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Abstract: Electronic systems are usually required to maintain the value of their parameters within set limits over a wide range of 
conditions, for large variations of internal or external factors. Given the large number of factors that need be considered it is often 
un-practical to check all and each combination of factors. New approaches, such as the parameter design, are necessary for 
designing robust systems, with defined performance for all operational conditions, while keeping the development time and 
production cost to acceptably low levels. This paper describes two methods for parameter design: the classical, analytical approach, 
based on underlying assumptions and a new simulation based methodology, focused on real-life cases. The proposed method helps 
the designer to bring a system response to the target and reduce its sensitivity to varying operating conditions. It is demonstrated 
on a real-life case: optimized sizing of the external circuitry of a low dropout voltage regulator, with the view of reducing its 
sensitivity to external factors such as temperature and load current. A three-response optimization was achieved also by applying 
the method on each of the considered outputs and then intersecting the solutions.  
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I. INTRODUCTION 
The industry of electronics is coping with great challenges 
when trying to improve the quality of products. As the 
complexity of a system increases faster, the verification 
becomes harder to be handled. The large number of 
parameters forms a multi-dimensional, continuous 
verification space. Robust systems are needed in order to 
reduce the influence of variations. Even more, when talking 
about systems (as automotive, aircraft), where safety related 
features are absolutely necessary, they have to be stable and 
of high performance even if unpredictable variation sources 
are present. 
 Robustness optimization is addressed to problems in 
which the data is uncertain and/or varies. The classical 
approach to achieve robustness is to redesign the system, 
using tighter tolerances or better and purer materials [1]. 
This option might lead to overdesign, is time consuming, 
expensive and more difficult to manufacture. 
 To address these issues, an important role is given to 
simulation-based verification. Multivariate sensitivity 
analyses are used to find the effect of each parameter on the 
system. To reduce the effort, the focus has been put on 
automatic simulation and on planning simulation 
experiments to yield maximum information with minimum 
number of runs [1]. 

 There are some optimization tools like WiCkeD [2] that 

can be used for robust optimization of electronic systems, 

but optimization is done at the transistor level and does not 

take into consideration the perturbations  induced by a block 

to the other components of the system.  

 To take into consideration most of uncertainties (related 

to materials, geometry, environment, loading, etc.) statistical 

approaches are to be used; the methods for robustness 

optimization, that consider variability are based on [3]: 

- Monte Carlo simulation; 

- Sensitivity-based variability estimation; 

- Design of experiments. 
 Using Monte Carlo (MC) simulation techniques the 
system is randomly simulated with the purpose of 
statistically characterizing the response i.e. the focus is on 
the mean, variance, distribution type, etc. The disadvantage 
of this approach is the high price: several simulations are 
necessary for an acceptable estimation.  
 Sensitivity-based variability estimation is based on 
Taylor’s series expansions – first or second order. The main 
disadvantage for the first order expansion is that it loses 
accuracy when responses are not close to linear. The second 
order expansion is better in terms of approximation error, 
but computationally expensive.  
 Design of experiments (DoE) is an approach used to 
obtain statistical information about how factors and 
interactions impact the response and identify the reasons for 
changes in the response [1]. DoE is used as a complement to 
multivariate data analysis to increase the efficiency. Using 
DoE in the context of robustness optimization the researcher 
intends to determine the operating conditions so that the 
response is close to the desired one and variability is 
minimal. Some factors can be controlled (control factors) 
and other not (noises); they both have impact on the 
response. For instance: temperature is from DoE point of 
view a noise and affects all the parameters of a circuit. 
Significant information about factor effects and interactions 
is extracted with a minimum number of tests; DoE is more 
appropriate in terms of costs as the other two methods. In 
DoE the behavior of the system with respect to the factors, 
e.g. a circuit response, is approximated by a metamodel. 
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 The classical DoE methods used to obtain robust systems 
are presented in Section II. Section III proposes a simulation 
based method with no underlying assumptions as the 
classical ones. Section IV illustrates the proposed method 
with an example and conclusions are drawn in section V. 
  

II. STATE OF THE ART 
The first method for robustness optimization, using 
statistical tools, was developed by the Japanese engineer 
Taguchi and had three stages [1]: 

1. System design: provides the basic performance 
parameter, general structure, describes design function and 
operation. 

2. Parameter design: makes system less variable or 
more robust in the face of variation; optimizes design 
parameters to meet the quality requirements. This is the 
most important step, because planned tests are used to find 
out which of the parameters is more likely to have an 
important effect on the output and which is the best tuning 
of those parameters to curtail the variations.  

3. Tolerance design: fine tuning of components which 
are proven to be critical as stated by Step 2. 

 Taguchi’s method was often discussed in literature.  Its 
main drawbacks are described in [4-7]. The two most 
important ones are: i) it provides no estimation of the effect 
the noise factors have on the system performance; ii) large 
amount of effort and simulation time is required to use 
Taguchi’s orthogonal arrays (OA) in experiments, which 
brings a good coverage of the design space.  

Despite the disadvantages, the method has helped to 
define concepts like robust parameter design (RPD). This is 
an experimental design exploiting the interactions between 
controllable and uncontrollable factors. The purpose is to 
find the settings of the control factors that minimize the 
response’s variation caused by uncontrollable factors. Figure 
1 presents the key idea of RPD – the case where there is 
interaction between a control factor x and a noise factor z. 
The control factor x has two variation levels: low and high 
levels. It can be noticed that it is advantageous to have 
control factors settled at low levels because it produces less 
variation in the response y tightened distribution. 
 Based on Taguchi’s method, Montgomery proposed his 
own version of RPD [1]. The method emphasizes the idea of 
control by noise-controllable factors interactions. His 
method improves the time consumed to perform the 
experiments because he uses Combined Arrays instead of 
Orthogonal Arrays. It starts by taking into consideration a 
system as illustrated in Figure 2, where x represents the 
input factors, z the noise factors and y the output response. 
The input factors x can be controlled in given ranges and the 
noise factors z, though uncontrollable, for the sake of 
experimentation, are considered in a given range. 
 To solve the RPD problem, Montgomery proposed a 
three step methodology [1]: 

1. The performance of the system is approximated by a 
model as in equation (1): 
 

( ) ( ) ( )y g h ε= + +x, z x x, z ,             (1) 

 
where ε is the random error, g(x) describes the main effects 
of controllable factors x; h(x, z) involves the main effects of 
the noise factors z and the interactions between the 
controllable and the noise factors. Both functions are 

described by equation (2). The advantage of using this kind 
of model is that both controllable factors and noise factors 
are placed in the same experimental design: 
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where βi, βij, χij, δj are real coefficients and N and M are the 

number of the control factors x and of the noises z. 

2. The mean of the model is computed, taking into 

account Taguchi’s assumptions:  the noises are distributed 

normally with zero mean; zero covariance between different 

noises, the random error has zero covariance. The mean 

response [[[[ ]]]])( zx,yE is given by: 
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In the optimization process, a constraint is set: the mean of 
the output response should be at a target/desired value. 

3. The variance of the response [[[[ ]]]])( zx,yVar is computed 

with the following expression: 
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where
jzσ is the variance of the noise zj and σ  is the 

variance of the random error. The additional constraint is 
that the variability around the target value should be as small 
as possible. 
 Montgomery’s method is an improvement of Taguchi’s 
because it requires a rough approximation of the number of 
runs needed, but still it has some initial assumptions such as 
low order polynomial responses, normal distribution of 
noise with zero mean, etc.  Another step forward was made 
by Steinberg [6]. He proposed a different expression for the 
variance, taking into account the covariance between the 
factors and the noise. Although both Montgomery’s and 
Steinberg’s approaches are better than Taguchi’s, they have 
the disadvantage of underlying assumptions that are not 
realistic: they do not take into account the interaction 
between noises and the control factors. 

 
Figure 1: Key idea of Robust Parameter Design 
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Figure 2: General model of a system 

 

 
Figure 3: Response approximation. 

 
III. GENERAL FORMULATION 

The methods presented so far: Taguchi’s, Montgomery’s 
and Steinberg’s RPD methods consider the followings: 

1) The responses are approximated by a linear model; 
2) The noise variables have zero mean;  
3) The variance of noise variables is known σz

2
; 

4) The covariance of noise variables is zero; 
5) The noise variables and the random errors ϵ have 

zero covariance. 
 In all real cases assumptions 2), 3), 4) and 5) are not true 
i.e. for real systems noises cannot be estimated. Let us focus 
on the response approximation; there are three major cases. 
• Case A: The response follows a linear evolution, which is 
rarely the case.  The mean response is expressed by equation 
(3) and the variance can be calculated with: 
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Since there is no information about the correlation of the 
factors (as Steinberg considers) and usually no assumptions 
can be made, it is rather difficult to obtain a final result [1]. 
• Case B: The response is approximated as follows: g(x) is 
quadratic model, h(x, z) is linear. The expressions for the 
mean response and for the variance are similar with the ones 
in Case A. The difference is that in the mean, the function 
g(x) contains the quadratic effects of the input factors [8]. 
• Case C: The response is approximated as follows: g(x) is 
quadratic model; h(x, z) is quadratic, cubic, or exponential. 
In this case no analytic expressions for the mean and 

variance can be provided. 
 While the real cases A and B were offered a solution in 
literature, the case C is avoided because of lack of 
information about mean and variance. In this case simulation 
based methodologies are suitable; they ensure accuracy and 
efficiency e.g. the method could use approximation models 
to evaluate points that were not simulated, assess the impact 
of noise and also integrate in the simulation analysis the 
optimization techniques [9], [10].  
 Proposed Approach 
 Our proposed methodology uses DoE and metamodels: 
we build an approximation of the response, called 
metamodel or surrogate from the evaluation responses 
values for a carefully selected set of design. The advantages 
of using these approaches are: the evaluation of a 
metamodel is computationally inexpensive compared to the 
simulation costs; a large set of samples which approximate 
the response can be obtained with no effort; the same sample 
set can be used for multiple purposes i.e. extract more 
response characteristics or for optimization purposes. 
 The proposed method has four main steps [11]: 

A. Run simulations. Build and validate the 
metamodel. 
 First we select the response of interest and identify the 
complete set of factors. Next a test bench must be created 
and simulations are run with a minimum number of tests. 
The obtained results are processed: the performance of the 
device under test (DUT) is approximated, by extracting a 
metamodel as illustrated in Figure 3. Regression analysis is 
used to fit the metamodel to the simulation data. The 
metamodels complexity (polynomial: linear, quadratic, 
cubic, kringing, DACE, etc.) depends on the test-case and 
chosen factors [11], [12].If the metamodel is accomplished 
by polynomial approximation, the response is given by: 
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where f is the n-dimensional vector of DUT’s factors, c are 
the coefficients of the metamodel and represent the effects 
of factors on the response, m is the order of the polynomial. 
One of the benefits of this method is that each factor fi may 
be considered as controllable or uncontrollable. Under 
normal operating conditions, uncontrollable factors causes 
variability, but can be controlled during the experiments. 
 After building up the metamodel, a residual analysis is 
performed to see if the metamodel is well fitted. The 
residuals are the differences between observed values and 
model predicted values. For experiment planning and 
metamodelling (fitting, evaluation and validation) a library 
of functions is used [13], [14], [15]. 

B. Derive Metamodel. 
 In this step, the metamodel obtained in Step A is derived 
to approximate the following measures: mean, dispersion 
and extreme points of the response. The procedure of fitting 
derived metamodels is similar with the one in step A, but 
they will depend only on the controllable factors, while the 
noise factors are kept at a fixed level.  
 The derived forms of the initial metamodel are obtained 
with the following procedure: first, the set of factors is 
divided into 2 subsets: controllable and uncontrollable/noise 
factors. Second, the controllable factors are kept at fixed 
levels (e.g. nominal values) and the initial metamodel is 
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evaluated only with respect to the noise factors. Third, the 
noise factors are kept at fixed levels while the controllable 
factors are varied. The statistical properties of the response 
are estimated as follows: 
 

1

1

95( ) - 05( )

n
Mean y

kkn

Dispersion q y q y

= ∑
=

=

           (9) 

 
where q95 and q05 are the 95 and 5% quantiles of the 
response samples. The obtained metamodels are not more 
complex than the initial metamodel. 

C. Optimize Metamodel. The optimization is done 
according to the principle of Robust Parameter Design i.e. 
factors’ levels have to be chosen to achieve two objectives: 
set the output response’s mean at the desired target while the 
variability around this target is as small as possible. The task 
is accomplished by searching the points where both 
optimization conditions are met. At the end of this step, an 
optimal set of values for the control factors will be provided. 
Estimates on the response’ dispersion, extremes, with 
respect to the uncontrollable factors, when the control 
factors are at the initial, respectively optimal levels are also 
extracted.  

D. Validate Results. The results obtained in Step C 
must be verified if they are optimal: the initial metamodel 
and the optimized one are compared. The initial and final 
response‘s dispersion are computed. The improvement is 
validated by histograms: the distributions of the metamodels 
are compared and the optimized metamodel should have a 
tighter distribution. 

Practical Implementation 
MATLAB was used as development environment, 

because it has several advantages including: available 
libraries of functions for optimized array and vector 
operations, for optimization and statistical analysis; fast 
debugging, fast integration with other verification 
environments, built-in simulators (e.g. Simulink) [15], [16].  
 Step A is fulfilled when a schematic of the DUT is 
available; the tests of interest are planned and performed. 
The simulation flow is the usual one: the test-bench built 
around the DUT verifies the design by providing several 
scenarios that check key requirements on the output 
responses; to cover the design space, during simulation, each 
input variable of the DUT is varied; the data resulted from 
simulations is processed using MATLAB functions [17]. A 
metamodel using regression analysis is built to approximate 
the behavior of the DUT. The residual analysis is used for 
validation. When the metamodel is a fit one, then it can be 
trusted and can be used further on in the analysis. Otherwise 
this step is repeated using another type of regression, 
another design of experiments or rechecking the parameters 
and their range. 
 We integrated steps B, C and D in the tool presented in 
Figure 4; it runs in interactive mode, is user friendly and 
provides reusable data as output.  
 The first action in the tool is to load the metamodel built 
in Step A. Using the option Load Metamodel a pop-up 
window appears so that the metamodel is browsed. A 
Visualize button is also available so that metamodels can be 
plotted for a better understanding of how factors and their 
interactions affect the response. 
 

  
Figure 4: Tool for the proposed method 

 
 The second action consists in building derived 
metamodels depending on the control factors. The proposed 
method derives metamodels which are less complex. They 
have to be validated, so another residual analysis is 
performed in the background. The tool offers the possibility 
to pick up the factors that one considers to be significant and 
build a metamodel based only on them. The factors are 
listed in a pop-up window activated when the type of the 
derived metamodel is selected. After the user chooses the 
controllable factors, the Run button must be used.  
 In Step C the derived metamodels are used for robustness 
optimization i.e. control factors’ settings are found so that 
the mean is put on target and the variance is minimized. The 
tool identifies by grid searching the setting of controllable 
factors leading to optimal system performance and provides 
it as output to be further used for design simulation 
verification. 
 In Step D, the obtained set of parameter values must be 
validated: the initial and final dispersion values for the 
response are put in contrast and the optimized metamodel is 
compared against the initial one. The tool provides a pop-up 
window with their histograms. 
 

IV. CASE STUDY AND RESULTS 
In this section the considered DUT is a low drop voltage 
regulator (LDO). Generally, a voltage regulator is a block 
designed to automatically maintain a constant output voltage 
level independent of its input, as long as the input voltage 
level is higher than the output [18]. The voltage regulator is 
built using a pass transistor whose gate is driven by an error 
amplifier. The low dropout voltage regulator is a particular 
case of voltage regulator. It operates with a very small input-
output differential voltage which comes as a great advantage 
because assures a lower minimum operating voltage. Two 
measurements are specific for this kind of blocks: load 
regulation i.e. change of output voltage depending on the 
change of the load current and line regulation i.e. change of 
the output voltage depending on the input voltage. Among 
these, there are other important responses that could be of 
interest:  

• Dropout voltage: difference between input and 
output voltage that allows the circuit to regulate the output 
voltage. Its value is dependent on the junction temperature 
and load current and should be as small as possible to 
minimize the power dissipation [18]. 

• Quiescent current: difference between input and 
output currents. Its value depends on the ambient 
temperature and must be kept low [18]. 

• Output current: the current that the voltage regulator 
injects in a load. Its maximum value should be limited even 
for low voltage levels at the output [18]. 
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• Reset pulse delay time: the time needed for a reset -is 
measured when there is a low to high transition in the output 
voltage and, ideally, should be as small as possible [18]. 

• Temperature coefficient: the change of output voltage 
with temperature. 
 Figure 5 shows the LDO application setup. The LDO’s 
main features are: operating DC supply voltage range 5 V-
28 V, output current up to 150 mA, low dropout voltage less 
than 0.5 V, current consumption during idle (quiescent 
current) less than 500 µA, protection features (over-current, 
over-voltage), programmable reset pulse delay with external 
capacitor. In this paper we considered the following LDO 
responses: dropout voltage Vdr, time reset delay tRD, output 
current IOUT. 
 First of all we will focus on the minimum dropout 
voltage Vdr. If the target is set around 200 mV then the 
output current (IOUT) has a value below 100 mA. The main 
factors that are taken into consideration in this test are: the 
resistance R1 and capacitance C1 of the output filter, the load 
current IQand the junction temperature TJ. Table 1 provides 
the minimum, maximum, nominal values and type of the 
factors. 
 The methodology presented in the previous section was 
applied on the considered output Vdr. Initially, a test-bench 
was built. The simulations were performed on a SPECTRE 
model of the chosen system. The factors described in Table 
1 were modified within their set ranges. The simulation time 
for a test took less than 3 minutes. The change of the 
response was monitored and a quadratic metamodel was 
fitted and validated. Figure 6 shows the metamodel for the 
dropout voltage Vdr versus factors.  Each curve shows the 
evolution of Vdr when only one factor is varied and the 
others are fixed; factors IQ and TJ have great impact on the 
response.  
 To derive the metamodels, factors were divided in two 
subsets – see the column Type from Table 1. Control factors 
are considered to be elements of the output filter: R1 and C1. 
The uncontrollable factors are the temperature TJ and the 
load current IQ. Using the tool, new quadratic metamodels 
are obtained. Figure 7 presents the obtained metamodels for 
the dispersion and mean response. Notice how the derived 
metamodels depend on R1 and C1.  
 The optimization for the dropout voltage is done 
considering the following constraints: the mean has to be 
about 160 mV and the variance near it as small as possible. 
The provided solution is a set of values for the control 
factors that fulfills the constraints.  
 Robustness is measured either using the variance or 
percentile difference; in our paper we chose the second 
metric. Figure 8 illustrates the results validation: the red 
histogram corresponds to the initial metamodel while the 
blue one to the optimized metamodel. One can observe that 
the variance of the response decreased i.e. if the initial 
response was distributed between 0.09 and 0.26, after 
optimization the response is squeezed between 0.1 and 0.24, 
that means an improvement of about 18%. 
 Our next goal is to optimize the system to meet three 
major specifications. As the methodology is already 
implemented in a user-friendly tool, the task of multiple-
response optimization becomes easy to fulfill. The other two 
responses i.e. time reset delay tRD and output current IOUT 
depend on the same factors as the dropout voltage i.e. three 
controllable factors C1, R1, CT and one noise factor TJ. Using 
the built tool a set of optimal values is returned for each 

response and the intersection of these sets is the optimal 
space for the robustness optimization of the three responses. 
 Table 2 presents the results. It can be noticed that the 
value of the reset capacitor CT is the same no matter the 
response; as for the output filter elements (C1 and R1) it was 
not possible to find a single solution, because the responses 
are conflicting. The optimization process results in a set of 
solutions that, mathematically, are equally good. The 
optimal solution can be found by defining the exact 
application of the LDO and considering possible trade-offs 
between the optimized responses. Considering that these 
values neutralize the effect of the temperature which is a 
noise factor, we can state that our proposed methodology 
can be also used for multi-response optimization. 
 

 
Figure 5: Application setup for the LDO. 

 

Table 1: Factors divided in two subsets: controllable and 

noise factors. 

Parameter [Unit] Name Min Max Nom. Type 

Output filter 
capacitor [µF] 

C1 1 10 4.7 Control 

Output filter 
resistor [Ω] 

R1 0.1 1 1 Control 

Load 
current [mA] 

IQ 10 100 50 Noise 

Junction 
temperature [oC] 

TJ -40 125 25 Noise 

 

 
Figure 6: Metamodel for dropout voltage versus factors 

 

Figure 7: Derived metamodels: Dispersion (top), Mean 
(bottom). 
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Figure 8: Initial and optimized distributions of the 

dropout voltage 
 
Table 2: Values of factors that global optimize the LDO 

Factor Min Max Nom Optimal range 
Output filter capacitor  

C1 [µF] 
1 10 4.7 [8.875, 10] 

Output filter resistor  
R1 [Ω] 

0.1 1 1 [0.1, 0.2] 

Reset capacitor 
  CT [nF] 

80 120 100 100 

 
V. CONCLUSIONS 

Robustness optimization is addressed to problems in which 
the data is uncertain and/or varies. The classical approach to 
achieve robustness is to redesign the system, using tighter 
tolerances or better and purer materials. This option might 
lead to overdesign, is time consuming, expensive and more 
difficult to manufacture. 
 The classical approach, based on DoE, exploits the 
interactions between controllable and uncontrollable factors 
and finds the settings of the control factors that minimize the 
response’s variation caused by uncontrollable factors. If 
little or no information about the variance, covariance of the 
factors and noises is available, the classical methods cannot 
provide valuable solutions. 
 The paper proposes a simulation-based method for robust 
optimization, which can be applied on any system, in real-
life cases, because no underlying assumptions are 
considered. The method builds first a metamodel of the 
response from the evaluation responses values for a 
carefully selected set of design; it considers all factors and 
their interactions, any type of regression. Next the method 
derives metamodels of the mean, dispersion and extreme 
points of the response, finds control factors’ settings that put 
the mean on target and minimize the dispersion, provides 
them to the user for validation. The method is integrated in a 
MATLAB tool which might come very helpful for those 
who seek design optimization solutions in short time. 
 The method is illustrated by an example: the robustness 
optimization of the dropout voltage response of a voltage 
regulator. It was shown that for a desired target, the 
response’s distribution was squeezed with 18%; that means 
the system became less sensitive to variations. Then the 
method was used for optimizing other two major 
specifications: time reset delay and output current. By 
intersecting all the obtained optimal sets of factors, a 
multiple response optimization was fulfilled. 
 Further work will be devoted to develop an automatic 
multiple response optimization based on the proposed 
robustness optimization method. 
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