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Abstract: In this paper, starting from a robust statistics (RS) adaptive approach presented in a previous work entitled the 
combined NLMS-Sign (CNLMS-S) adaptive filter, an automatic combination technique with similar performances is 
proposed. Thus, in order to obtain better performances in acoustic echo cancellation (AEC) setups than with the normalized 
least-mean square (NLMS) algorithm, in the CNLMS-S case the decision between the two algorithms (NLMS and Sign) is 
based on a set error threshold. The error threshold can be empirically determined or known a priori if the signal-to-noise 
ratio (SNR) value from the loudspeaker-enclosure-microphone (LEM) setup is available or if the local noise levels can be 
determined from the silences. Here, to overcome this shortcoming, an adaptive combination of the two algorithms involved in 
RS is highlighted, providing similar results regarding convergence and final misadjustment. Also, the need of the error 
threshold set by the user is removed, the combination being controlled only by a step-size parameter, independent on the 
LEM, constrained only by the stability range. The proposed method is compared to the CNLMS-S in nonlinear LEM setups 
using measured linear and quadratic Volterra kernels, tracking the behavior of the echo-return loss enhancement (ERLE) 
characteristic. As input sequences, audio signals with different PDFs are used and WGN is added as local noise. Simulation 
results justify the efficiency of the proposed method, both in convergence and steady-state error against the CNLMS-S and, 
implicitly the NLMS and the Sign-NLMS algorithms.  
 
Keywords: Acoustic echo cancellation, adaptive filters, Volterra models, the NLMS algorithm. 

 
 

I. INTRODUCTION 
Adaptive algorithms are largely used in various audio 
applications, such as linear or nonlinear acoustic echo 
cancellation (AEC), active noise control (ANC) or double 
talk detection (DTD) [1 - 3] due to their simplicity in 
design and robustness. However, the efficiency of these 
applications is limited by a tradeoff between the speed of 
convergence and the steady-state error of the adaptive 
processes. As a straightforward consequence, the 
principal effort in designing an adaptive filter is to 
minimize the convergence time and the steady state error 
in the same time. Adaptive filter research is constantly 
searching for the optimum value of a cost function, 
usually square error-dependent, such as the benchmark 
normalized least mean square (NLMS) filter [4, 5]. The 
convergence of the later is improved by using parametric 
or nonparametric variable step-sizes [3] and exponentially 
weighted step sizes [6]. The search for faster adaptation 
processes conducted to the development of alternative 
cost functions and adaptations: the simplified LMS [4], 
the mean fourth error [7], the modified normalized least 
mean fourth (NLMF) [8] or the convex combination of 
the adaptive filters [9]. 
 Thus, in the same manner of speeding the convergence 
of adaptive AEC structures, the starting point of this 
paper is the so-called combined NLMS-Sign (CNLMS-S) 
adaptive filter that uses a robust statistics algorithm 
discussed in [10, 11]. Its cost function is piecewise-
defined: when the absolute value of the current error is 
less than a threshold, the cost function equals the square 

error; otherwise it takes the scaled value of the absolute 
error, using in each case the norm of the regressor. The 
procedure provides noticeable performances, but the 
drawback of the algorithm is the existence of an error 
threshold that should be measured, mathematically 
determined or empirically selected by the user. Thereby, 
our proposal is to eliminate the threshold by adaptively 
combining the outputs of an NLMS and a sign-NLMS 
adaptive filter, deploying a convex combination approach 
as in [9]. With the adaptive combination we aim each 
time at the progress of the best individual updating 
algorithm, being always focused on the smaller error. The 
CNLMS-S and the proposed adaptive combination of 
NLMS and Sign-NLMS (ACNLMS-S) are tested and 
compared in a nonlinear AEC application using second-
order Volterra structures [12]. 
 The paper is organized as follows. First, in section II, 
the linear and nonlinear AEC signal model is defined for 
its proper approximation level of the acoustic enclosure 
along with the standard individual updating algorithms: 
NLMS and Sign-NLMS. Next, in section III the CNLMS-
S and ACNLMS-S methods are presented, highlighting 
the advantages and key points of the ACNLMS-S in a 
more productive practical adaptation of the Volterra 
kernels against the CNLMS-S, without the need of the 
error threshold. Section IV, containing simulation results, 
enables the efficiency of the ACNLMS-S for 
nonstationary regressors with different PDFs and WGN as 
local noise. Finally, conclusions are drawn in section V. 
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II.  SIGNAL MODEL FOR ACOUSTIC ECHO 
CANCELLATION (AEC) 

In mobile communications or teleconferencing 
applications that involve hands-free devices, an important 
issue is the cancellation of the undesired echoes that are 
being fed back to the far-end speaker. Acoustic echoes 
arise in the Loudspeaker-Enclosure-Microphone (LEM) 
configuration from the acoustic coupling between the 
loudspeaker and the microphone [13].  
 

2.1 Linear AEC model 
The general scheme for AEC is presented in Figure 1. 
First, let us neglect the blocks drawn with dotted lines, 
which are the nonlinear components in the AEC setup. 
The far-end signal x[k] is aired by a loudspeaker and it is 
affected by multipath propagation of sound waves. A 
microphone picks up d[k] that is composed of the 
distorted far-end signal and a local noise n[k]. A replica of 
the LEM is held by an adaptive filter (linear component). 
Filtering the far-end signal x[k] with the LEM replica 

results in ˆ[ ]y k  which is then subtracted from d[k], thus 

resembling the residual error signal e[k]. The residual 
error is used to adaptively update the filter taps. When the 
adaptive filter has converged, for a fair adaptation, the 
error signal e[k] should resemble the local noise n[k] (in 
this case, in the absence of local speech).  
 The achieved echo reduction of an AEC system is 
evaluated here in terms of echo-return loss enhancement 
(ERLE): 

2

10 2

{ [ ]}
ERLE[ ]: 10 log     [dB] ,

{ [ ]}

E d k
k

E e k
=  (1) 

where { }E �  denotes statistical expectation. 

 

 
Figure 1. Acoustic echo cancellation setup 

 
2.2 Nonlinear AEC model 

However, in practical situations, nonlinear AEC models 
represent a more accurate tool that takes into 
consideration the nonlinear behavior of the available 
acoustic hardware. An illustration of a nonlinear acoustic 
echo path can be observed in Fig. 1, where sources of 
nonlinear distortions – digital to analog converters, 
amplifiers, analog to digital converter – are drawn with 
dotted lines. We are mostly interested in nonlinearities 
with memory, generated by the small loudspeaker driven 
at high volume and memoryless nonlinearities due to 
overdriven amplifiers [2, 14] that corrupt the microphone 
signal. Certain polynomial models were used to 
incorporate the type of nonlinearities from the LEM setup 
like Wiener and Volterra models as in [15] and cascaded 
adaptive filtering involving memoryless nonlinearity in 
[16]. 

 In this work, we consider the second-order Volterra 
structure (2VF) as a sufficient tool to enclose the 
nonlinear distortions found in the typical LEM. As 
suggested in Fig. 1, it is composed by both the linear and 
nonlinear component and its output follows the 
expression: 
 

1 2 2

1 1 2

1 1 2 1

2VF

1 1 1

1, 1 2, , 1 2

0 0

ˆ[ ] [ ]

ˆ ˆ[ ] [ ] [ ] [ ] [ ],
M M M

m m m

m m m m

y k y k

h k x k m h k x k m x k m
− − −

= = =

= =

= − + − −∑ ∑ ∑
(2) 

 

where y2VF[k] is the output of the 2VF, 
11,

ˆ [ ]
m

h k  and 

1 22, ,
ˆ [ ]

m m
h k  represent the first and the second-order 

Volterra kernels of length M1, respectively M2. The 
Volterra kernels employed in (2) present a general 
symmetry which consists in using only terms with non-
decreasing indices (m2 ≥ m1). For simplicity, equation (2) 
can be rewritten in vector notation as: 
 

2VF 1 1 2 2
ˆ ˆ[ ] [ ] [ ] [ ] [ ]T T

y k k k k k= +h x h x    (3) 

 
using the associated vector definitions: 
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where ()
T
 denotes the transposing operation. 

 The first and the second-order Volterra kernels are 
obtained by adaptive processes, with the initiative to 
minimize the residual error signal e[k] defined as: 

2 V F[ ] [ ] [ ] .e k d k y k= −   (5) 

The nonlinear behavior of the LEM is modeled using the 
following representation of the microphone signal d[k]: 

 
{1 1 2 2

 

[ ] [ ] [ ] [ ] [ ] [ ] ,T T

local noiselinear nonlinear

d k k k k k n kα β= + +h x h x
14243 14243

 (6) 

where 
1 [ ]kh  and 

2 [ ]kh  are the linear and the quadratic 

kernels written in vector notation as in (4). These kernels 
were obtained from measurements conducted in a low 
reverberant room with low-cost acoustic components 
[17]. The memory lengths of the kernels are equal to 320 
and 64× 64 taps, to include all the coefficients with 
significant nonzero values. The linear-to-nonlinear ratio   

(
2

1 1
10 2 2

2 2

E{( [ ] [ ]) }
LN LR 10 log  [dB ]

E{( [ ] [ ]) }

T

T

k k

k kα
=

h x

h x

) and the 

signal-to-noise ratio                                                                       

(
2

1 1 2 2
1 0 2 2

E{ ( [ ] [ ] [ ] [ ]) }
S N R 1 0 lo g  [d B ]

E{ [ ]}

T Tk k k k

n k

α

β

+
=

h x h x ) 

quantities are kept constant throughout simulations by 
choosing proper values for parameters α and β.  
 With the polynomial description of the LEM and the 
Volterra model corresponding to the summarized 
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nonlinearities, in the following, the necessary adaptive 
algorithms are briefly presented, ranging from the 
traditional ones to the proposed combined technique. The 
next pair of algorithms includes the individual ones that 
compose the RS technique and are implemented in the 
2VF CNLMS-S adaptation from [11]. Their 
corresponding cost functions and kernels updating 
equations are briefly discussed. 
 

2.3 Volterra kernel update with NLMS 
The conventional derivation of the NLMS algorithm [18] 
considers the cost function to be the square error, and the 
step size is divided by the norm of the regressor. An 
alternate approach is to leave the step size parameter 
unchanged but the cost function is the square of the error 
divided by the norm of the regressor. Both approaches 
result in the same update process. In this work the second 
option of the cost function is used. The update of the 
second-order Volterra filter kernels that uses the NLMS 
adaptation consists in the minimization of a cost function 
defined as: 

2
(N L M S )

2

[ ]ˆ [ ] ,
2 [ ]

i

e k
J k

k
=

x

  (7) 

where i ={1, 2}. The update equations of the two Volterra 
kernels using the NLMS algorithm are presented in (8): 

(NLMS) (NLMS) 1

1 1 12

1

(NLMS) (NLMS) 2

2 2 22

2

ˆ ˆ[ 1] [ ] [ ] [ ],
[ ]

ˆ ˆ[ 1] [ ] [ ] [ ],
[ ]

k k e k k
k

k k e k k
k

µ

φ

µ

φ


+ = +

+

 + = +
 +

h h x
x

h h x
x

 (8) 

where φ is a positive constant introduced to prevent 
division by zero or a very small value. The step-size 
parameters µ1 and µ2 control the convergence rate and 
steady-state error of the adaptive filter. To ensure stability 
of the system error norm in the mean, the step size 
parameters should be selected from the range (0, 2). 
While these values are constant, they are the leading 
cause of the compromise between convergence and final 
misalignment in adaptive structures that involve the 
NLMS update. Thus, different algorithms and adaptive 
techniques have been studied to lower the existing 
tradeoff of constant step sizes. 
 

2.4 Volterra kernel update with sign-NLMS 
The cost function of the sign-NLMS [4] uses the absolute 
value of the error signal as: 

 (S IG N )

2

[ ]
ˆ[ ] ,

[ ]
i

e k
J k c

k
= −

x

         (9) 

where c is a positive constant. As in the NLMS case, 
starting from the steepest-descent recursion where the 
cost function is defined in this case by (9), the resulting 
Volterra kernel update equations are written: 

( ) ( ) 1

1 1 12

1

( ) ( ) 2

2 2 22

2

ˆ ˆ[ 1] [ ] ( [ ]) [ ],
[ ]

ˆ ˆ[ 1] [ ] ( [ ]) [ ].
[ ]

SIGN SIGN

SIGN SIGN

k k sign e k k
k

k k sign e k k
k

µ

φ

µ

φ


+ = +

+

 + = +
 +

h h x
x

h h x
x

 (10) 

Note that in the update equations the sign-NLMS 
algorithm uses a normalized step size, in comparison to 
the sign-LMS algorithm. 

 The two algorithms show raised convergence (SIGN) 
and low steady-state error (NLMS) but not 
simultaneously. Thereby, alternatives are desired to cover 
both convergence and low final misadjustment making 
use of the mentioned features of the individual 
algorithms. 
 

III. COMBINED NLMS AND SIGN-NLMS 
ALGORITHMS 

3.1 The combined NLMS-sign (CNLMS-S) Algorithm 
In the previous section, the general forms of two adaptive 
processes were presented. The parabolic characteristic of 
(7) has high return values for large errors, while the linear 
characteristic of (9) is better suited in this situation, 
because it may be insensitive for large outliers of the error 
signal. The combination of both characteristics results in a 
robust statistic algorithm that was proposed in [10] and 
used on Volterra AEC structures in [11]. The combined 
cost function JCNLMS-S[k] of CNLMS-S in (11) is slightly 
modified from the one published in the prior art [10]. 
JCNLMS-S[k] is still defined as a piecewise function, where 
the user should select an error threshold elim. According to 
this threshold, the sequent cost functions associated with 
their proposed methods are minimized: 

 

( )

lim( )

( )

lim

ˆ[ ] , [ ]
ˆ[ ]

ˆ[ ] , [ ] .

NLMS

CNLMS S

SIGN

J k e k e
J k

J k e k e

−
 <

= 
≥

        (11) 

As provided in [11] in the derivation process of the cost 
function, the update equations in the second-order 
Volterra case are: 

( ) ( ) 1

1 1 lim 12

1

( ) ( ) 2

2 2 lim 2

2

ˆ ˆ[ 1] [ ] ( [ ], ) [ ],
[ ]

ˆ ˆ[ 1] [ ] ( [ ], ) [ ],
[ ]
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k k f e k e k
k

k k f e k e k
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µ
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− −

− −


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+

 + = +
 +

h h x
x

h h x
x

(12) 

where f(ξ,ξlim) can be seen as an activation function and it 
is defined as: 

 lim

lim

lim

 if 
( , )

( ),  if .
f

s ign

ξ ξ ξ
ξ ξ

ξ ξ ξ

 <
= 

≥

 (13) 

In Figure 2 the implementation of the CNLMS-S is 
depicted. The Digital Delay Line is used to align the input 
samples x[k] into a vector that forms the regressor x1[k], 
and to compute the vector x2[k], the regressor of the 
nonlinear component of the Volterra filter. The regressors 
x1[k] and x2[k] are fed to the linear and nonlinear 
components. The output of each component is added and 
their sum returns the current output of the Volterra 
structure, y2VF[k]. The y2VF[k] and d[k] signals are used to 
compute the current error sample e[k], which is the 
subject of further processing by the activation function f. 
There is no explicit formula for the threshold elim. The 
selection of its value is subjective and may give 
inappropriate results. Its optimum value eopt is related to 
the SNR of the system which is directly not accessible or 
unknown or when the local noise can be measured during 
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Figure 2. Second-order Volterra filter structure with 

CNLMS-S adaptation 
 

0 0.5 1 1.5 2

x 10
6

0

5

10

15

20

25

30

35

Sample Number

E
R

L
E

 (
d
B

)

NLMS

CNLMS-S e
lim

 > e
opt

CNLMS-S e
lim

 < e
opt

CNLMS-S e
lim

 = e
opt

 
Figure 3. Second-order Volterra with CNLMS-S 

adaptation with different values of elim 

 
silences. Here elim is empirically selected as in [11, 19]. In 
the following we will briefly show that the value of elim 
can affect the outcome of the adaptation process.  
 Let us consider a basic nonlinear AEC setup where the 
following quantities are applied: the SNR is 30 dB, the 
LNLR is 10 dB, the test signals have Gaussian 
distributions, the step-size parameters are µ1 =0.002, µ2 = 
0.001. The ERLE of four system identification processes 
are depicted in Figure 3. One characteristic is obtained 
from a second-order Volterra structure with NLMS, 
which is considered as a benchmark. Three characteristics 
were obtained using 2VF with the CNLMS-S adaptation 
technique in the next situations: (i) elim is equal to eopt; (ii) 
elim is less than the optimum value eopt; (iii) elim is larger 
than eopt [11]. Let us interpret the characteristics from 
Figure 3. In the first case, the optimum value of elim is set 
to eopt = 0.05. A better ERLE convergence is achieved 
with the CNLMS-S adaptation than with the standard 
NLMS. Also, the steady-state ERLE is similar for both; 
the CNLMS-S method does not affect the stabilization 
value of the error. The steady-state ERLE is 30 dB, equal 
to the SNR value.  
 In the second case, the characteristic is obtained for 
elim = 0.005, a decision threshold way smaller than the 
optimum value eopt. In this case, an expansion of the error 

range is gained, where the sign-NLMS adaptation 
procedure is applied. This will unreasonably update the 
Volterra kernels with the NLMS algorithm for error 
samples smaller than the optimum value. Analyzing the 
performances of the CNLMS-S adaptation method in 
comparison with the NLMS Volterra, the CNLMS-S 
version offers a better convergence than in the previous 
case (elim = eopt). But it does not provide the expected 
steady-state ERLE, the adaptive filter stabilizes below the 
established SNR value. 
 In the third case, the decision threshold is chosen elim = 
0.1. The steady-state ERLE for the CNLMS-S scenario 
returns to the imposed SNR amount and the obtained 
convergence rate is also higher than in the NLMS second-
order Volterra case. However, the convergence speed is 
slightly reduced from the CNLMS-S from the first case. 
The developed convergence makes this threshold also 
valid but it misses out some high error values for the 
applicability of the sign-NLMS technique. This offers the 
observed convergence rate difference in contrast to the 
optimum threshold scenario. As observed, the selection 
process of the error threshold once again causes a 
compromise between convergence rate and steady-state 
ERLE. Although, the behavior of the method is 
significantly improved for threshold values close to the 
optimum, yet obtaining the optimum threshold is a 
challenging task in practical on-line AEC applications. 
 
3.2 The adaptive combination of NLMS and sign 

(ACNLMS-S) Algorithm 

 
 As mentioned, a combination technique is regarded to 
eliminate the need of the error threshold and still keep the 
improved convergence rate and steady-state 
misadjustment of the CNLMS-S. To achieve this, the 
LMS-based convex combination approach [20] is applied 
on the nonlinear NLMS and Sign algorithms included in 
the CNLMS-S approach. The block structure of the 
proposed adaptive combination of NLMS and SIGN 
algorithms (ACNLMS-S) is illustrated in Figure 4. First, 
the outputs of the two individual block structures (NLMS 
and SIGN) are defined: 

( ) ( ) ( )

( ) ( ) ( )

NLMS NLMS NLMS
1 2

(NLMS) (NLMS)
1 1 2 2

SIGN SIGN SIGN
1 2

(SIGN) (SIGN)
1 1 2 2

ˆ ˆ ˆ  [ ] [ ] [ ]

ˆ ˆ                    [ ] [ ] [ ] [ ],

ˆ ˆ ˆ[ ] [ ] [ ]

ˆ ˆ                   [ ] [ ] [ ] [ ],

T T

T T

y k y k y k

k k k k

y k y k y k

k k k k

= + =

+

= + =

+

h x h x

h x h x

 (14) 

together with their related residual error signals: 

 

( ) ( )

( ) ( )

NLMS NLMS

SIGN SIGN

ˆ[ ] [ ] [ ] ,

ˆ[ ] [ ] [ ] .

e k d k y k

e k d k y k

= −

= −
  (15) 

Next, the two outputs of the Volterra structures are 
combined using a mixing parameter [ ]kλ  as follows, as 

in [21]: 

 ( )(SIGN) (NLMS)
2VF

ˆ ˆ ˆ[ ] [ ] [ ] 1 [ ] [ ] ,y k k y k k y kλ λ= + −  (16) 

 
[ ]

1
[ ] sgm( [ ]) ,

1 a k
k a k

e
λ

−
= =

+
  (17) 
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Figure 4. Second-order Volterra filter with ACNLMS-S 
adaptation 

 

( ) ( )(NLMS) (SIGN)[ 1] [ ] [ ] [ ] [ ] [ ] 1 [ ] ,a k a k e k e k e k k kµ λ λ+ = + − − (18) 

where 
2 V Fˆ[ ] [ ] [ ]e k d k y k= −  and µ  is the step-size 

parameter of the adaptive combination.  
 On account of the difference sign between the two 

independent residual errors 
(NLMS) (SIGN)[ ] [ ]e k e k− , the 

global output of the method will equal that with smaller 

associated error. Therefore, if 
(NLMS) (SIGN)[ ] [ ]e k e k> , the 

value of [ ]a k  will constantly grow, making [ ]kλ  to prone 

towards 1. For the nonce, 
2 V Fˆ [ ]y k  becomes approximately 

(SIGN)ˆ[ ]y k , with the smaller residual error. On the 

contrary, if 
(NLMS) (SIGN)[ ] [ ]e k e k< , [ ]a k  decays, 

becoming eventually negative, thus providing [ ]kλ  close 

to 0. The global outcome 
2 V Fˆ [ ]y k  will reach 

(NLMS)ˆ[ ]y k  

due to the lower individual error. As a remark, when the 
two errors are equal, the global output maintains its 
previous value. Herewith, an automatic piecewise 
adaptation is accomplished without the necessity of the 
comparison to an error threshold, only comparing the two 
independent errors conjunctively. 
 
 
 

IV. SIMULATION RESULTS 
On account of the presented adaptation techniques, the 
performances of the ACNLMS-S technique will be 
compared to those of the CNLMS-S for a LEM setup, 
designed as in (6). The LNLR equals 10 dB and the SNR 
is set to 30 dB. Gradually, each individual second-order 
adaptive model is tested (NLMS and SIGN) in 
comparison to a linear NLMS algorithm. Nonstationary 
input signals are used, while AWGN is used as local 
noise. The step-size values are chosen 

1 l i n 0 . 0 0 2µ µ= =  

to update the linear kernel and the reference linear NLMS 
filter, 

2 0 . 0 0 1µ =  for the quadratic kernel and the 

threshold, estimated as in [19], is found to be optimum 

l i m 0 . 0 1e =  in all cases due to the constant SNR. The 

ERLE curves are averaged over 22000 samples, using a 
sliding window. As for the step-size value of the 
combination, 1µ =  is used.  

  
 Hence, in the next four figures, a recorded song 
fragment is used as source sequence. On the top of Figure 
5, the independent nonlinear approaches that form the 
ACNLMS-S method are tested in terms of convergence 
and steady-state error while at the bottom, the microphone 
signal is depicted. Here, the mentioned tradeoff is clearly 
emphasized from the evolution of the two ERLE 
characteristics. The linear NLMS reaches only 10 dB 
ERLE due to the constant LNLR value. Figure 6 
illustrates the convergence and misadjustment 
improvement of the CNLMS-S technique  (

l i m 0 . 0 1e = ) 

from [11] compared to the ERLE behavior of the 2VF 
NLMS filter. It can be seen that the CNLMS-S is a fair 
solution to minimize the tradeoff, at the cost of the error 
threshold estimation. To remove the need of the 
threshold, a combination of the two algorithms from 
Figure 5 is proposed that only requires a convergence 
step-size µ  to be set by the user, usually chosen positive, 

smaller than 1. For the ERLE characteristics from Figure 
7, the ACNLMS-S method was applied to improve the 
performances of the particular filters compared in Figure 
5. The ERLE characteristic of the proposed method 
follows the behavior of the Sign algorithm in convergence 
and that of the NLMS when reaching saturation, acting 
each time as the most suitable model. This process can be 
also examined from the development of the mixing 
parameter [ ]kλ  from bottom of Figure 7. It takes values 

close to 1 in convergence, yielding 
(SIGN)

2VF
ˆ ˆ[ ] [ ] .y k y k≈  

These values slowly drop to approximately 0 in the 

steady-state phase, giving 
(NLMS)

2VF
ˆ ˆ[ ] [ ] .y k y k≈  In Figure 

8 one can compare the evolutions of the CNLMS-S and 
ACNLMS-S approaches in terms of convergence rate and 
steady-state misadjustment. As remarked, the 
progressions of the two procedures are similar, here with 
slightly better convergence from the CNLMS-S, at the 
cost of obtaining the optimum elim. 
  
 The same ERLE charts for speech and instrumental 
music as source signals are depicted from Figure 9 to 
Figure 12, respectively form Figure 13 to Figure 16. One 
can again observe from the ERLE curves and also from 
the development of the mixing parameter [ ]kλ  that the 

ACNLMS-S removes the need of a threshold, gaining in 
the same time similar performances in ERLE evolution as 
the CNLMS-S approach in all three nonstationary input 
sequences. While both strategies (CNLMS-S and 
ACNLMS-S) improve the performances of the individual 
filters, the 2VF NLMS and 2VF Sign, only the 
ACNLMS-S approach eliminates the need of the error 
threshold. 
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linear NLMS (top) and the microphone signal (distorted 

song fragment plus noise) (bottom) 

 
Figure 6. Evolution of ERLE for 2VF CNLMS-S, 2VF 

NLMS, linear NLMS and the microphone signal (distorted 
song fragment plus noise) 

 

 
Figure 7. Evolution of ERLE for 2VF ACNLMS-S, 2VF 

Sign, 2VF NLMS, linear NLMS and the mixing parameter 
 

 
Figure 8. Comparison between 2VF ACNLMS-S and 2VF 

CNLMS-S for distorted song fragment plus noise as 
microphone signal 
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Figure 9. Evolution of ERLE for 2VF Sign, 2VF NLMS, 

linear NLMS and the microphone signal (distorted speech 
plus noise) 
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Figure 10. Evolution of ERLE for 2VF CNLMS-S, 2VF 

NLMS, linear NLMS and the microphone signal (distorted 
speech plus noise) 
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Figure 11. Evolution of ERLE for 2VF ACNLMS-S, 2VF 

Sign, 2VF NLMS, linear NLMS and the mixing parameter 
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Figure 12. Comparison between 2VF ACNLMS-S and 

2VF CNLMS-S for distorted speech plus noise as 
microphone signal 
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Figure 13. Evolution of ERLE for 2VF Sign, 2VF NLMS, 

linear NLMS and the microphone signal (distorted 
instrumental music plus noise) 
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Figure 14. Evolution of ERLE for 2VF CNLMS-S, 2VF 

NLMS, linear NLMS and the microphone signal (distorted 
instrumental music plus noise) 
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Figure 15. Evolution of ERLE for 2VF ACNLMS-S, 2VF 

Sign, 2VF NLMS, linear NLMS and the mixing parameter 
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Figure 16. Comparison between 2VF ACNLMS-S and 
2VF CNLMS-S for distorted instrumental music plus 

noise as microphone signal 
 

V. CONCLUSIONS 
In this paper, a robust second-order Volterra adaptive 
procedure was insight that aimed at improving the 
convergence rate and final misadjustment of conventional 
acoustic echo cancellation (AEC) methods and also those 
of a more recent one inspired from the robust-statistics 
(RS) appliance called the combined NLMS-Sign 
(CNLMS-S). In the CNLMS-S event, the adaptation of 
the kernels was carried out in a piecewise manner, relying 

on an optimum error threshold. Thus, according to the 
actual error value compared to the aforementioned 
threshold, the Sign NLMS algorithm was chosen in 
convergence, while the NLMS was desired in steady-
state. The disadvantage of the CNLMS-S was the 
definition of its optimum adaptation limit, wherefore 
additional information was needed that in most practical 
applications is not available. However, to eliminate this 
issue, an adaptive combination of the two individual 
algorithms that define the RS tool was proposed 
(ACNLMS-S), while maintaining the performances of the 
CNLMS-S. The ACNLMS-S method was tested and 
compared to the other established structures in terms of 
the error power in nonlinear AEC scenarios involving 
measured Volterra kernels and different audio signals as 
input. In these circumstances, the efficiency of the 
proposed method was obvious in implementation but also 
in performance. 
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