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Abstract: One of the major problems for the old films is their degradation due to aging. Over recent years there has been an 
encouragement for the development of virtual restoration tools, many of them using image processing. In this paper we present a 
new method of defect detection and virtual restoration of digitized old films frames. The proposed algorithm includes: a machine 
learning based small defect detection, combined with an adaptive matching pursuit algorithm for the small defects removal. The 
results are presented showing the good performance of the proposed solution and its suitability for virtual restoration of some 
digitized films.  
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I. INTRODUCTION 
In the last decade there has been an interest for restoring and 
preserving the old movies. Encouraged by the interest for 
old movies restoration, the image processing techniques 
have been successfully applied to the analysis, restoration, 
archiving and preservation of the old films.  An important 
class of virtual restoration techniques aims to estimate how 
the old movie most likely looked like before the 
degradation, when originally created. 
 For the virtual restoration of old movies two steps must 
be addressed: the detection or identification of the defect 
areas/pixels, followed by the correction of the previously 
identified and located defect. The result of the detection and 
localization of the defective pixels yields a so-called defect 
map. The second step, the correction of the identified defect, 
uses the defect map and the original scene content to replace 
the spatial locations indicated by the defect map with the 
“most plausible” information. The goal is to provide a 
restored image as similar as possible to an un-degraded one. 
Different image processing techniques are employed in the 
correction step. These techniques are almost always specific 
to the type of defect, as no universally applying methods 
could be derived to correct all the defects at once. 
Therefore, a defect classification and analysis must be 
performed in order to associate the most suitable defect 
correction method to the identified defects (this might be 
even necessary for the defect detection phase). 
 According to the dictionary the term “defect” represents 
an imperfection or lack that causes inadequacy or failure, 
deficiency. For the visual analysis the defect of an image can 
be classified in different ways. For example in [1] the 
authors propose their own defect taxonomy based on the 
digital features of the defect and not on its origin. As they 
describe in the paper there are several types of defects 
denoted as: spots, semi-transparent spots, scratches, foxing, 
fold, cracks, deformation, blotches, fading, yellowing, 
lacking color, lacking portions, handwriting. In our view, 

from the image processing perspective, considering the 
types of algorithms needed to virtually correct these defects, 
one can distinguish three categories of degradations: small 
size defects, causing the loss of image information in narrow 
spatial areas in the image (as: spots, semi-transparent spots, 
scratches, folds, cracks, possibly handwriting); large size 
defects, causing the loss of image information in larger 
spatial areas in the image (as blotches, lacunas, lacking 
portions); color degradation (as: fading, yellowing, lacking 
color), in which case there is no localized loss of scene 
texture or spatial content, but the color palette is degraded.  
Different solutions to the detection and the correction of 
these three categories of degradations exist in the literature; 
in this paper we focus only on the first category.  
 In respect to the small size defects detection, there are 
sever-al approaches in the literature; one must note that in 
some cases – as spots, spikes, very thin scratches – noise 
detection algorithms may be applied as well, since (based on 
their size) such defects are very similar to noise. Some 
approaches are more targeted to a larger class of small size 
defects, like e.g. [2], where the authors propose a technique 
for scratch and dust removal consisting from a detection part 
followed by a selective color filtering in the defect removal 
part. In the defect detection, the grey level difference and 
contrast dissimilarity features are extracted and then used for 
the classification of pixels as belonging to a defect or not; 
some post-processing of the resulting defect map is also 
employed, to reduce the false detections, using global image 
information and even infrared imaging. Two types of defect 
maps are generated: a crisp map and a credibility map 
(generated by a “soft” decision). For the reconstruction, in 
[2], a credibility weighted bilateral filter for local repair is 
proposed and employed, using the credibility map generated 
from the defect map. Another approach to small size defects 
detection is presented by Gupta et al. in [3], using a 
morphological approach that combines several procedures.  
In principle, the authors propose a processing chain 
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comprising a bottom-hat transform followed by thresholding 
and morphological area opening for the small cracks 
detection. Afterwards a modified adaptive median filter is 
employed to “fill” the previously detected cracks. Another 
approach to cracks and breaks detection and elimination in 
paintings is proposed by Solanki and Mahajan [4]; here the 
localization of cracks is done by thresholding the output of 
the top-hat transformed image. To eliminate some of the 
false detections, a semi-automatic procedure using region 
growing is further applied. The restoration of the identified 
crack pixels is done using median filters, as in most existing 
works devoted to small size defect correction.   
 For the correction/restoration of the old movie we choose 
to work with the visual dictionary based representation of 
images, applied on non-overlapping pixels blocks. 
Commonly, these schemes imply the decomposition of each 
individual pixel block from the image as a weighted sum of 
the images from the visual dictionary. The visual dictionary 
must be at least complete in order to allow the description of 
each possible pixels block. However the minimum number 
of non-zero weights, therefore the most compact description 
of the pixel block, is achieved when the visual dictionary is 
over-complete. In such a case the resulting representation is 
sparse, therefore easier to handle/process further. The 
dictionaries may be generated from standard unitary image 
transforms (such as Cosine, Walsh, Haar) or may be learnt 
from training images. Having a visual dictionary whose 
elements are well correlated in terms of their brightness 
distribution to the image we wish to represent leads to a 
sparse representation of the image.  
 In this paper we present an algorithm for old movie 
restoration. Our algorithm works in two steps. The first step 
is the detection of the defect. The second one is an adaptive 
correction using visual dictionary based pixels block 
representation via the matching pursuit algorithm. For the 
first step we use a set of features of the defect which allows 
us to classify the image pixels by a supervised algorithm into 
defect or non-defect pixels. A supervised soft classification 
is applied, to yield a confidence map of the degradation.. 
The resulting confidence map is processed as a fuzzy set via 
its α-cuts. Each α-cut is afterwards used in conjunction with 
the matching pursuit algorithm for the visual dictionary 
based pixels blocks restoration, generating a series of 
possible restored blocks. For each such block, a quality 
factor is defined and computed, taking into account the 
confidence that the pixels used for the reconstruction are not 
from a defect region, the mean square reconstruction error 
and the number of clean pixels available for the block 
reconstruction. The restoration result is thus adaptively 
selected as the one giving the highest quality factor among 
the series corresponding to different α-cuts of the confidence 
degradation maps. The details of the proposed algorithm, its 
implementation, an illustration of the results achieved in 
comparison to the non-adaptive version and some 
conclusions are presented in the remaining of the paper. 
  

II. SMALL SIZE DEFECT DETECTION 
In order to remove small size defects from old movies such 
as dust, scratch, cracks, we propose a novel detection 
algorithm, followed by a new approach for the correction of 
the defects. To have a good correction, an important step is 
an accurate detection of the defect. This is however far from 
trivial, as – especially in the case of old movies – some 
defects like scratches and spots may easily look very similar 

to some fine details in the movie frames, making almost 
impossible the task to distinguish between the two.  
 In the proposed solution, we formulate the small size 
defect detection as a pixel classification problem into “not 
defective” or “defective” pixels. For solving the 
classification problem we propose to employ a supervised 
learning algorithm. There are currently many supervised 
classifiers available for binary pattern classification; a 
significant set of powerful modern learning-based classifiers 
is provided by the Java open-source data mining tool Weka 
[5], some of them able to learn with good generalization 
from a sparse set of training samples (which is expected to 
be the case in virtual artwork image degradation, as not 
many manually localized defects examples may be available, 
especially in the case of small size defects).  A simple yet 
discriminative feature for the discrimination of the pixels 
belonging to a small size defect (as dust, scratch, crack 
defects) from the non-degraded image pixels is the joint 
feature introduced by Bergman et al. in [2], which basically 
measures the intensity and local contrast dissimilarity 
between the original image and a median filtered version of 
the image (called by the authors “detail-less” image). 
Therefore we decide to use similar features as pixel 
descriptors in order to classify them as belonging to a small 
size defect or not. Digitized old movies are almost always 
grayscale, therefore, like in [2], only the luminance channel 
is used for feature extraction. Similar to the approach 
proposed by Bergman et al. [2], we use as features for the 
defect detection the intensity difference and the local 
contrast difference between the original image and a so-
called detail-less image (obtained through a median filtering 
of the original image). However, since the defect sizes that 
can appear in the old movies (scratches, spots, stains, 
cracks) can vary more than the case considered in [2], our 
experiments show that the size of the median filtering 
window needed to obtain a detail-less image in which the 
defect is filtered out cannot be fixed. Rather we chose to 
generate a set of detail-less images by median filtering the 
original image in odd-sized square spatial windows of 3×3, 
5×5, 7×7, 9×9 and 11×11 pixels, and extract the two above-
mentioned features (i.e., the pixel-by-pixel intensity 
difference and local contrast difference between the original 
and detail-less image) for the entire set of detail-less images 
thus obtained. The resulting feature vector is used in the 
supervised classification process (unlike in [2], where a 
simple thresholding is applied). Among several examined 
Weka classifier configurations, we choose (based on the 
performance in the training and validation set in terms of 
accuracy and generalization) to use Logistic Model Trees. 
 The extraction of the features is done as follows. Let us 
con-sider the old grayscale movie digital frame represented 
by the matrix of luminance values ],[ WH ×I  with H and W 

– the image height and width in pixels. On this matrix a 
median filtering is applied, in an MM ×  spatial filtering 
window, yielding the so-called detailed-less image. We 
denote the median filtered matrix with the spatial filtering 

window of size MM ×  pixels by ][, WHMmf ×I  . In each 

spatial location ),( ji  of the image, the corresponding 

median filtered intensity ( )jiMmf ,,I is obtained as the 

median value of the ordered string of 2M  intensities read 

from the spatial window centered on ),( ji .  Using the 

original matrix I and the detail-less matrix corresponding to 
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the M×M pixels filtering window ][, WHMmf ×I , two types 

of descriptive features of the pixels that would help 
discriminating the defect and the non-defect image regions 
are computed. The first feature is simply the absolute value 
of the intensity difference between the original and the 
detail-less image, computed for each of the detail-less 
images from the set ( ),,, jiMmfI M=3, 5, 7, 9, 11: 

 

( ) ( ) ( )

.1,...,1,0,1,...,1,0

,,,, ,,

−=−=∀

−=

WjHi

jijiji MmfMdif III
  (1) 

 
 Since the median filtered matrices have fewer high 
frequency details than the original grayscale image, the 
feature described by the Equation (1) will have larger values 
for the pixels found in the small size defects as spots, thin 
lines/cracks and smaller values in the non-degraded pixels 
found in approximately uniform areas. However, since large 
values are also expected around the boundaries and in the 
textured areas (due to the smoothing effect of the median 
filtering), an extra feature is needed to help distinguishing 
between the defect and the useful fine detail information. 
This second feature, introduced by Bergman et al in [2], is 
the difference of the local contrast computed in the original 
and the detail-less image. In our case, since we have a stack 
of five detail-less images obtained through a set of median 
filters with different spatial window sizes, we will have also 
a set of five local contrast difference features for each pixel. 
On the global image level, these features are represented by 

the set of matrices  ],[, WHMdif ×C defined as: 
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where: ),( jiσ   is the standard deviation of the intensities in 

the MM ×  pixels spatial window centered around the 

current location ),( ji ;  ),(, jiMmfσ  is the standard 

deviation of the intensities in the median filtered image in 
the MM ×   pixels spatial window centered around the 

current location ),( ji  ,  ;1,...,1,0 −= Hi 1,...,1,0 −= Wj ; C 

is a small constant introduced to avoid division by zero (e.g. 

C=1).   Denoting by 2)1( −= MM h - the integer part of 

half of the spatial window size, ),( jiσ and  ),(, jiMmfσ  

are computed as: 

     (3) 
 
 
and 
 
 

(4) 
 
 The intensity and local contrast difference features, 
extracted for the five possible odd values of M (from 3 to 
11), are combined into a single feature, as suggested by 
Bergman [2], using a t-norm; the simplest t-norm, employed 
in our approach, is the algebraic product. Since for each 
spatial location (i,j) in the image we have a set of five 

intensity differences ( )jiMdif ,,I and local contrast 

differences ( )jiNdif ,,C , M,N=3, 5, 7, 9, 11, their pair-wise 

combination by the Cartesian product of the two sets would 

yield a set ( ) ( )( ){ }11,9,7,5,3,,,, ,, =∀ NMjiji NdifMdif CI of 

25 feature pairs. The two features of each pair are joint into 
a single one by their algebraic product, yielding for each 
image pixel from the location (i,j) in the image a vector 
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 Each image pixel, represented by the feature vector 
defined by Equation (5), is input to a previously trained soft 
classifier. Here we used the 'logistic model trees’ classifier, 
implemented in Weka. The classifier was previously trained 
from a small sample image in which different types of small 
size defects (spots, cracks, scratches) are manually marked. 
The real value of the decision function of the classifier for 
each pixel from the image, scaled between 0 and 1, is 
proportional to a confidence in the correct classification of 
the pixel as belonging to a defect area in the movie frame – 
the value zero thus corresponding to a clean, non-altered 
pixel, and the value of one – to a pixel that definitely comes 
from a defect (scratch, dust, spot) from the film. When these 
decision values for all the pixels is the image are represented 
in the form of a matrix, the result is a soft confidence 
degradation map corresponding to the original image I. This 
degradation map, whose values are in the range [0;1], can 
also be regarded as a fuzzy set MD[H×W] of confidences in 
the membership of each image pixel (from the location (i,j)) 
to a defect region. In the approach we propose, in order to 
make effective use of MD in the adaptive visual dictionary 
based restoration of the image I, we need to decompose it 
into a set of α-cuts – each α-cut being afterwards treated as a 
binary degradation map, indicating by zeros the non-
corrupted pixels, and by ones – the pixels that may belong to 
a defect region, therefore cannot be used in the 
reconstruction. We denote each α-cut of the fuzzy set MD by 

( ){ }αα ≥−×−∈= ),(|}1,...,0{}1,...,0{, jiWHji DD MM  

and we compute the α-cuts for 125.0 <≤ α , with an 
increment of α of 0.05, yielding a set of 15 possible binary 
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defect maps. It should be mentioned that the lowest limit of  
α=0.25 was found to be, for most film frames, a reasonable 
choice, as for smaller values of α, almost all the frame pixels 
will be (falsely) classified as defective. This is clearly 
illustrated by the case in Fig. 1.(b). The increment was also 
chosen based on trial and error, as the smallest increment for 
which the difference between two consecutive α-cuts of the 
fuzzy set MD is noticeable (visually and in terms of the MSE 
between the two binary maps); lowering the increment more 
would therefore, based on our experiments, only increase the 
computational complexity, without a significant benefit on 
the restoration. With each of these binary defect maps we 
apply the adaptive visual dictionary based image 
reconstruction algorithm presented in the next section. An 
example of a selected sub-set of binary defect maps obtained 
as the α-cuts of the fuzzy set MD for an old movie frame, for 

{ }95.0,75.0,65.0,45.0,25.0∈α , is presented in Fig. 1. 

 

    
(a) (b) 

    
(c) (d) 

    
(e) (f) 

Figure 1. a) The original image, a digitized old movie 
frame, b)-f)The defect pixel map (white pixels represent 

the defect) for: b) α=0.25; c) α=0.45; d) α=0.65; e) 
α=0.75; f) α=0.95. 

 
III. THE PROPOSED ADAPTIVE VISUAL 

DICTIONARY BASED RESTORATION 
PROCEDURE 

Although the detection of the defect pixels is to some extent 
achieved by the procedure presented in the previous section, 
the reconstruction of the image information from the defect 

area is not a trivial task. Furthermore, as illustrated in Fig. 1, 
chances are that during the defect detection process, some 
image pixels found in textured regions or around the edges 
are mistakenly classified as defect. The preservation of these 
areas is hard to be done by classical recovery algorithms, 
like median filters, rank filters, bilateral filters or 
combination of these. A better recent solution is provided by 
the sparse image representation framework, where sparse 
visual dictionaries are used together with the matching 
pursuit to render an accurate image recovery, including with 
the preservation of boundary and texture information, 
provided the visual dictionary is well adapted to the 
brightness variation patterns in the image. Sparse 
representation has been widely used for image information 
recovery tasks [6-11] due to the above mention advantages.  
 Usually, the sparse representation of an image in terms of 
a visual dictionary assumes the decomposition of the image 
I[H×W] into non-overlapping pixels blocks (usually square, 
of size P×P, P typically an integer power of two) and the 
representation of each such block as a sparse linear 
combination of dictionary elements or so-called basis 
images. Statistically, the natural images admit sparse 
representations in terms of some dictionaries, so that only 
few bases will contribute to generate the image. The 
dictionary, which can be complete or overcomplete, may be 
generated from unitary image transforms such as the 
Discrete Cosine Transform (DCT) and Wavelets (which are 
well adapted to the natural image model). In our approach, 
we use an overcomplete DCT dictionary. 
 Mathematically, the representation of I as a set of non-
overlapping pixels blocks of  P×P pixels can be written as: 

[ ]    { }PWqPHpPPpq )1(,...,0,)1(,...,0| −=−=×= II , 

where (p,q) indicates the position of each block in the 
image. The visual dictionary contains a set of basis images 

of  size P×P each: [ ]{ }1,...,1,0| −=×= KkPPkDD , where 

K is the number of basis images in the visual dictionary; for 
overcomplete dictionaries, K>P

2
. The visual dictionary 

based representation of I implies the decomposition of each 

block pqI  as a weighted sum of basis images kD , with 

some approximation up to a small error in the form:   
 

,
~

with ,)(
~ 1

0
pqpq

K

k
kpqpq kw IIDI ≅∑=

−

=

     (6) 

 

that is, [ ]PPpq ×I
~

 is the approximation of pqI up to some 

error. In the expression above, each ℜ∈)(kw pq  represents 

the weight by which the basis image kD  contributes to the 

approximation of the current block pqI . In practice, many of 

the coefficients )(kwpq  are zero or very close to zero, 

therefore the decomposition is sparse. 

 The coefficients )(kwpq are found by applying some 

matching pursuit (MP) algorithm [7, 12]. Various versions 
of MP algorithms are available in the literature [13], but 
most of them rely on Mallat’s basic version. In principle, 
MP implies an iterative procedure, starting from a rough 

approximation of the pixels block pqI  by the most similar 

basis image kD , from which more and more accurate 
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approximations are generated by adding the next most 
similar visual dictionary basis images, until the convergence 
is reached. The similarity is defined by the inner product-

like operation between a residual matrix pqI∆  (computed as 

the difference between the original block pqI and its 

approximation in the previous iteration) and the basis image 
from the dictionary.  
 To apply the above described image representation 
framework in image restoration, one should consider that, 

together with the pixels block from the original image, pqI , 

a binary mask block pqM of the same size as pqI (P×P 

pixels) is given. Each element of the mask is an indicator of 
whether the current pixel carries reliable, un-corrupted 
image information or not. The recovery of the image 
information can then be treated as the problem of estimating 
“plausible” values for the corrupted pixels in the pixels 

block pqI , based on the uncorrupted pixels in the block 

only. From the visual dictionary based representation 
perspective, this is equivalent to an approximation of the 

pixels block pqI , described only by its un-corrupted pixels, 

as a weighted sum of the basis images from the visual 
dictionary D, using a modified version of the MP algorithm 

which allows to disregard the corrupted pixels in pqI . This 

can be done by “masking out” as indicated by pqM the 

corrupted pixels in both pqI and each residual pqI∆  at 

every iteration, thus performing the computation of the dot 
products, the error and the residual solely in terms of the un-
corrupted pixels. 
 In the proposed approach, as described in the previous 
section, from the fuzzy defect map MD of the whole image I 
we generate a set of 15 binary defect maps 

{ }95.0;...;3.0;25.0=ααDM  as the α-cuts of this fuzzy set, with 

the following binary encoding: 
 

.1,...,1,0;1,...,1,0

,
otherwise,0

(defect) corrupted),(if,1
),(

−=−=



 −

=α

WjHi

ji
jiD

I
M

  (7) 

 

and accordingly, for each pixel block pqI from the image, 

we will have a set of 15 binary defect block maps { }pqD ,αM . 

The binary complement of each of these maps, 

pqDpqC ,, 1 αα −= MM , will indicate by ones the values in the 

pixels block that carry reliable information, and by zeros – 
the ones suspected to be corrupted, thus not taken into 
account in the block recovery using visual dictionary 
decomposition by matching pursuit.   
 With the above notations, the MP-based visual dictionary 
restoration algorithm for each block of pixels in the image, 

pqI , having a set of previously determined 15 

corresponding binary masks as indicators of un-corrupted 
pixels { }pqC ,αM , can be summarized as follows. 

Step 1. Set the approximation error threshold ε . 

For each { }95.0;...;3.0;25.0∈α , with a step of 0.05, do: 

Step 1.1. MP initialization:  
Set the initial residual to the masked block of pixels, 

.1,...,1,0,),,(),(),( ,
)0(

,
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Pjijijiji pqCpq
pq

MII  

Set the initial coefficients, 1,...,1,0,0)(
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Set the iteration step to t =1. 

 Step 1.2. Find the basis image sD most similar to 
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 Step 1.3. Update the residual for the current iteration: 
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 where Ms,D is the masked basis image, computed as:  

 .1,...,1,0,),,(),(),( ,, −== α Pjijijiji pqCSMs MDD  

Step 1.4. Check for convergence (i.e., if the residual 
energy is under the error limit ε ): 

If ε≤∆∆ )()(
,

t

pq

t

pq
II , go to Step 1.5, else 

increment the iteration step t=t+1, go to Step1.2. 

Step 1.5. Set the final coefficients )(kwpq  for the current 
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Reconstruct the pixels block for the current α: 
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Add the restored block to the set 

{ }95.0;9.0;...;3.0;25.0, =α= α
res

pq
res
pqI I . 

Compute and store the mean square error, pqMSE ,α , 

between the un-corrupted pixels of the original block, 
),(),(),( ,, jijiji pqCpqpqM α= MII ,and the correspon-

ding pixels of the reconstructed (restored) pixel block 
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jijiji pqC
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each value of α (this will be further used in the 
adaptation step of the proposed restoration algorithm):  
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    (8) 

 
Add the mean square error values to the set 

{ }95.0;9.0;...;3.0;25.0, =α= α pqpq MSEMSE . 

STOP.  
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 As a result of the matching pursuit based visual 
dictionary restoration of each pixel block from the image, 
one gets a set of possible reconstructions, depending on the 
value α of the α-cut computed for the fuzzy degradation map 
MD. The lower the value α, the higher is the confidence that 
no corrupted pixel was misclassified as un-corrupted (thus, 
the lower is the false rejection rate of the classifier, if the 
positive class is considered to be the defect region), as the α-
cut of the fuzzy set gives the set of values which belong to 
the fuzzy set in a membership degree of at least α. However 
this means that the false acceptance rate of the classifier, that 
is, the likelihood of misclassifying un-corrupted pixels as 
corrupted pixels (most often, such pixels being around a 
boundary in the image or in the details regions) may be large 
for low values of α. On the other hand, a too large value of α 
may result in a high false rejection rate, leaving corrupted 
pixels from the defect areas undetected, thus not removed 
from the image in the restoration process. To make a 
decision on the best value of α in the defect detection 
process or even globally, after image restoration has been 
performed, on the entire image, is not an optimal solution, 
since not all the areas in the old films are evenly affected by 
degradation. Therefore a better solution is to consider 
computing a set of restored blocks for various α, as 
presented above, and afterwards perform a locally adaptive 
selection of the best restoration as the one which maximizes 
a quality factor that we introduce as follows. We consider 
the quality of a restored block to be: 

• direct proportional to the confidence that we did 
not consider any corrupted pixels in the 
reconstruction of the block ;  

• direct proportional to the un-corrupted pixel 
density in the block, as a large number of un-
corrupted pixels means that we had sufficient 
information for reconstructing the block; 

• inverse proportional to the mean square error 
between the restored block and the original block, 

pqMSE ,α , estimated on the un-corrupted pixels 

from the block.  
The three terms described above are numerically described 
as follows: 

1. The first term of the quality factor of the block, 
which describes the confidence of taking into account only 
un-corrupted pixels when estimating the restored block by 
the matching pursuit algorithm, denoted herein by Q1, is 
proportional to α−1 , since the lower the value of α, the 
lower is the risk of misclassifying a corrupted pixel as un-
corrupted. In other terms, as any α-cut value tells us that, 
with a confidence higher than α, all the corrupted pixels are 
included in the defect mask of the current block, { }pqD ,αM ,it 

follows that with a confidence of at least α−1 , all the pixels 

included in the un-corrupted pixels block mask { }pqC ,αM  are 

indeed un-corrupted. However, the defect masks (as the one 
shown in Fig. 1, where only some samples are depicted) 
show that the decrease in the number of corrupted detected 
pixels is non-linear with α, the changes being almost 
unnoticeable for the values of α close to 0.25 or to 0.95. To 
account for this situation, we propose to describe the values 

α−1 , denoted herein by α−=α 1~ , by three fuzzy sets. We 
will afterwards generate the first term of the quality factor 
Q1 as the output of the Takagi-Sugeno fuzzy logic system 
shown in Fig. 2. The input fuzzy sets of the proposed system 

are denoted by Small, Medium and Large. The output 
variable of the fuzzy logic system is described by the 
singleton output fuzzy sets Low, Avg and High, described by 
the scalars 0.25, 0.5 and 0.75. In the current implementation, 
we have chosen the most simple, piecewise linear shape of 
the three memberships functions (the membership functions 
of the fuzzy sets Small and Large are trapezoidal, whereas 
the membership function of the fuzzy set Medium is 
triangular). 
 Each rule in the fuzzy logic system rule base associates 
an input fuzzy set to the corresponding output fuzzy set, that 
is, Small to Low, Medium to Avg and Large to High, as 
shown in Fig. 2. The weighted average method is used in the 
defuzzification step, leading to the following simplified 
expression of Q1 in terms of α~  and of the membership 
functions of the input fuzzy sets: 

 

)~()~()~(

)~(75.0)~(5.0)~(25.0
1

α+α+α

α+α+α
=

LargeMediumSmall

LargeMediumSmall
Q  (9) 

 

 
Figure 2. Fuzzy logic system block diagram. 

 
2.    The second term of the quality factor of the block 

simply describes the density of the un-corrupted pixels 
within the block, since the higher the number of reliable 
pixels used in the block’s reconstruction, the higher the 
confidence in a correct reconstruction of the block will be.  
This second term is denoted by Q2 and it can easily defined 

for each reconstructed pixels block res
pq,αI  from the set res

pqI  

starting from the corresponding un-corrupted binary pixels 
mask pqC ,αM  as the count of the number of ones in the mask 

(each value 1 indicating an un-corrupted pixel) divided to 
the block size for normalization: 
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Q
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i
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j
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=

−

=

−

=
αM

.  (10) 

 
3. The third term depends on the mean square error 

between the restored block and the original block, 

pqMSE ,α , estimated only on the un-corrupted pixels from 

the block, as  described in the expression (8) above: the 
smaller  pqMSE ,α , the higher the quality of the current 

reconstructed block, for the given α, res
pq,αI . Since 

pqMSE ,α falls always in the range [0;1], the third term of the 

quality factor of the current reconstructed block (denoted 
here by Q3) may be described by the complement of 

pqMSE ,α in respect to one:  
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pqMSEQ ,3 1 α−= .  (11) 

 
We integrate the three quality terms above into a single 
factor ( )αpqQ , describing the quality of any given 

reconstructed block res
pq,αI ,  by a simple arithmetic mean: 

 

( )
3

321 QQQ
Q pq

++
=α  . (12) 

 
Finally, in the restored image, each pixels block will be 

replaced by the particular res
pq*,αI  from the set 

{ }95.0;9.0;...;3.0;25.0, == αα
res

pq
res
pqI I  maximizing ( )αpqQ , 

( )αα
α

pqQmaxarg* = . Some examples of operation of the 

proposed algorithm and an illustration of the effect of the 
pixels block selection are given in the next section. 
 

IV. IMPLEMENTATION AND RESULTS 
The proposed algorithm for the detection and correction of 
the defects in digitized old movie frames was implemented 
using a combination of the Java open-source data mining 
tool Weka [5] and an own developed C++ software 
application. The powerful soft classification tools provided 
by Weka allowed us to select the optimal classifier 
configuration to distinguish between the corrupted and un-
corrupted pixels in the input image (that is, the current grey 
scale movie frame to be restored) in the feature space 
described in Section II. The features used for pixel 
classification were extracted in the C++ software application 
that we developed. For the classification we used the 
Logistic Model Tree (LMT) algorithm, as its performance in 
the correct separation of the pixels into corrupted and un-
corrupted, assessed on a validation set, were the best among 
a series of supervised classifiers implemented in Weka.  
 Overall, the small size defect detection process described 
in Section II works as follows. The LMT classifier is trained 
with a training set generated based on the manual labeling of 
a movie frame in which different types of small film defects 
(scratches, spots) and different types of useful details are 
present. Afterwards, in our software application, the trained 
classifier is loaded. For each movie frame to be restored, 
this movie frame is loaded, the features described in Section 
II for the description of the pixels are extracted, and each 
pixel is classified with the already trained soft LMT 
classifier. The resulting values of the decision function of 
the LMT classifier are further regarded as a fuzzy set 
MD[H×W] of confidences in the membership of each image 
pixel to a defect region, and the α-cuts (for α=0.25....0.95 
with a step of 0.05, yielding a total of 15) of this fuzzy set 
are computed and stored as binary maps 

{ }95.0;...;3.0;25.0=ααDM .  

 The second part of the algorithm is the reconstruction of 
the image using the adaptive matching pursuit-based 
algorithm described in Section III above, relying on the 
complements of the binary defect maps (which yield the un-
corrupted pixels maps) pqDpqC ,, 1 αα −= MM . In the current 

implementation, we generate a 2-fold overcomplete visual 
dictionary based on the discrete cosine transform, and the 

size of each pixels block in the visual dictionary (therefore 
also in the matching pursuit algorithm) is 16×16 pixels, 
P=16. The matching pursuit based image restoration is 
applied for each possible α value, from 0.25 to 0.95, 
yielding a set of 15 possible reconstructions of each square 
16×16 pixels block from the movie frame, out of which, in 
the end of the block’s reconstruction process, the 
reconstruction that maximizes a quality factor Q (computed 
according to the expressions (9)-(12) above) is selected as 
the best choice. This final selected block of pixels will 
replace the original block in the frame. 
 The results of the reconstruction are exemplified in Fig. 3 
and Fig. 4 for two frames affected by small size defects on 
the film (scratches and spots), from two different movies. In 
Fig. 3, we also present the binary defect maps for a series of 
α values and the outcome of the reconstruction of the frame 
in case no selection of the optimal reconstructed pixels 
block (based on Q) would be performed, but a single defect 
map (a single α) would be used. One can see that in this 
case, the result would be under-optimal, as compared to the 
adaptive selection proposed shown in Fig. 3.b). Also, for the 
movie frame in Fig. 3 we present graphically, in the form of 
an image, the map of the optimal values α* mapped to grey 
levels (0.25 represented in black, 0.95 in white, the other 
values mapped to intermediate grey levels) for each frame. 
Their variation from one pixel block to another shows that 
no single optimal α-cut value or single optimal pattern of α 
values exists in practice, therefore the adaptation scheme 
proposed is needed for the best quality of the restoration.  
 

 
(a) 

 
(b) 

 
(c) 
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(d) 

   
(e) 

   
(f) 

   
(g) 

   
(h) 

Figure 3. (a)The original image, a digitized old movie 
frame; (b) The resulting image using the proposed 

algorithm; (c) The map of the optimal values α*; (d-h)The 
defect pixel map and the reconstructed image for this 

defect pixel map with the following α values: 0.3 (d), 0.5 
(e), 0.7 (f), 0.8 (g), 0.9 (h) 

 

     
(a) (b) 

Figure 4. Another movie frame restoration example: 
(a)The original image; (b) The resulting image using the 

proposed algorithm 
 

V. CONCLUSIONS 
We proposed a new adaptive method of detection and 
correction of small defects from old movies frames, using 
supervised soft classifiers and a fuzzy logic adaptive 
formulation of visual dictionary-based image restoration.  
The experimental results show a better quality of the 
restoration as compared to the non-adaptive version of this 
algorithm, at the cost of an increased computational 
complexity. In our future work, we will investigate other 
potential applications of this approach, e.g. by the use of 

learnt visual dictionaries. 
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