellij IDEA”, PC Magazine, No.52, 2009

[4] A.B. Rus, Quality of Service Through Cross-Layer Techniques

for the Future Internet, Technical University of Cluj-Napoca,

2011, http://www.etti.utcluj.ro/download/678_Rezumat_te.pdf

[5] A.Varga, OMNeT++ User Guide,

http://www.omnetpp.org/documentation, 2012

[6] E. Lattanzi, E. Regini, A. Acquaviva, A.Bogliolo, “Energetic

sustainability of routing algorithms for energy-harvesting wireless

sensor networks”. Computer Communications, Vol.30, Issues 14-

15, 15 October 2007, pp 2976-2986

[7] D. Hasenfratz, “Simulative Analysis of Routing Algorithms for

Energy Harvesting Sensor Networks”. Swiss Federal Institute of

Technology, Zürich, 2009

[8] D. Hasenfratz, A. Meier, C. Moser, J. J. Chen, L. Thiele,

“Analysis, Comparison and Optimization of Routing Protocols for

Energy Harvesting Wireless Sensor Network”. SUTC'10: Proc. of

the 3rd Conf. on Sensor Networks, Ubiquitous and Trustworthy

Computing, 2010, pp 19-26.

[9] A.B. Rus, V. Dobrota, A. Vedinas, G. Boanea, M. Barabas,

“Modified Dijkstra’s Algorithm with Cross-Layer QoS”, Acta

Technica Napocensis, Electronics and Telecommunications, ISSN

1221-6542, Vol.51, No.3, 2010, pp. 75-80.

