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Abstract: The following paper describes a method to design a sliding mode (SM) controller for a dc-dc converter. It focuses on 
producing an aperiodic response and a controlled settling time. The method can be used for a given set of disturbances, and thus 
lends itself to subsequent worst case or weighted convex optimization solutions. The impact of an analog to digital converter is 
presented. Additionally, the restriction of the switching frequency, a challenge particular to sliding mode control (SMC), is 
discussed. The work comprises Mathcad modeling, Psim simulation and experimental results. The control block was implemented 
on an Artix 7 FPGA.  
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I. INTRODUCTION 
Switched-mode power supplies are widespread circuits used 
in household items, office equipment, communication 
equipment etc. They are also used to extract power from 
distributed energy resources in microgrids. The control 
requirements of such systems are increasing in complexity, 
which is why it is necessary to identify all issues which 
hinder performance and to try to alleviate them. The 
importance of control loops and system dynamics is 
presented in [1]. 
 The transition from analog to digital control presents 
both advantages and disadvantages. On the one hand, the 
control may be slower, which means longer settling times. 
Additionally, the sampling and processing delays may 
impact the quality of the transient response. On the other 
hand, digital control is impervious to ageing effects and 
external factors such as temperature or capacitor bias 
voltage, both of which influence the performance of analog 
control circuits. They also allow simple control law 
reconfiguration, communication facilities, autocalibration 
and debugging. The drawbacks are gradually eliminated by 
semiconductor manufacturers. 
 The most commonly used solution for designing the 
control of a dc-dc converter is the PID regulator [2], [3]. It 
is very well documented, but it is not robust [4]. This is why 
phase margins must be allowed. Even so, the variance of 
any of the system's parameters impacts the quality of the 
transient response. The PID coefficients can be determined 
by using tuning methods [5], [6]. They can also be 
determined as described in [7]. Additionally, self-tuning 
PID controllers have been presented in [8]. There is also the 
integrator plus dead time model, which is correlated to 
Ziegler-Nichols as in [9]. The PID algorithm can provide a 
solution for the step-down converter, but it may create 
problems for higher order systems by degrading transient 
response parameters such as overshoot and settling time, or 
it can even lead to oscillations [10].  

 Sliding mode (SM) is a method used for robust control. 
Sliding mode control (SMC) design guidelines are presented 
in [11]. The main idea is to drive the system towards steady 
state every time there is a disturbance by restricting the 
evolution of the state variables to follow the projections of a 
control manifold in the state space. This control manifold is 
defined during design and it must intersect one point 
corresponding to steady state, irrespective of the operating 
conditions. If the natural state variables do not allow the 
existence of such a point, then a new set of state variables 
must be defined to meet this requirement. This paper 
handles such a situation. 
 There are several variations which stem from the SMC. 
Among them, the double integral sliding manifold increases 
the number of state variables, but decreases the output 
steady state error [12]. Nonlinear sliding control laws can be 
defined, such as terminal sliding mode control (TSMC) [13] 
and adaptive terminal sliding mode control (ASMC) in [14]. 
The claim is that they can influence transient response 
parameters, but rely on accurate sensing just like the 
conventional linear SMC.  
 The advantages of SMC render it suitable for a large 
range of applications. Among them, the control of dc-dc 
converters [15]–[17], actuated systems [18], industrial gas 
turbines [19], road vehicles [20]. 
 This paper presents the design of a SM controller for a 
step down converter. The state space model of the converter 
and the theory of the SMC are briefly introduced. 
Subsequently, the desired transient response is defined 
qualitatively. An aperiodic response is the target. A method 
is proposed to meet this objective. Additionally, the duration 
of the transient response is determined as a result of the 
convenient polynomial approximation of exponential and 
trigonometric functions. The time constant, which 
corresponds to an exponential decay produced by the sliding 
phase, is expressed separately. After that, a possible solution 
for restricting the minimum and maximum values of the 
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switching frequency is proposed. The control law is 
designed for a damped transient response and the settling 
time is calculated. In order to reduce component count, one 
voltage is sensed and an observer is employed. The effect of 
the sampling rate on the desired transient response is 
presented. Experimental results are provided. 
 The paper is organized as follows: section 0 presents the 
step-down converter, the SMC, defines the desired outcome 
and the design considerations; section 0 presents the 
Mathcad model and the Psim simulation results; section 0 
presents a simulation augmented by the ADC delays and the 
experimental results; section 0 presents the conclusions of 
the work. 
  

II. CONTROL METHOD AND DESIGN 

II. 1 The model of the step-down converter 
The step-down converter is a topology of a switched mode 
power supply which is used to maintain an output voltage 
lower than that at its input. The circuit does not use galvanic 
isolation. The schematic of a synchronous buck converter is 
presented in Figure 1.  There are two switching devices M1 
and M2 which control the power flow through the circuit, 
hence the name switched power supply. The command 
signals for M1 and M2 are complementary, thus averting the 
risk of a short circuit. The inductor L and the capacitor C 
successively store energy and release it to the load. 
Resistances RL and the Equivalent Series Resistance (ESR) 
of the capacitor are parasitic components. 
 

 
Figure 1. Schematic of a step-down converter. 

 
 The model of the converter is delivered by simply 
applying Kirchhoff’s laws. It takes the form of a pair of 
coupled first order linear differential equations, as in (1) 
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where ui is a function taking values 0V when M1 is OFF and 
VI when M1 is ON as in (2), R is the resistance of the load 
and uc is the capacitance voltage and does not include the 
drop across the ESR. The state variables are the inductance 
current and the capacitance voltage. The model of the buck 
converter is required for feedback loop considerations. It 
allows for the removal of the nonlinear switching devices, 
provided that the ripple components of the inductor current 
and output capacitance voltage are neglected and that the 
voltage at the drain of M2 is considered rectangular, namely 
the output voltage value does not change at all during a 
switching period. Also, continuous conduction mode is 
assumed.  
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II. 2 SMC for a second order system 
The SMC is a nonlinear control method applicable to 
variable structure systems (VSS). It is suitable for power 
supplies even though the model presented previously is 
linear. That is because switching power converters are VSS. 
The method ensures the stability and robustness of the 
system. In fact, it is an approach to robust control. 
 The design of the SM controller starts with the 
identification of the state variables and the description of the 
plant. Assuming a second order system, the plant can be 
described as 
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where [x1, x2]
T is the state variable column vector, r is the 

applied time varying input and the coefficients aij and bi are 
determined according to the physical properties of the 
system. The solution describing the evolution of the system 
depends upon the values taken by the input r. The control 
law can be given as 
                                  012 =⋅− xx α                                    ( 4 ) 
This is a linear function on the phase plane and the 
equilibrium point is normally taken at the origin. The 
function does not overlap with the natural evolution of the 
system for a given constant input r, but it steers the state 
variables towards their steady state values via the high 
frequency switching of the input. In theory, the high 
frequency tends to infinity. In practice, its maximum value 
will be restricted in order to limit the switching losses.  
The state variables must be selected in such a way that their 
zero values eliminate steady state error regardless of the 
operating point of the system. The equilibrium point will 
thus be at the origin of the phase plane. The selection of the 
appropriate state variables for a buck converter is detailed in 
the next section. 
 The values of the state variables are forced along the line 
given by the control law (4) towards equilibrium for any 
given transients. However, it is conceivable that the system 
evolution starting from certain initial values does not land 
on this line. This means that the control law must be defined 
in such a way that regardless of the disturbance, the system 
will evolve toward the sliding function defined in (4). This 
is called the hitting condition and it translates to 
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Equations (3) and (5) lead to 
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for any fixed value of input r within its allowed set. 
 
II. 3 Conveniently defined state variables 
The model description of the Buck circuit given in (1) 
defines the inductance current and capacitance voltage as 
state variables. This is the usual choice for state variables. 
However, it is not advantageous for the purposes of the SM 
control law previously defined. The reason is the fact that 
the origin of such a phase plane would not correspond to the 
equilibrium point. In fact, the equilibrium would correspond 
to an entire line segment whose capacitance voltage 
coordinate would be fixed at the nominal value and 
inductance current coordinate would vary as a function of 
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the load.  Defining the control law in such a situation would 
require information about the load in order to select the 
appropriate inductance current coordinate. 
 An alternative state variables set comprises the capacitor 
current ic and the capacitance voltage error eo. Indeed, the 
average capacitor current is null during equilibrium 
regardless of the load and it reflects the average inductance 
current error during transient states. Additionally, the 
capacitance voltage error is null during equilibrium 
regardless of the nominal output voltage. The latter can be 
determined if a reference voltage Vref is provided. Therefore, 
the SM control law given in (4) is adequate for the new state 
variables and the origin of this phase plane is the 
equilibrium point, regardless of the system’s operating 
conditions. The substitution is possible using (7). The 
results are given in (8), with (9) and (10) detailing some of 
the terms in (8). The term β accounts for the attenuation 
produced by the resistive divider in the feedback loop. 
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Equation (8) describes the continuous conduction mode 
converter as a pair of first order autonomous systems. It is 
possible to express the solution for each provided that the 
initial values of the two state variables are known. The 
control circuit will generate the switching command such 
that the state variables reach the equilibrium point. 
 
II. 4 The qualitative description of the desired transient 
response 
The control law (4) must be selected in such a way that the 
steady state and transient state performances of the overall 
system comply with the specified requirements. It does not 
influence the steady state behavior of the system, because of 
the way it is designed to cancel the average value of the 
output voltage error. The general form for the control law 
was given in (4), though after the change in state variables 

(7), it becomes 
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The one parameter which can be modified in the design of 
the control law given in (11) is α. Its value must be positive.  
 
                                           0>α                                  ( 12 ) 
 
 This restriction places the graph of the control law in the 
first and third quadrant of the phase plane, which is in 
accord with the physical behavior of the system and the 
natural variation of the output voltage error and inductor 
current error in case a disturbance is present. Indeed, a 
decrease in load current leads to an increase in output 
capacitor voltage, which according to (7) means a negative 
voltage error (state variable). In order to handle this 
disturbance, a negative capacitor current must be enforced. 
Therefore, the system will evolve freely until it reaches the 
control law in the third quadrant of the phase plane. From 
there on, the sliding phase will force the system into its new 
steady state. A load increase is handled similarly, but in the 
first quadrant of the phase plane. 
 The transient response parameters such as settling time 
and overshoot vary as a function of the value of α. In fact, 
the entire shape of the transient response depends on it. This 
is because of the various ways in which the system 
trajectory can evolve before it reaches the sliding phase. 
The time domain feature of the sliding phase is that both 
state variables vary towards their steady state values 
exponentially. This can be easily verified by substituting (7) 
into (11). The time interval for this phase depends on the 
time constant, which is 
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Clearly, it is preferable to have the time constant as low as 
possible, which means increasing α as much as possible. 
 There is, however, a restriction on the increase of α. 
Prior to reaching the sliding phase, the system must intersect 
the control line in a region where condition (5) is met. 
However, it is possible that the first intersection – or the 
first several intersections – occur outside that region. This 
will lead to more cycles on the phase portrait, as presented 
in Figure 2b. In the time domain it translates to long 
ON/OFF pulses, which can lead to high currents through the 
inductor and even its saturation. However, the settling time 
will not necessarily be longer than in a case where the 
sliding phase occurs on the first intersection. Figure 2a 
presents an aperiodic transient response. The two situations 
presented in Fig. 2a and Fig. 2b feature the same dc-dc 
converter, the same initial conditions for the state variables, 
but different values for α. 
II. 5 Design of the SM controller 
The method described for the selection of α is oriented 
towards transient response performances. That is because 
regardless of this parameter, the steady state values of the 
output voltage error and inductor current error, respectively, 
will always go to zero. The transient phase will comprise 
the reaching phase designed to end at the first intersection 
with the control law characteristic, as in Figure 2a, and a 
sliding phase towards zero error, which will correspond to 
an exponential error decay in time. The time constant of the 
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sliding phase is given in (13). The advantages of such a 
transient response are the elimination of high current values 
through the inductor, ensuring that it operates away from its 
saturation limit and the elimination of output voltage spikes. 
Starting from (5) and (11), we get (14) 

 
Figure 2. a: phase plane and transient response for α = 
8.33·10

4
; b: phase plane and transient response for α = 

1.67·10
5
. 
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Substituting (8) into (14) yields the two conditions 
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There is one linear equation and two affine equations 

which can be defined based upon the four inequations in 
(15): 
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The intersections of (s) and (d1) and, respectively, of (s) 

and (d2) determine the boundaries for the validity of (5). 
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A geometrical approach for the selection of α will be 

presented. In order to design the control law, it is necessary 
to determine the convenient points of intersection between 
the sliding curve (s) and the two characteristics of its 

derivatives (d1) and (d2), which are expressed in (16). All 
three are presented in the state variable plane in Figure 3. 
The goal is to make sure that for the given system and a 
known range of disturbances (output load step), the reaching 
phase always intersects the control law characteristic when 
conditions (15) are valid. This means that the intersection 
will always occur on the [P1P2] segment. In order to ensure 
that, it is necessary to evaluate the evolutions of the state 
variables during the reaching phase. They depend upon the 
various initial values (disturbances) and the system is 
subjected to no switching of the control signal. Generally, 
the reaching phase does not exceed the range of tens of µs, 
which is why the expressions of the state variables can be 
approximated as second order polynomials. Additionally, 
the time domain is selected in such a way that it prevents 
inductor saturation under worst case conditions. The 
stationary points of the state variables in the open time 
domain 0 - 50µs are evaluated. The solutions of (8) come in 
the form of a sum of trigonometric functions weighted by 
exponential functions. It is convenient to expand the 
exponential and trigonometric functions as Taylor series 
around the origin, which yields the second order 
polynomials in (18). The real coefficients a0e, a1e, a2e, a0i, a1i 
and a2i correspond to the second order approximations of 
the solutions of (8). The maximum relative error produced 
as a result of this approximation during the reaching phase  
is dependent upon the system and the initial conditions of 
the 
 

 
Figure 3. The three lines (s), (d1), (d2) and intersection 

points P1 and P2. 
state variables. However, it was found to be less than 2% for 
the system used. 
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The time domain solutions of (8) and their 

approximations in (18) are plotted in Figure 4. If there is no 
vertex in the selected time domain, the maxima and minima 
are found at the domain limits. The maxima of the voltage 
error in the domain [0, 50 µs] are determined for various 
initial conditions, depending upon the disturbance, as shown 
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in Figure 4. The selection of α will accommodate for the 
maximum absolute value of the voltage error. 

The absolute maximum value of the voltage error will 
determine the boundaries of the region of convergence, 
which are the coordinates of points {P1} and {P2} in Figure 
3. The next step is to determine α such that the width of this 
region is ensured. 
 

  
Figure 4. Top: Overlap of the state variables (solid line) 

and their second order polynomial approximations 
(dotted line). Bottom: The phase plane of the state 

variables and the reaching of (s) with respect to (d2). 
 

Considering the maximum absolute value of the state 
measures determined previously, coordinates for points P1 
and P2 can be imposed. In the following approach, the 
maximum absolute value of the voltage error was used, 
denoted as emax. 
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Conditions (15) become 
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where functions f11(α), f12(α), f21(α) and f22(α) are all 
quadratic in α. The inequalities are solved and an acceptable 
range for α is determined.  

Figure 5 presents the transient response behavior of a 
given system and a set of given initial conditions for two 
different values of α. The admissible range of the parameter 
was determined according to the previous method to be 
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The two values in the example are 
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It is obvious from Figure 3 and (16) that the two points 

{P1} and {P2} belong to the third and first quadrant, 
respectively, on the state variables plane. The aperiodic 
transient response takes place in on quadrant or the other, as 
explained in Section 0. The example in Figure 5 considers a 
situation where the first quadrant is the only one of interest 
in the representation of the transient response. Therefore, it 
is only the position of {P2} that matters in this particular 
case. 

These results confirm the validity of the method: when 
using α1, the sliding phase commences as soon as the 
evolution of the system reaches the control line in the phase 
plane. This behavior stands in contrast to using α2, when the 
sliding phase only commences after a second intersection. 
Additionally, the current peak produced during the transient 
response is double in magnitude. The same initial conditions 
were used in both cases. 

The selection of α presented above leads to a transient 
response which comprises two stages: the reaching phase 
and the sliding phase. The latter is an exponential decay 
whose time constant is given in (13). Consequently, its 
duration can be considered to be proportional to the time 
constant. In this paper, the proportionality factor was 
considered to be three. 
 

  
Figure 5. Left: phase plane and transient response for α 

= 7.57·10
3
; Right: phase plane and transient response for 

α = 1.51·10
4
. 

The duration of the reaching period was determined 
using the polynomial approximations presented in Figure 4. 
Indeed, using (11) and (18), it was possible to determine the 
duration of the reaching phase as one of the roots of a 
second order polynomial. The solution had to be strictly 
positive (or else it would have yielded negative time 
duration). In order to clearly distinguish between roots if 
both happened to be positive, the lower value was chosen. A 
third order polynomial approximation can also be used for 
better precision. The same approach can be used to 
determine the stationary points of the state variables, which 
would lead to the capacitor voltage and inductor current 
maxima or minima during the transient response. 
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II. 6 Minimum and maximum switching frequency 
Hitherto this version of control does not account for any 
maximum frequency limitation. This is necessary in order to 
limit the switching losses. The proposed method is to limit 
both the ON time and OFF time to take values between 1µs 
and 5µs. This also produces a minimum frequency 
limitation, which helps to avoid inductor saturation when 
necessary and the undesirable shift of frequency towards the 
audible spectrum. The logic diagram of the algorithm used 
for ON and OFF time limitation is presented in Figure 6. 
 

 
Figure 6. Diagram of switching frequency limitation. 

 
III. MODELS AND SIMULATIONS 

The control method presented in the previous sections was 
implemented in Mathcad by using a series of mathematical 
expressions. The solutions of (8) and the control law (11) 
were used in a sequence which follows the flowchart 
presented in Figure 7. 
The step down converter used was specified as follows:  
 

                













Ω=Ω=

=

=

=













=

Ω=

=

=

mESRmR

FC

HL

VV

R

VV

VV

Lref

i

50 , 5

2.0

660

100

     

8.0

75.1

02.4

9

0

β

µ

µ

                 ( 23 ) 

 
 The disturbance produced was a step variation in load 
resistance, from 2.7Ω to 1.75Ω, which translates to the 
initial conditions of (8) as 
 

                                .
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Ve

c

o                                 ( 24 ) 

 

 
Figure 7. Diagram of Mathcad model. 

 
 The expected reaching phase duration and time constant 
according to (13) are 
 

                            .
205

8.28





=

=

s

str

µτ

µ
                                   ( 25 ) 

 
Thus, the expected settling time is 
 
                          .6503 stt r µτ ≈⋅+≈                             ( 26 ) 
 
The results are presented in Figure 8, Figure 9 and Figure 
10. 

 
Figure 8. Time variation of error voltage returned by 

Mathcad model. At the bottom left reaching phase 
duration and time constant. 
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Figure 9. Time variation of capacitor current returned by 

Mathcad model. 
 

 
Figure 10. Phase portrait returned by Mathcad model. 

 
 The same system was modeled and simulated in Psim. 
The schematic of the simulation is presented in Figure 11. 
 

 
Figure 11. The PSim schematic used for simulation. 

 
 The same disturbance yielded the results presented in 
Figure 12, Figure 13 and Figure 14. 

 
Figure 12. Time variation of error voltage returned by 

Psim simulation. 

At the bottom left reaching phase duration and time 
constant. 
 

 
Figure 13. Time variation of capacitor current returned 

by Psim simulation. 
 

 
Figure 14. Phase portrait returned by Psim simulation. 

 
 Figure 12 indicates the measured values for the duration 
of the reaching phase and time constant, respectively. 
 

IV. EXPERIMENTAL RESULTS AND 
DISCUSSIONS 

The experimental results were performed on a Microchip 
development board - DS70181A. The control was 
implemented in an Artix 7 FPGA from Xilnx. The 
experimental setup is presented in  
Figure 15. 
 

 
 

Figure 15. Experimental setup. 
 

The inductor on the step-down converter was replaced by a 
100 µH single coil shielded power inductor. The 12-bit data 
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acquisition of the FPGA is possible via an ADC PmodAD1 
which is set to operate at 730ksps. The track-and-hold 
maximum acquisition time and the conversion time are 
specified to be 400ns and 1.33µs, respectively. The Psim 
simulation model was amended to account for that. The new 
Psim simulation results are presented in Figure 16, Figure 
17 and Figure 18. 
 

 
Figure 16. Time variation of error voltage returned by 

Psim simulation. The ADC sample & hold durations have 
been considered. 

 

 
Figure 17. Time variation of capacitor current returned 
by Psim simulation. The ADC sample & hold durations 

have been considered. 

 
Figure 18. Phase portrait returned by Psim simulation. 

The ADC sample & hold durations have been considered. 
 
One consequence of the previous operation is the fact that 
there will be switching cycles during the reaching phase. 
That is because the observed derivative component 
corresponding to the capacitor current swings between 
positive and negative values. In fact, the transient state 
derivative of the error voltage is no longer proportional to 
the capacitor current. It does go to zero in steady state, 
however. This is the impact of sampling and it may be 
alleviated by using a higher performance ADC. The 
aforementioned switching leads to longer transient times 
and higher values for the state variables. 

In order to produce experimental results, the output voltage 
and the output current were measured instead of the state 
variables presented in the previous plots. The waveforms 
generated by the model in PSim are presented in Figure 19 
and Figure 20. Their experimental counterparts are 
presented in Figure 21 and Figure 22. In order to emphasize 
the transient response, the ac coupling mode was used. 
The output voltage of  Figure 19 and Figure 21 both show a 
dip of approximately 40mV and a settling time of 
approximately 75µs. 
 

 
Figure 19. Time variation of output voltage returned by 
Psim simulation. The ON/OFF time limitation has been 

implemented. 
 

 
Figure 20. Time variation of load current returned by 

Psim simulation. The ON/OFF time limitation has been 
implemented. 

 The current measurement is performed using a 50mΩ 
sense resistance and an amplification of 50. The value 
corresponding to the initial load of 2.7Ω was subtracted in 
order to better emphasize the transient response. 
 The simulated and experimental results are correlated in 
terms of both amplitudes and settling times.  
 

 
Figure 21. Time variation of output voltage. Experimental 

result. 
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Figure 22. Time variation of load current. Experimental 
result. 

 
V. CONCLUSION 

The paper presents the design of a SM controller used with 
a step-down converter. The proposed design can produce an 
aperiodic transient response and it can estimate the settling 
time for a given disturbance. In order to achieve this goal, 
the step-down converter was modeled as a second order 
linear system. Additionally, the state variables were selected 
in such a way that the equilibrium point was the same, 
regardless of the system parameters. The new set of first 
order linear differential equations for this new set of state 
variables was inferred as two autonomous systems, as is the 
case for a VSS. The two are successively valid in the 
present case of continuous conduction mode and their 
validity only depends upon the command signal. 
 The SMC was briefly introduced, before it was 
expressed for the previously defined system. The entire 
system was modeled in Mathcad and simulated in Psim. The 
results are correlated, which confirms the validity of the 
created model. Subsequently, the Psim circuit was amended 
to account for the physical limitations imposed by the ADC. 
The new simulation results are correlated with the 
experimental results, which confirms the accuracy of the 
model. The investigation of the impact that the ADC speed 
has on the overall feedback loop can constitute the grounds 
for future work. 
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