

Volume 57, Number 2, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received February 19, 2016; revised June 12, 2016

9

AN INTELLIGENT EYE-DETECTION BASED,

VOCAL E-BOOK READER FOR THE INTERNET OF THINGS

Anca APĂTEAN, Flaviu B. DUNCA
Technical University of Cluj-Napoca, Baritiu st., 26-28, Cluj-Napoca, Romania

Abstract: This paper presents an intelligent vocal e-book reader based on the Raspberry PI, that is remotely controllable through a
web interface, being aimed for the Internet of Things. The software was mostly written in Python, but knowledge about
HTML/CSS was also used. Images of the user are processed for face and eye detection by classification using LBP image features
within OpenCV. To allow the system to accurately function under low light conditions, a light sensor is used in conjunction with a
series of leds which are lit up when the lighting in the surrounding room is poor.

Keywords: Internet of Things, machine learning, classifier, intelligent application, image features extraction, eye detection
algorithm, Raspberry PI, web interface, Python programming.

I. INTRODUCTION
The emerging Internet of Things (IoT) era comprises a
multitude of devices developed for smart and innovative
applications. Some of them may use machine learning
concepts and algorithms, considering their significant
contribution to equipping hardware with seeing capability,
i.e. vision by computer vision, but also with communication
skills, by language processing [1]. The IoT phenomenon
promises a world with plenty of applications, e.g. to improve
the health and well-being of children and elderly.

The vision is that smart environments and monitoring
systems will be created by its large adoption, i.e. at an
industrial scale [2]. Moreover, people in the business
technology community, recently stated that tens of billions
of IoT devices will invade the world by 2020. If this will
stand and how intelligent these devices will truly become is
only a matter of practice.

This paper briefly describes the implementation of an
intelligent system for the IoT. The system is based on the
Raspberry PI board, but other SBC (Single Board
Computers) may be used. Few questions are foreseen here in
order to explain the title of the paper: Why is this system
considered intelligent? Which is the purpose of it being
remotely controlled? To whom this system mostly
addresses? Next, we try to give essential answers to these
questions.

First, the system is called intelligent because it succeeds
in detecting the face of a human user and then it establishes
if the eyes of the subject are closed or not. Based on this
information, it stops the reading process. To accomplish the
reading part, it uses a voice synthesis module to produce
human-like sounds. Second, it is remotely controlled due to
the fact that it is desired to be a part of the IoT domain. In
order to accomplish this, the Raspberry PI-based application
also interacts with a smartphone, tablet, laptop, or any
computer system connected to the Internet, with wireless
networking capabilities. Such an application may address to
visually impaired persons or to children, or to any person
who would prefer to listen to books rather than read them.
Being remotely controlled, it may also help an
accompanying person to manage the situation from distance.

The application comes with a web interface hosted on the
Raspberry PI itself, which is accessible through a secured
wireless network, from any authenticated device that has a
basic web browser. Once authenticated, this device (e.g.
smartphone, tablet, laptop, etc) can interact with the system
through the web interface; this, among other facilities later
exposed, allows the user to upload e-books (in PDF format).
Once the user uploads a valid pdf text document, they can
opt for the application to process the document. This will in
turn lead to the contents of the document being read out
loud, and also the corresponding transcription text being
displayed in a designated place in the web interface. Using
the web interface, the user can also control some parameters
of the application, e.g. the volume of the playback, the
language, the reading speed, and among others, the
authentication credentials.

In order to make the system more comfortable to use, but
also more energy-saving, an automatic power off feature was
implemented. This will shut down the system in certain
cases but not before it saves the reading progress. Such an
operation appears when the system detects that the user has
fallen asleep. This functionality is implemented by running a
closed eye detection algorithm on the frames captured by a
webcam connected to the Raspberry PI SBC. To make the
detection mechanism even more reliable, thus to ensure that
it remains well-functioning under poor lighting conditions, a
series of leds are powered on automatically. This smart
function is triggered based on the sensed intensity of the
ambient lighting, which is registered using a conventional
light sensor.

The main purpose of this paper is to briefly present our
ABC-PY system, mostly the hardware part of it, as it follows
in Section II. Some software aspects are also given in
Section III. Section IV presents the main implementation
information.

The system we developed is called ABC-PY. The first
part of the name was so chosen, due to a two-fold
interpretation: the fact that it can actually read letters/ text
and the fact that basic electronics knowledge is required for
constructing it. The last part of the name of the system is so
because the software was programmed in Python.

Volume 57, Number 2, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

10

II. HARDWARE ASPECTS
The devices from the IoT area are not only the ones with
sensory capabilities, but also those providing actuation
capabilities (e.g., bulbs or locks controlled through a
network). Specific applications may contain various
electronic components such as sensors, displays, resistors,
capacitors, diodes, execution elements like motors, etc., so
they are inclined to the micro controller applications area.
Still, by inserting specific functions, like network
connectivity, so they become network or even Internet
controllable, they are generally classified as IoT
applications. These devices will be proper to collect and
exchange data with the world they interact with and even to
create big data content.

On the market, there is an extensive number of
commercial development boards, ranging from few to tens
or even thousands of dollars, according to their capabilities
and their brand. Some of them, even quite recent on the
device market, are equipped with a lot of facilities as far as
their sensors capability, network or Internet communication
and SBC functionality are concerned. They allow different
types of users, from hobbyists to more experimented ones to
use them in the frame of their customizable applications.

II. A. Raspberry PI as a central component

Developed by the non-profit British organization with the
same name, the Raspberry Pi is a smart, inexpensive and
relatively easy to use mini-computer. It is smart because it
supports a fully-fledged operating system (O.S.), it can run
Python code and it may also run intelligent machine learning
algorithms. The operating system is installed on SD or
microSD memory cards.

The board can work with inputs/ outputs (via the pins
available on the board) or it can manage peripherals (via
USB interfaces). Even more, the Raspberry PI can be used
just like a PC: it is able to process information from a
camera / a microphone / sensors (or other inputs), to control
output devices, e.g. motors (or other actuators), or it can be
connected to a display or to the Internet. Similar products
are the Galileo and the Edison boards developed by Intel.

The device we chose, is the Raspberry PI 2 released in
early 2015. It has a processor supporting the ARM v7
instruction set, with 4 cores at 900 MHz each, it comes with
1GB of RAM, USB ports, HDMI, an audio socket, and
many others.

Compared to a conventional computer, it also offers
input/ output programmable pins, appointed as GPIO
(General-Purpose Input/ Output) pins; from these, other
devices can be supplied power at a voltage of about 3.3
volts [3]. In our project, we also used these pins to power on
some leds, depending on the ambient light. It's good to know
that, when the GPIO pins are used to supply power to
components, it is recommended to limit the electrical current
to about 16 mA per pin.

The GPIO pins may be controlled in applications written
in Python using the RPi.GPIO library. There are two
available modes to setup and identify the pins, the
recommended one being the BOARD mode, which
corresponds to the physical numbering on the board.

The DIY category of projects abounds nowadays in
applications which combine inexpensive electronics with
low-cost networked computers. Unlike proprietary
commercial products, the projects you build match exactly

what you need (or a user specific need). The advantages of
DIY projects are multiple: you only have to respect a
specific or your own design, and you have the entire control
on both the additional hardware equipment and the software
to use. Thus, your creativity, economic and nature protective
spirit can be encouraged.

II. B. Other existing systems

Nowadays, the use of SBC-like devices is growing,
especially in automation systems, for simplifying human life.
In the field of document readers, two projects from the
American company Dexter Industries, namely BookReader
and BookReader version 2 inspired us. Both systems used in
addition to a SBC, a popular product of the company,
namely BrickPI. This is an Arduino-based platform that
enables interaction between the Raspberry PI and various
peripherals or shields, so the application may make use of
various sensors and actuators [4].

The first version of the BookReader system read pages
from a tablet PC. As shown in Figure 1 a), the unit in charge
for processing the document is fixed on a support consisting
of LEGO bricks. The system uses the Raspberry PI board to
which a BrickPI-based page slider is connected. Once the
system is functioning, by using a specific Raspberry PI
camera module, the tablet is photographed while displaying
a page of the document on the screen.

After taking the picture, the image is processed using a
piece of software called Tesseract, which handles the optical
character recognition task. When the Tesseract's task is
finished, the result (which is the content of the current page
represented in plain text) is applied to the input of the
eSpeak voice/ speech synthesis application. Once the
application is run, every word found in the input file will be
played aloud at the output of the speakers connected to the
Raspberry PI. After processing the full page, the motor
driven arm slides on the tablet's screen, changing the page of
the document; then the process starts all over again.

Although the software remained basically the same for
the second version of the system, in Figure 1 b) one can
notice the new mechanism used to interact with the
document, which this time is a physical one, i.e. a printed
book. The pages of the book first slide using a wheel (that
lays on the paper), powered by a servo motor, and then these
are turned using a mechanical arm [5], [6].

Consulting the available code on GitHub, we found out
that none of the projects had any remote control facility at
the time our project was developed. In addition, the systems
did not have any mechanism for the detection of the tablet or
of the physical book.

Figure 1. BrickPI Bookreader

a) original version [5]; b) second version [6]

Volume 57, Number 2, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

11

Other problems may have occurred due to differently sized
books, which would have probably involved the
repositioning of the camera, and possibly changes to the
position, the degree and the speed of the motor involved in
turning the pages.

II. C. Our ABC-PY system

When implementing our system, we insisted less on the
interaction with the document, and more on adding
intelligent facilities. One of these is the remote control over
a local wireless network.

The system uses the Raspberry PI mini-computer, but it
also has a few peripherals, as it can be noticed in Figure 2.
From left to right, the components of our system are: 1) a
smartphone as the system controlling device, 2) a set of
speakers connected via the Jack interface of the mini-
computer, 3) a wireless network card with USB interface, 4)
a light sensor and a lighting module, connected to the GPIO
pins of the mini-computer and 5) a webcam, connected to
the system via a USB port (needed in order to detect the face
and the eyes of the subject).

A light detection sensor is used and a series of leds will
be automatically lit when there is not enough light in the
room. To power both the sensor and the leds, the GPIO pins
of the board are used. As shown in Figure 3, the sensor has a
potentiometer, from which the threshold voltage of the
comparator is taken, and a voltage divider consisting of a
conventional resistor and a photo-resistor (SEN), whose
voltage is connected to the non-inverted input of the
comparator. Thus, depending on the threshold voltage the
potentiometer represents and on the voltage of the photo
resistor [7], at the output of the comparator, the voltage will
be 0V if the voltage of the photo resistor does not exceed the
threshold; otherwise, the output will have a voltage equal to
that of the power supply [8]. Further, based on the output
voltage of the sensor, the state of the leds is easily
controlled. Figure 4 shows the implementation diagram of
the automatic lighting functionality based on the ambient
lighting conditions. Knowing that the voltage drops between
GPIO pins programmed in logic high mode and the ground
pins of the board is approximately 3.3V, the values of the
current limiting resistors were found. For the light sensor, it
has been decided to limit the current to 5 mA, this being
sufficient for the two leds in series with the power supply
and the sensor's output to illuminate in order to signal that
the sensor functions correctly.

Figure 2. The hardware components of the ABC-PY

Figure 3. The schematic of the light sensor [7]

A resistance of 680Ω, i.e. R14, was chosen to be placed
between the input pin of the sensor and the board's GPIO
pin through which the sensor is powered on. Since the leds
we used need approximately 3-3.2 volts, the rest of the
permitted current was divided between the four groups of
two leds in parallel. Each of the groups is powered by
dedicated GPIO pins, and the current is limited to
approximately 11 mA, through 300Ω resistors, maintaining
in this way the limit of about 50 mA recommended for the
Raspberry PI SBC.

III. SOFTWARE ASPECTS
The project also comes with a face and eye detection
module, that allows the application to power off the whole
system if it detects that the user has fallen asleep. For the
system to properly function, the user needs to be just a few
feet away from the webcam, and they need to pose a frontal
view. The detection works best in daytime, but it also works
during night-time, due to the leds, that automatically lit up
when the ambient lighting is poor, supporting the camera.

III. A. Machine learning aspects

The face and eye detection feature was implemented using
the OpenCV computer vision library. In OpenCV, the so
called classifiers are used in order to be able to detect
features in images. These classifiers contain information
about the targeted feature, e.g. the human face, ears, hands
and so on [9]. For face detection, a classifier that comes with
OpenCV was used, i.e. the lbpcascade_frontalface classifier.
The most popular feature descriptors in OpenCV are Haar
and LBP; Haar typically offers lower error rates, but the
classifier training process can last days, while with LBP it
usually takes hours to train and the results are relatively
good [10]; these estimates depend on the number of images
used in the training process.

Figure 4. Connecting the leds and the light sensor
 to the Raspberry PI

The only required condition to succeed in detecting human

Volume 57, Number 2, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

12

faces is that the user should be located at a proper distance
from the camera and they should be facing it.

The eye detection classifiers within OpenCV were not
able to tell the difference between closed and opened eyes;
thus, custom classifiers had to be trained. Two classifiers
were trained for the closed eye detection, using the
opencv_traincascade application that is bundled within the
OpenCV library.

Each of the positive image sets that the training process
requires, were made out of about 1100 gray-scale images of
left closed eyes for the first set, and right closed eyes for the
other. The negative image set comprised about 1200 gray-
scale images, of human faces, having both eyes opened [11].

When the detection process starts, each frame captured
by the system's webcam is first converted to gray-scale. If
features are detected, their location is returned in the form
of a Python list, as four coordinates [11]. In order to reduce
false-positive detection results and to increase performance
(faster features searching), from the face region, a loosely
estimated region is extracted for each of the eyes. On these
two regions, using the custom trained classifiers, the closed
eye detection is tried. If the detection is successful for at
least one eye, a time variable will be incremented.

If the algorithm fails to detect the features, it could
either mean that the user is not facing the camera or that
they have both the eyes opened. In this case, the time
variable is cleared and the reading does not yet stop.

After the face and eye detection for the current frame
finishes, if the time variable's value is under a threshold, the
module will repeat its execution, by processing the next
frame; on the contrary, the application will shut down all
processes, will save the reading progress and then power off
the system.

III. B. Python programming aspects

Due to the generous standard library and its continuous
growth, the syntax that requires the production of readable,
easy to follow and manage code, Python becomes even more
popular for more types of users. Python is usually used in
prototyping projects before their implementation in a
compiled, thus faster programming language [12], for
interconnecting different applications, for programming web

applications, but also for programming in the scientific
domain, rivaling MATLAB, Mathematica, etc.

Although Python’s disadvantage is in its speed of
execution, a strong point is the possibility of writing code
about 3 times more compact than the equivalent written in
Java, or even 15 times more compact compared to the
equivalent written in C ++ [12].

III. C. Web programming aspects

In using the Python language, there are many helpful
modules, called web-frameworks, which simplify the
connection with the low-level details, such as HTTP
protocol. We used the Flask web-framework to create the
logic for the system's web interface.

As presented in more detail in section IV, the web
interface is accessible through a password protected wireless
access point, which is created every time the system boots.
In Figure 5, a basic diagram illustrates how the user can
interact with the system.

III. D. Other aspects of the application

For the voice synthesis, the eSpeak software that we used
doesn't seem to support PDF files at the input, so the
document needs to be first converted to plain text. A pdf to
text conversion function transforms each page of the
document in its own text file, using the free pdftotext
command line utility.

Finally, the reading part is handled by a function that
synthesizes the text content of each page into speech.

IV. IMPLEMENTATION ASPECTS

IV. A. The main configuration file

The main configuration file of the application contains
options and their values, read in most of the program’s
modules. It holds credentials used to authenticate the
controlling device to the system, the name of the currently
selected book, but also options which dictate the state of the
face and eye detection process, the reading speed, the
reading language, and so on.

Figure 5. Basic system usage diagram

Volume 57, Number 2, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

13

 IV. B. The modules of the system

This part is made out mostly of modules which get called
through the web interface, for tasks like starting to process a
book, or clearing the books folder, but there are plenty of
helper modules, like the configuration module which
handles the project's customization, and the wifi_ap module
which makes possible the connection between the system
and the controlling device.

The config.py module is imported in most of the
system’s modules. It represents a bridge between the
project’s software and the main configuration file.

In order for the user to be able to communicate with the
system, the system and the user's device need to share the
same network. This is made possible through the wifi_ap.py
module, through which, the USB wireless adapter connected
to the board is first identified, then gets attributed a static
IPv4 address, defined in the application's main configuration
file. After that, the identifier of the detected wireless adapter
and the authentication credentials are updated in a secondary
configuration file. This configuration file contains the
parameters used when running the Hostapd console
application, through which the wireless access point is
created. Both the system and the controlling device need to
have IP addresses allocated in order to be able to
communicate. The system, more specifically the wireless
adapter connected to it, gets assigned an IP address, but the
device also needs one. This is done using the Dnsmasq
DHCP client, that automatically assigns IPs to devices as
soon as the constantly running Hostapd program
authenticates the device in the network.

The main.py module is run automatically when the
board’s (Linux based) O.S. boots, and it prepares the project
for the user's interaction.

First, through the software_check.py module, it makes
sure that all the necessary software the project relies on is
installed. The project relies on third-party software like the
previously mentioned Hostapd program, but also on Python
modules like Flask, that was used to create the web
interface’s back end. Since different Linux distributions use
different package managers and naming conventions for
shipping software, on each of the targeted Linux
distributions, namely Arch Linux and Debian the existence
of the software dependencies was done using code specific
to each of them.

As for the Python modules on which the project relies
on, their existence is checked by importing them, which is
not platform biased. If all the dependencies are satisfied, the
file_check.py module is run, which assures that the project's
configuration files are intact. After that, the main.py module
calls the webserver.py module, which starts the web
interface. In the end, the wireless access point is made
available by running the wifi_ap.py module.

After the user authenticates using the default credentials
to the running wireless access point, they will be able to
access the web interface through the device's web browser
that should be pointed to the IP address allocated by the
wifi_ap.py module to the board’s USB wireless adapter in
the initialization sequence started by the main.py module.

The file_processing.py module is responsible for
manipulating the selected book. Every time the web
interface is requested, a function searches the books folder,
for previously uploaded PDF documents. The interface
dynamically updates the selection menu, where all the
existing books are presented. The voice synthesis, by the

eSpeak process, depending on the user's preference, starts
either from the first page, or from the last page the reading
process has been previously interrupted. Among the
parameters used for executing eSpeak, there is the reading
speed and the language of the audio playback, which should
match the book's language. These values are read from the
project's main configuration file, and they can be customized
through the web interface.

The face_detect.py module usually runs whenever the
user starts processing one of the uploaded books, but it can
easily be disabled within the web interface. Inside the
module, the webcam is first initialized, and if this succeeds,
the face and eye detection classifiers get loaded and frames
are captured by the webcam. On the contrary, if the
initialization fails, the module will terminate. This module
has two working modes that can be chosen from the web
interface: a realtime mode, which allows the module to
process the frames as fast as the system allows, and a
delayed mode which will limit the processing to only one
frame for every 5 seconds for performance reasons. In
Figure 6, detection results are presented, when running a
slightly modified version of the face_detect.py module, on a
random image [13] in which the person has one eye open
and one eye closed, the closed eye being successfully
detected.

The leds.py module handles the leds that run alongside
the face and eye detection feature. This module manipulates
the light detection sensor, and the leds which will be
automatically lit when there's not enough light in the room.
The light detection sensor is powered through one of the
board's pins and its output that is connected to another pin of
the board, gets read. Based on these readings, the pins where
the leds are connected, will be or will not be powered.
 There is also a module which handles power off and
system reboot actions, commanded by the user through the
web interface. Before any of these actions, the application's
processes that are opened, are safely closed, leading to the
reading progress to be saved in the application's
configuration file.

IV. C. The web interface

Within the web interface (presented in Figure 7), the user is
able to see the contents of the page that is being read at a
certain moment, as shown later, in Figure 8. That page is
loaded as an HTML file in the interface, through an HTML
iframe.
 When the reading process is stopped, the application
replaces whatever content there might be, with a standard
message which marks the purpose of the iframe: “When
reading, pages will show up...”.

Figure 6. Face detection: one closed eye detected

Volume 57, Number 2, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

14

Whenever the user presses the Clear book folder button,
available in the web interface, every saved book and every
file and folder resulted during the books' conversion to plain
text is removed.

The back-end of the web interface was written in Python
with the help of the Flask web-framework, which makes the
connection with lower level technologies, like the HTTP
protocol. In this part of the web interface, the HTTP
requests are evaluated. There's the regular GET request,
made each time the user refreshes the page, and there's the
POST request, made every time the user interacts with the
interface's options. When POST requests are being made,
the button the user presses is identified along with the input
data, if any. The front-end is made mostly of the index.html
file, that defines the design of the web interface. The Jinja2
templating language was used along with HTML/CSS in
order to be able to provide a dynamic web interface, that
changes along with the state of the rest of the application.

The interface, presented in Figure 7 comprises two
HTML tables: 1) one for displaying information about the
books, like the name of the selected one, the number of the
available books, shown in red when there are no books, and
in green on the contrary. Aside from these, this is where the
buttons responsible for the book's processing are placed.
When a book is selected, there's the usual Start processing
book button, but also the Continue processing book button,
if a previous interruption for the selected book was detected;
2) another table which hosts the input forms, like the one
used for uploading books, the ones used for changing the
speed and language parameters of the processing task, the
authentication credentials, and so on.

When a reading process is running, some of these
buttons will be disabled in order to prevent potential the
breakage of the application, especially those buttons that
control process parameters such as the reading language or
the reading speed, that cannot simply be considered in real
time.

Aside from the tables, there are two auto-loading HTML
iframes: one of them is used to load the contents of the
currently read page, and the other is used to present the user
with the system’s status logs. The content of both the
iframes is refreshed every once in a while, using http-
equiv=”refresh” meta attribute that’s built into HTML.

Figure 7. The web interface, after a document is loaded

Figure 8. The web interface, after the reading process is
initialized

 CONCLUSION

Although for our system’s implementation, a Raspberry PI
board was chosen, the project should also be compatible
with other boards alike, especially with the Banana PI,
which was initially the main choice. This type of low-cost
platform for real-time intelligent applications generally
integrates multiple sensors and is able to adapt it's
functioning to the user's need. Such system has to
continuously monitor not only the surroundings, but also the
user's or system's state. This is generally accomplished with
different types of sensors, vision systems, microphones and
so on, all needed to improve or generalize the IoT
functionality.

REFERENCES
[1] Apatean, A., Rogozan, A., Bensrhair, A., “Image Features Extraction,
Selection and Fusion for Computer Vision”, in Image Feature Detectors and
Descriptors, Studies in Computational Intelligence, Springer Switzerland
A.I. Awad, M. Hassaballah (eds.), pp. 75-107, 2016

[2] Moscovciuc,M., Apătean,A., “Testing and Developing Intel Galileo
Applications for Internet of Things”, in Novice Insights in Electronics,
Communications and Information Technology, Cluj Napoca, 2015

[3] M. Richardson, S. Wallace, Getting Started with Raspberry PI, ISBN:
978-1449344214, 176 pages, Dec. 2012.

[4] Dexter Industries, BrickPi, http://www.instructables.com id/BrickPi-
Setup/ [Online, Accessed May 2015]

[5] Dexter Industries, BrickPi Bookreader, http://www. dexterindustries
.com/BrickPi/projects/brickpi-bookreader/ [Online, Accessed May 2015]

[6] Dexter Industries – BrickPi Bookreader 2, http://www.
dexterindustries.com/projects-2/brickpi-bookreader-2/ [Online, May 2015]

[7] CornerstoneRobotics – Cornerstone Electronics Technology and
Robotics I Week 15, Voltage Comparators Tutorial, http://cornerstone
robotics.org /curriculum/lessons_year1/ER%20Week15%20Compara tors.
pdf, [Online, Accessed May 2015]

[8] Electrodragon– Analog and Digital Sense of Sensors, http://blog.
Electrodragon.com/analog-and-digital-sense-of-sensors-lm393-the-voltage
comparator/photocell-sensor-schematic/ [Online, Accessed May 2015]

[9] OpenCV-Python tutorials– Face Detection using Haar Cascades, https://
opencv -pythontutroals.readthedocs.org/en/latest/py_tutorials/py_obj detect/
py_face_detection/py_face_detection.html#face-detection, [Online, 2015]

[10] Tam Phuong Cao (editor), Object recognition, InTech, ISBN 978-953-
307-222-7, 360 pages, 2011.

[11] S. Brahmbhatt, Practical OpenCV (Technology in Action), Apres, 244
pages, ISBN: 1430260793, Nov. 2013.

[12] Python documentation – Comparing Python to Other Languages,
https://www.python.org/doc/essays/comparisons/, [Online, May 2015]

[13] Wikimedia Commons – Cecilia Peckaitis, https://commons.
wikimedia.org/wiki/File:Cecilia_peckaitis.jpg, [Online, May 2015]

