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Abstract:The paper defines and implements a method of verifying if the testing system is suited for being implemented or 

not. In order to try and force a usability prediction on the whole testing process, we used algebraic calculus applied on a 
testing system, in order to see the correlation between the used signals, in various system nodes. For being successful in 
predicting the system stability, algebraic calculus was applied, the eigenvalues calculated, and then the correlation between 
the mathematical results and the real implemented testing system made. As a result of the work we can state from the 
beginning of test system implementation, if the system is suited or not for implementation. When deciding, the mathematical 
results back up the decision. 
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I. INTRODUCTION 
Hardware in loop testing method is commonly used in 
automotive applications. The need to perform hardware 
functionality based on software processes is found at all 
levels in a development process. Utility is very high, due 
to its capability of discovering functionality failures 
during the process, allowing the adaptation in real time, 
action that saves the future of a project.  

The work began when implementing a hardware-in-
the-loop (HIL) testing system, using a dSPACE 
Expansion Box (Mid-Size Simulator). The idea of 
performing a short study before implementing the system 
turned into the applicationof algebraic calculus [1] [2] [3] 
[4] [5] in order to check the system’s stability. By doing 
this, a tester can easily predict signal correlation, and can 
use in the testing device signals which are stable. By 
checking system’s stability through algebraic calculus, 
one can see if the system is stable, unstable or at the limit 
of stability. By doing that, the signals will be more likely 
to interact as desired. 

 

II.  MODELING THEORY 
A.MODELS 

Every testing system uses a predefined model in order 
to implement and contain the system’s variables and 
constraints. Defining a measurement system and model 
suited to a certain application becomes vital when 
discussing about large application with a big number of 
variables and implications. Hence defining a suited model 
to the testing system is a very important step in the 
procedure. There are several ways to model a system. 
Decisions about such things as complexity, modeling 
method and used simplifications have to be made. A 
section describing stability tests is also included in the 
paper [8]. 

 

B. COMPLEXITY 
Complexity of the system should be taken into 

account when analyzing a system to be tested. The 
complexity appreciation can lead from the beginning to a 
first estimation of the speed and possibility of the 
complete system. Since the simulation environment is 
established as a HIL system by dSPACE, the model 
complexity has to be suited to the system. To be able to 
predict computation speed for each simulation step, the 
step-time has to be fixed. In order for it to run in real 
time, the whole model behavior must be computable in 
real time, at each step. This must be valid for all possible 
states, regardless of the input signals [7] [8] [9]. 

The HIL system simulation step-time h is adapted to 
the existing engine and vehicle models, which run 
smoothly at this value. It is important that the added 
auxiliary devices models do not interfere with this set 
step-time, and thereby slow down other parts of the 
system. Thus, the final real time tests must be done 
together with the engine and vehicle model in the HIL 
simulator. 

 

III.  METHOD AND TESTER WORKFLOW 
A. MODELING METHOD 
When it comes to choosing a modelling method, one 

has to take into account the interconnection between the 
injected signals and their outputs, or the values measured 
at certain points in the system. In order to do that, one can 
apply a short study of linear algebra and system stability 
calculus in order to check the system’s stability. The 
study aims to check the interconnectivity of systems 
taking into account the variable places on the testing 
system, from where the signals measurements have been 
done. The workflow has to contain all the possible 
functionality cases that can be encountered. This would 
also include the special cases and the very complicated 
ones, in order to provide a full testing approach of the 
product. Realizing a workflow that is suited to a certain 
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application requires experience in the field of 
functionality and also a good knowledge of the complete 
system and its implications. The tested device is being 
represented by a testing machine, used to verify the 
conformity of the device with given standards. In order to 
do that, a series of signals are being supplied to the device 
and the outputs are being constantly recorded. If the 
recorded outputs are within the given standards, then the 
device is fulfilling the requirements.  

In the case of using a series of testing devices, we can 
use algebraic calculus, with stability verification, in order 
to make a pre-check of the whole system before 
implementing it into the real test. By using the stability 
check, we can roughly say if the system has a 
predetermined degree of success. If the analysis shows 
that the system will be stable in its evolution, then the 
signals implemented have been chosen correctly. 

In order to perform the stability calculation, one has to 
create a matrix, in which we will find the relations 
between the signals. From there on, a calculation of the 
Eigenvalues shall be made. With the computed results, 
the data can be interpreted and the system classified 
before proceeding with any kind of real tests on a device. 
In order to have a pre-check of the used system, the 
calculation of the system’s stability general model will be 
made, useable with many different sizes and properties of 
the auxiliary devices. 

 
B. TESTER WORKFLOW 
The HIL concept represents a convenient way for 

performing black-box software integration tests 
[10][11][12]. A HIL system is used to simulate the real 
environment where the ECU shall function. I/O signals 
and interaction with other ECUs are simulated with 
known good models. The goals of the HIL tests are to 
find errors in the early phases of the software 
development process and to support the development with 
regression tests. The used equipment simulates the 
environment of a double-clutch-gearbox ECU, connected 
to several position, pressure and speed sensors, as well as 
to the valves, as the output actuators.  

The inputs of the ECU are stimulated with A/D and 
PWM signals provided by the dSPACE expansion box. 
Also, the communication with other ECUs is simulated 
with “virtual” models, which are configurable on the 
dSPACE specific boards. 

 
Figure 1. Screen capture of dSpaceapplication and 

signals that will be used in the algebraic calculus 

IV. RESULTS AND CALCULATIONS 
A. SYSTEM STABILITY PROBLEM 
The problem of stability starts with a simpler model: 

the stability of a Linear-Time Invariant (LTI) system can 
be analyzed according to the BIBO stability concept 
(Bounded Input – Bounded Output).The concept behind 
this theory is that a certain system can be considered 
stable, if for every finite value of the input vector, the 
output of the system will be finite as well (e.g. the output 
does not oscillate). 

We do not want to take into consideration the time 
duration of the test, but we want to describe the system in 
complete way, therefore the problem shall be transferred 
in a state space representation. The result is a 
mathematical model of the physical system, with a set of 
input, output and state variables, related between them 
with a set of first-order differential equations, expressed 
as vectors. If the system is linear and time invariant, all 
equations can be written in matrix form [7].  

The most general form of a MIMO (Multi Input Multi 
Output) continuous-time variant system in the state space 
representation is: 

 
(ݐ̇)ݔ = (ݐ)ݔ(ݐ)ܣ +  (ݐ)ݑ(ݐ)ܤ
(ݐ)ݕ = (ݐ)ݔ(ݐ)ܥ +  (ݐ)ݑ(ݐ)ܦ

(1) 

 
Where: 
 ,is the vector containing the n states of the system(∙)ݔ

(ݐ)ݔ ∈ ܴ 
 is the vector containing the q outputs of the(∙)ݕ

system, (ݐ)ݕ ∈ ܴ 
 is the vector containing the q outputs of the(∙)ݑ

system, u(ݐ) ∈ ܴ 
 is called the “state matrix” of the system, with(∙)ܣ

dim|ܣ(∙)| = ݊ × ݊ 
 is called the “input matrix” of the system, with(∙)ܤ

dim|ܤ(∙)| = ݊ ×  
 is called the “output matrix” of the system, with(∙)ܥ

dim|ܥ(∙)| = ݍ × ݊ 
 is called the “feed forward matrix”, with(∙)ܦ

dim|ܦ(∙)| = ݍ ×  
And: 
 

(ݐ̇)ݔ ∶=
݀
ݐ݀
 (2) (ݐ)ݔ

 
The stability of the system can be proven starting with 

the first relation in (1), after applying the Laplace 
transform to both sides of the equation. 

 
The initial condition is set asݔ = 0: 
 

ݏ ∙ (ݏ)ݔ = (ݏ)ݔ(ݏ)ܣ +  (3) (ݏ)ݑ(ݏ)ܤ
 
We then subtract AX(s) from both sides: 
 

1ݏ)(ݏ)ݔ − ((ݏ)ܣ =  (4) (ݏ)ݑ(ݏ)ܤ
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Assuming ൫1ݏ −  ൯ us nonsingular, we can(ݏ)ܣ

multiply both sides by the inverse: 
 

(ݏ)ݔ = 1ݏ) −  (5) (ݏ)ݑ(ݏ)ܤଵି((ݏ)ܣ
 
Using the relation by which we obtain the inverse 

matrix from the adjoin matrix: 
 

ଵିܣ =
(ܣ)݆݀ܽ

|ܣ|
 (6) 

Equation (5) becomes: 
 

(ݏ)ݔ =
1ݏ)݆݀ܽ − ((ݏ)ܣ ∙ (ݏ)ݑ(ݏ)ܤ

1ݏ| − |(ݏ)ܣ
 (7) 

 
The system stability limit is reached when the 

denominator: 
 

(ݏ)ܦ = ݈ݏ| − |(ݏ)ܣ = 0. (8) 
 
If we make the substitution	ݏ =  the resulting ,ߣ

relation is the characteristic polynomial of the matrix A. 
The roots of (8) are the eigenvalues and the system’s 
transfer function’s (7) poles. The poles determine whether 
the system is asymptotically stable or marginally stable. 
The zeroes found in the numerator of (7) determine 
whether the system in minimum phase.  

The system may be BIBO stable even if the poles 
show it is unstable. This is the case when we force the 
unstable poles to be cancelled out by zeroes [5]. 

In order to have a stable system, in the S domain, it is 
required that all the poles of the system be located in the 
left-half plane, and therefore all the eigenvalues of A must 
have negative real parts. 

B. APPLICATION 
The following values were used during the 

measurements and shall be considered as inputs for the 
algebraic calculation method: 

 
1. “Klemme 15”(as voltage) → ignition signal - 

this signal corresponds to the start of the engine, 
derived from the battery voltage.(12V) 

2. Clutch pressure (as voltage) → the signal gives 
information about the functionality of the 
clutch.(9V, 13V, 17V) 

3. Hydraulic oil temperature(as voltage) – the 
temperature of the hydraulic oil (9V, 13V, 17V) 

4. Mechatronic system temperature (4V) 
5. Shift rail positions (2V, 8V) 
6. Sensor supply (5V) 
7. High Side Driver Voltage (7.5V) 

 
The calculation method uses the following values: 

 

1ݔ݅ݎݐܽܯ = 
3.000 1.000 1.750
1.500 1.000 1.250
3.000 0.000 0.000

൩ (9) 

 

1ݏ݁ݑ݈ܽݒ	݊݁݃݅ܧ = ቐ
(4.726, 0.000݅)

(−1.033, 0.000݅)
(0.307, 0.000݅)

 (10) 

 
The resulting Eigen vectors are: 
 

1ݏݎݐܿ݁ݒ	݊݁݃݅ܧ = ቐ
(−0.749, 0݅)(−0.308, 0݅)(0.045, 0݅)

(−0.461, 0݅)(−0.323, 0݅)(−0.896, 0݅)
(−0.476, 0݅)(0.895, 0݅)(0.442,0݅)

 

 
And: 
 

2ݔ݅ݎݐܽܯ = 
14.000 4.000 4.000
5.000 2.000 5.000

12.000 0.000 0.000
൩ (11) 

 

2ݏ݁ݑ݈ܽݒ	݊݁݃݅ܧ = ቐ
(18.571, 0.000݅)
(−1.286,2.470݅)

(−1.286,−2.470݅)
 (12) 

 
The resulting Eigen vectors are: 
 

2ݏݎݐܿ݁ݒ	݊݁݃݅ܧ

= ቐ
(0.775, 0݅)(0.058, 0.142݅)(0.058,−0.142݅)

(0.385, 0݅)(−0.736, 0݅)(−0.736, 0݅)
(0.501, 0݅)(0.425,−0.505݅)(0.425, 0.505݅)

 

 
Using the theory from [1], [2]we can analyze the 

stability of the system using only the state–space 
representation of its mathematical model. What we are 
trying to accomplish is proving that the system will have 
predictable stable behavior when a set of controlled input 
signals are provided. 

The state space representation of the mathematical 
model has the following system matrix: 

 

3ݔ݅ݎݐܽܯ = 
−7.000 2.000 3.000
1.000 −3.000 0.000
−8.000 3.000 3.000

൩ (13) 

 

3ݏ݁ݑ݈ܽݒ	݊݁݃݅ܧ = ቐ
(−4.300, 0.000݅)
(−2.000, 0.000݅)
(−0.690, 0.000݅)

 (14) 

 
The resulting Eigen vectors are: 
 

3ݏݎݐܿ݁ݒ	݊݁݃݅ܧ = ቐ
(0.528, 0݅)(−0.405, 0݅)(0.745, 0݅)
(1.000, 0݅)(1.000, 0݅)(1.000, 0݅)
(0.473, 0݅)(0.205, 0݅)(0.856,0݅)

 

 
We compute the eigenvalues for the matrix and we 

obtain the following values: 
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ଵߣ = −4.30 
ଶߣ = −2.00 
ଷߣ = −0.69 

(15) 

 
All values are negative. Based on the rule described in 

the previous chapter, we can conclude that the matrix 
corresponding to the state space mathematical 
representation is associated with a system that is stable 
according to the BIBO definition. This means that given 
any combinations of finite inputs, the internal energy of 
the system will converge to 0, as the system is stabilizing 
into a so-called equilibrium point.[13] [14] [15] 

The same method can be applied to other systems 
[16], [17], in order to verify their stability. 

 

V. CONCLUSION 
During tests, measurements have been done on the above 
mentioned signals and by pre-checking through the 
algebraic calculus, we could observe that in the cases 
where the calculus leads to a stable system, there weren’t 
any overflows in the program and no error occurred 
concerning the measurement method. Though, where the 
system turned out to beunstable or at the limit of stability, 
the signals tend to have unexpected results concerning the 
other new calculations applied on them, as the 
requirements were asking [18].  

By using our method, the possibility of avoiding 
unexpected results, and the approximation of possible 
failures during measurements are possible. Also, by 
applying the calculus, time is being saved, observing from 
the beginning which direction of measurement is to be 
avoided.  

The current method does not content a minimization 
process when implementing the variables to be tested. 
Common method implements the variables and performs 
a series of steps in order to prove the functionality or the 
errors that can appear. From this approach, the method 
includes a high degree of novelty concerning the 
hardware in loop testing method approach. 

Nevertheless, the system has its limitations. The 
application of the method is complicated and will require 
additional research for integration. The research should 
consider the complete system and its input and output 
interconnections, including the type of information that 
they are carrying [11] [12]. 

Appling such an approach to a hardware in loop 
system implements a will from the producers side to 
implement a research process meant to enhance the 
available hardware in loop system, thing not easy to do 
taking into account the current economic rush towards 
getting projects ready. 
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