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Abstract: The work of this paper is addressing the issue of narrowband spectrum sensing (SS) applications for cognitive radio 
networks assuming the OFDM signal over noisy and various fading channels with focus on the development of an open-source 
simulation and development software. The paper also proposes a residual and recurrent convolutional Neural Network (NN)-
based method for spectrum sensing. This method is compared with a baseline energy detection (ED) approach. Detection 
performance of the models is analysed given various Signal-to-Noise Ratio (SNR) values using three-base scenarios. First two 
scenarios correspond to an additive white gaussian noise (AWGN) channel respectively Rayleigh flat fading channel and the third 
one corresponds to the frequency-selective Rayleigh fading channel since the SNR value and fading can affect drastically the 
detection performance in terms of false positives/false negatives leading to erroneous estimators. The experimental results are 
analysed through the receiver operating characteristics (ROC) plot containing the curves for both ED models enhanced by the 
denoising methods. On average, the classic ED algorithm with dynamic threshold outperforms the NN-based model, especially in 
low SNR domains. The NN-based model trained on constrained, tailored dataset characteristics outperforms the classic ED model 
in scenarios described by the corresponding characteristics.  
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I. INTRODUCTION 
The technology of the wireless communication systems 
relies on the exploitation of the radio frequency spectrum, 
which is a physical, naturally limited resource. The entire 
frequency spectrum is delimited in distinct bands and sub-
bands, each presenting technological difficulties to a 
different degree to develop an efficient communication 
system in accordance with applications requirements due to 
channel properties of the resulted fragmented radio 
resources, making domains of the spectrum more appealing 
and recommended for different communication applications. 
Given these aspects the radio spectrum is highly regulated 
by static allocation policies on long-term and relatively wide 
geographical areas. Technological advances from last 
decades, increasing number of communication and wireless 
devices and increasing demands for high data rates rapidly 
increase the requirements for greater spectrum availability 
leading to the issue of spectrum scarcity. 

To these days the problem of efficient and intelligent 
spectral resource management presents difficulties when it 
comes to spectrum allocation in such a manner to avoid 
interference, reduce allocation time by identifying the 
available resources and detecting primary signals in a 
reasonable time thereafter performing the computation tasks 
in as fast and as accurate manner as possible. Spectrum 
sensing along with other coupled subjects are the topics 
intended to solve such aspects leading to the concept of 
cognitive radio. To emphasize on the limitations given by 
the current methods and the migration to higher frequencies, 
there are difficulties for the available hardware to efficiently 
work with limited power in the superior frequency spectrum 
as the digital signal processing applications must operate 
with higher sampling rate to satisfy reasonable processing 

time and so for the applications to be practical and 
beneficial. This last drawback is one of greatest among 
them, as even the spectrum sensing solutions must find a 
way to overcome it. Reliable spectrum sensing aims to 
enhance radio resource management through which users, 
primary or secondary, can safely occupy or evacuate the 
spectrum bands. The main scope of spectrum sensing in 
cognitive radio networks is to “intelligently” increase usage 
efficiency of radio resources in such way that higher 
number of users can access the medium at any given 
moment with minimized chances of interfering with each 
other. A brief illustration of the concept of spectrum scarcity 
and narrowband/wideband sensing is shown in Figure 1. 

 
Figure 1. Illustration of spectrum scarcity given by the 
gaps representing available, yet not accessible radio 

resources, and the two paradigms of spectrum sensing. 

The scope of this paper is to develop, analyse and 
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compare the performance of two spectrum sensing models 
in terms of simulation of time series data under noisy and 
fading channel conditions with wavelet denoising technique 
resulted by employing a dedicated Python-based 
framework. The first model is based on a classical energy 
detection algorithm with adaptive threshold and the second 
model is a proposed solution based on a Deep Learning 
(DL) algorithm composed of a residual recurrent and 
convolutional NN. The channel models considered for this 
paper are as follows: firstly, the AWGN channel, secondly 
the Rayleigh Flat fading channel, and lastly the Rayleigh 
Frequency Selective fading channel. The structure of this 
paper is as follows: in Section II are briefly described the 
latest advances made on the topic of cognitive radio and 
spectrum sensing, Section III presents the proposed 
methods, in Section IV the simulation results are presented 
and interpreted along with the performances of the models, 
finally in Section V the conclusions of the work are 
resumed.  
  

II. RELATED WORK 
Multiple spectrum occupancy measurement campaigns for 
licenced radio spectrum bands led to the identification of 
inefficiencies in the radio resources usage patterns of the 
Primary Users (PUs) in the bands allocated to 
communication service providers. This affirmation is based 
on the statistics of the measurements which show that on 
average a significant part of the radio bands is available (in 
some scenarios even greater that 50% of total bandwidth), 
this varying based on geographical area, daytime, and 
application type [1]. Spectrum sensing functionalities are 
essential for efficient cognitive radio networks solutions, if 
not the core idea behind the entire concept. They aim to 
solve the scarcity regarding the available radio resources 
which increases permanently and directly proportional to 
the increase of network users and active devices accessing 
the medium, which follow and exponential curve, but also 
the usage inefficiency of the licensed bands. Newer 
technologies and standards are already designed in such a 
manner that the required radio spectrum is extended to the 
usage of higher frequencies as the simplest and most natural 
solution for spectrum scarcity strictly. Although this simple 
solution is highly limited since free air medium behaves 
intrinsically as a Low Pass Filter (LPF) for electromagnetic 
waves in many spectral regions, especially for millimetre-
wave and terahertz spectrum, which suffer drastic 
attenuations at high, respectively moderate distances from 
interactions with air particles and water vapours [2]. 

The first proposal of Cognitive Radio arises with the 
work of Mitola III Joseph and Gerald Q. in a paper [3] 
presented at the Royal Institute of Technology - Stockholm. 
The idea emerged together with the entire field of Software 
Radios, and it was firstly envisioned as a multiband 
multimode personal communication system described 
through Radio Frequency (RF) bands etiquettes, over-the-air 
interfaces, dedicated protocols together with radio spectrum 
moderation techniques based on spatial and temporal 
patterns. In this paper the authors describe cognitive radio as 
an extension of software radio focusing on the problem of 
reasoning regarding the RF etiquettes following a radio-
domain model, offering the advantages of enhancing 
flexibility of the devices by the Radio Knowledge 
Representation Language. The radio knowledge 
representation language is briefly described as a software 
mapping and evidence which takes in account the RF 

etiquettes, existing devices, available software modules, 
channel information and propagation characteristics, 
networks and corresponding topologies, devices 
applications requirements in such a way that automated 
reasoning is possible to compute with the aim to optimize 
the global network efficiency and user experience. The 
authors also describe the concept of cognitive radio through 
an analogy with a chess game based on the idea that every 
user is in a competition for accessing the resources where 
the game board is the radio spectrum. 

Since the first proposal of cognitive radio and spectrum 
sensing great efforts were devoted into research and 
solutions development of spectrum sensing techniques. A 
brief review of the recent research advances on this topic is 
presented in paper [4] where the issue is separated and 
defined in two paradigms: the narrowband spectrum 
sensing and wideband spectrum sensing. For each paradigm 
existing approaches are reviewed in-depth and classified 
according to their key component. The reviewed approaches 
for the narrowband spectrum sensing are Energy Detection, 
Cyclostationary Detection, Matched Filter Detection, 
Covariance-based Detection and Machine Learning-based 
(ML) Detection. On the other hand, for the paradigm of 
wideband spectrum sensing the corresponding reviewed 
approaches are Wavelet Detection, Multiband Joint 
Detection, Filter Bank Sensing, Non-Blind and Blind 
Compressive Wideband Spectrum Sensing. The authors also 
classify further the Non-Blind and Blind Compressive 
Sensing to Compressive Wideband Sensing and the rest of 
the wideband approaches into Nyquist-based Wideband 
Sensing. In paper [5] Arjoune and Kaabouch offer a 
comprehensive survey regarding spectrum sensing solutions 
for Cognitive Radio Networks with a focus on comparison 
of the existing and most recent solutions along with 
corresponding performance and limitations and finally 
highlighting future challenges. 

Atapattu et al. are addressing the issue of spectrum 
sensing in detail from the perspective of energy detection 
technique in paper [6] which prescribes the use of the 
central limit theorem (CLT) for enhanced performance. The 
impediments given by the fading process of the channels are 
mitigated by exploiting the spatial diversity gains given by 
the employment of antenna arrays, leading to a two low-
complexity diversity technique for energy detector. The 
method is evaluated in a Rayleigh fading scenario with high 
SNR regime where the spatial correlation can be performed. 
The other alternatives of the narrowband spectrum sensing 
are discussed briefly. The use of CLT is suggested in the 
scenario of a sufficiently large number of samples where 
better approximations of the false alarm and detection 
probabilities are computed. Evaluation is performed based 
on the ROC curves for the proposed detection techniques. 

In paper [7] the author is proposing a classic approach 
for energy detection as a brief overview of the theoretical 
aspects focusing on the main parameters that affect the final 
decision. Similarly, in [8] the authors are addressing the 
problem by an enhanced cooperative spectrum sensing 
using the wavelet denoising techniques and a softened hard 
decision method with results that show an improvement of 
performance up to nearly 15% in probability of missed 
detection (or False Negative) at a probability of false alarm 
(False Positive) of 0.1 with a Signal-to-Noise Ratio (SNR) 
of -10 dB. The approach in paper [9] implements filter bank 
based multicarrier techniques, together with a subcarrier 
loading based of water filling algorithm which is shown to 
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be effective for spectrum holes detection. A more complex 
work is presented in [10] for which spectrum sensing is 
addressed for signals from a lower range of SNR values, 
employing a cyclostationary spectrum sensing method based 
on Fast Fourier Transforms (FFT) accumulation. 
An ensemble classifier approach is described through the 
work of Hassaan described in paper [11] in low SNR values 
and computational cost constraints. The approach is 
employed in an OFDM modulation-based signal generation 
over AWGN channel where the SNR of the primary user is 
varied. The problem of detection is addressed by exploring 
the cyclostationarity structure of the signal as it is more 
robust to lower SNR range. The technique of 
cyclostationary feature detection is firstly proposed by 
Gardner in [12] and [13]. Features are extracted from the 
accumulations of the FFT and included in training of an 
AdaBoost model based on Decision Tree algorithm. The 
performance of the ensemble classifier is compared to the 
performance of a Support Vector Machine (SVM). Results 
indicate that the classification model outperforms the SVM 
classifier. Other comparisons which indicate performance 
improvements are with the classic cyclostationary detector 
and energy detector which are both outperformed. Main 
contributions of the work of Gardner are reflected in the 
dataset synthetization algorithm for OFDM signals in 
various SNR conditions given by the AWGN channel and 
adjusting FFT Accumulations Method (FAM) for proper 
estimation of the generated signal cyclic spectrum features. 
 

III. PROPOSED METHODS  
A. Primary signal simulation based on Tapped 

Delay Line method & Sum of Sinusoids 
Given the context of a narrowband spectrum sensing 

application, a cognitive radio must be able to precisely 
decide if a PU signal exists for a defined relatively small 
segment   (up to the order of tens or hundreds of 
MHz at most) of spectrum during the probing process. If the 
probed bandwidth is decided to be free, a cognitive radio is 
said to be able to safely access the communication medium 
by that bandwidth. If the probed bandwidth is decided that 
is occupied by a PU, then the cognitive radio must abort any 
ongoing medium access processes and leave the respective 
resources available for the PU. In the simplest form the 
decision logic can be described as a binary hypothesis test 
for a set of observations at any given moment modelled by 
equation (1): 
 

  (1) 

 
where  is the observation of the received signal at 
moment ,  is the noise in a form of AWGN process, 

 is the channel transfer function at given moment , 
 is the signal at time ;  marks an absent PU signal; 

 marks the presence of PU signal. If the sensing 
narrowband is affected by flat fading phenomena the 
channel transfer function  is described by 
approximately the same attenuation across the entire 
bandwidth as the variations appear at the same scale, hence 
the received signal is said to suffer on average the same 
attenuation over the channel. This type of fading is 
commonly modelled by the Rayleigh flat fading channel 
which is implemented in the simulation framework. The 
AWGN channel can be considered as a special case of the 

flat fading channel in which the fading process of the 
channel does not apply any attenuation nor amplification 
(extremely unlikely in real scenarios) on the received 
communication signal, hence the channel transfer function 
is said to have the unity value across every frequency of the 
sensing bandwidth and only the noise accounts in the 
resulted signal. These two cases are the most common 
researched and simulated scenarios in literature for the 
context of narrowband applications. Although in practice 
this is not always the encountered situation. The higher one 
advances in the frequency spectrum, the higher the 
attenuation of the signals and the channel transfer function 
can drastically change stochastically from the effects of 
scattering and Doppler effect. Given enough attenuation, the 
fading process fluctuations domain order impacts much 
more the signal’s power spectral density, therefore these 
fluctuations become more prominent. For this type of 
scenario, the frequency-selective fading channel model can 
describe the effect of frequency-dependent fluctuating 
attenuations across the sensing bandwidth. Furthermore, the 
same model of frequency-selective fading channel can 
describe and simulate the signal propagation behaviour in a 
wideband (the wideband spectrum segment is defined by 

 and is up the order of GHz) application. Hence this 
channel type is mor e suitable to extend the cognitive radio 
functionalities to the wideband spectrum sensing where 
effects of scattering, multipath propagations and Doppler 
spread have a greater impact on the cognitive radio 
capabilities. The channel transfer function for the Rayleigh 
flat fading scenarios can be modelled by the complex 
coefficients of an equivalent Tapped Delay Line (TDL) 
which are given by equation (2): 
 

  (2) 

 

where ,  are the 

values arrays of length , sampled from two independent 
and identically distributed random variables with a normal 

distribution having mean  and standard deviation . To 
simulate the AWGN channel alone, no fading phenomena is 
required to be performed, hence the generated AWGN 
signals is simply added to the PU signal rescaled to respect 
the SNR value. 
An efficient mathematical model of the frequency-selective 
fading channel involves two or multiple complex 
coefficients (or channel taps) in order to describe the 
multipath propagation phenomena with the corresponding 
path delays, but also the Doppler spread effect. There are 
two popular models which are generally accepted: the 
filtered Gaussian noise technique and the Jakes Sum-of-
Sinusoids technique with a multitude of modifications and 
optimizations described in existing literature. The second 
technique is part of simulation implementation, specifically 
the Generalized Method for Exact Doppler Spread 
(GMEDS) [14]. For computation optimization this model 
employs the band-limited discrete multipath channel based 
on the assumption that the power delay profile and the 
Doppler spectrum are separable. This is equivalent of a 
truncated finite impulse response filter (truncated 
convolution of the signal with the channel transfer function) 
having the set of tap weights defined by equation (3): 
 

 (3) 
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where  is the set of complex path gains describing the 

multipath channel,  contains the discrete path delays for 

each existing path,  is the sampling period of the channel, 

 is the number of paths and the values  are selected 

so that the magnitude of  is smaller than a defined 

threshold when  is outside their range. Presented aspects 
were implemented in Python. Additional details are given in 
section C. 

B. Bayes and Visu shrinkage denoising technique 
Noise is part of all-natural processes, hence most of real 

information carrier signals, especially the ones from the 
wireless communications systems, suffer from distortions 
induced by the superposition with the channel noise. Many 
times, the additive noise is uniformly distributed in 
frequency spectrum making it specifically a form of white 
noise. Therefore, various filtering techniques can be applied 
to eliminate the noise in the frequency domain of interest so 
that a denoised signal can result which is less affected by 
distortions. 

Many investigations of the discrete wavelet transform 
coefficients indicate that the coefficients with a relatively 
small absolute value are more affected by noise, whereas the 
coefficients with a relatively high absolute value are support 
for more information in comparison. This aspect is also 
demonstrated by the calculation of the resultant vector from 
the information carrier signal and the noise signal vector. If 
the difference between the magnitudes of the coefficients is 
high enough, the noisy coefficients (i.e. the ones with small 
magnitude) can be distinguished by the coefficients less 
affected by noise based on a thresholding technique. Given 
the wavelet coefficients by employing a proper thresholding 
method (hard or soft) with the corresponding value and 
rescaling factor one can perform efficient denoising by the 
shrinkage of wavelet coefficients. For the Visu Shrinkage 
technique the denoising algorithm is based on the usage of 
the universal threshold value defined by equation (4) which 
depends on N signal samples and the noise standard 
deviation as follows: 

  (4) 
On the other hand, the Bayes Shrinkage denoising 

algorithm takes advantage of the Bayes uniform 
thresholding formula which is additionally data adaptive 
driven, sub-band and level dependent on the near optimal 
threshold. The Bayes algorithm is designed to minimize the 
Bayesian risk value, which is the estimated value of the cost 
function, usually calculated as the mean squared error or the 
minimum mean squared error The threshold value is 
computed for every sub-band section, resulting in an 
adaptive multi-threshold technique. The main advantage of 
Bayes Shrinkage technique is that can heavily shrink small 
arguments and apply just a slight shrinkage for the 
remaining large arguments, being specialized for denoising 
signals affected by AWGN noise. The uniform Bayes 
threshold value is described by the formula in equation (5): 

 

  (5) 

 

where  is the variance of the noise,  is the standard 
deviation of the wavelet coefficients of the signal and 

. 
Various thresholds are proposed in literature taking in 

account a fine range of variables like the variance of the 
noisy signal, maximum-minimum eigenvalues or the type of 
distribution, from which a wide diversity of DWT denoising 
methods emerge as the Bayes and Visu denoising 
algorithms employed for the work of this paper. The main 
concept of the denoising technique can be visualized in 
Figure 2. 

 
Figure 2. Block diagram of the denoising technique based 

on Bayes and Visu wavelets shrinkage according to the 
Python implementation. 

C. Simulation framework 
The design of the framework is inspired by the more 

general design of any end-to-end wireless communication 
system block. The implemented modules mainly focus on 
providing the functionalities from the transmission side 
(expect the FEC coding as it is not relevant in the context of 
energy detection methods), from the channel side 
(considering only the AWGN channel, the Rayleigh flat and 
frequency-selective fading channels), but discarding 
everything from the receiving side as the energy detection 
method aims to perform the detection immediately, avoiding 
all the computations commonly performed in a standard 
communication scenario until the cognitive radio decides it 
can access the sensing radio resources. In Figure 3 the 
framework is illustrated as the block diagram. 

 
Figure 3. Block diagram of the simulation framework. 

The first block, Data Generator, sequential binary data is 
generated continuously or discontinuously according to a 
binomial distribution with its tuneable parameter of success 
rate. The resulted binary data is parallelized simply through 
a tensorial transformation in the data structure, resulting 
parallelized binary data with word length according to the 
specified QAM constellation. The data is modulated by a 
QAM modulating block and finally by the OFDM 
modulating block with respect to modulation parameters, 
resulting the PU signal. Channel distortions are further 
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applied on the PU signal through the Fading channel and 
AWGN channel blocks in accordance with the specified 
channel characteristics. An important advantage of the 
proposed framework is given by its ability not only to 
simulate, but to synthesize and store signals resulted after 
every block in the diagram and generate error proof ground 
truth of the existence of the PU signal at every timestamp. 

D. Energy detection with adaptive threshold method 
Energy detection is the most popular algorithm to this 

point in spectrum sensing applications due to its simplicity 
and low computation complexity which allows the 
development for embedded solutions. According to the 
detection strategy a detecting model computes a proxy 
regarding the energy of the signal received on the target 
spectrum band, leading to a specific formulation of the 
hypothesis test. To refer to the energy detection algorithm, 
an ED model computes a proxy regarding the energy of the 
signal received on the target spectrum band, leading to a 
specific formulation of the hypothesis test. The decision 

statistic is therefore formulated as the energy of the signal  
given the window of N samples of a sampling moment as in 
(6). 

  (6) 

Given a chi-square distribution, for N=1 the distribution 
becomes a Rayleigh distribution given the degree of 
freedom equal to 2. The decision adaptive threshold value 

can be formulated as follows in (7) using the variance (  
of the noise process and a fixed (or dynamic) value of 

expected false alarm or false positive rate : 

  (7) 

The algorithm is illustrated by the block diagram in Figure 
4. 

 
Figure 4. Illustration of the Energy Detection algorithm 

framework implementation. 

Given any specific set of estimated false alarm rate and 
true detections rate one can compute the required values to 
ensure the estimating performance based on the trade-off 
relation given by the threshold formula. To this point is well 
known that the classic energy detection algorithm can offer 
bad performance at low SNR values, being much more 
favourable for moderate and high SNR from a 
computational point of view. Various methods are available 
to enhance the detection performance as the two dynamic 
thresholds technique. For a low SNR domain, a large value 

of samples N is required to achieve modest performance 
with the cost of processing time which in many applications 
is critical. The main difficulty in all advanced algorithms is 
to ensure a time computation bellow the critical time. In 
these terms, sensing algorithms must operate with as few as 
possible parameters and number of samples, motivating 
literature to dedicate an entire subject on the optimal 
number of sensing samples with various analysis techniques 
like CLT, threshold optimization based on a memory of 
previous observations and performance [15][16][17][18]. 
Further enhancement of the ED algorithm is possible by a 
double threshold approach on the observation that despite 
the benefits of low complexity and capacity to generalize 
over the wide range of PU signals and channel 
characteristics, the dynamic threshold is prone to estimation 
costs (like the noise estimation errors, parameters 
computation values precision depending on number of 
samples, interdependencies between groups of parameters). 

E. Neural network energy detection method 
The NN model is a custom-made, non-pre-trained model 

based on a classic combination of batch normalization 
layers, convolutional layers, pooling layers, dropout layers, 
long short-term memory (LSTM) layers and dense layers, 
shaping essentially a hybrid convolutional-1D LSTM 
architecture specialized in processing of one-dimensional 
signals. The hybrid form is given by the residual 
combination of the layers in two parallel blocks which 
extract features for a final classifying layer that outputs the 
sigmoid logits corresponding to the decision of detection in 
form of probabilities. The first block is constructed firstly of 
a batch normalization after which the first convolution with 
maximum pooling layers is applied, resulting in a feature 
map which is again convolved with a lower number of 
filters and with a dropout rate over the second feature map, 
finally applying an LSTM layer on top to extract possible 
time-space information. The second block or the residual 
branch is constructed with only a batch normalization layer 
and another LSTM layer on top to extract possible relevant 
temporal information from the signal. The outputs of the 
two blocks are summed up and given as input to a final 
dense layer to perform the classification of the decision. A 
detailed view of the network architecture and optimization 
parameters is presented in Figure 5. 

 
Figure 5. Neural network architecture with the 

corresponding optimization parameters configuration. 

The input features of the NN are considered to be the 
same as the input variables of the classic ED, specifically 
the Bayes-based denoised OFDM received signal, the 
variance of the noise over the channel and additionally the 
power of the signal computed for a window of 50 signal 
samples. In this setup is ensured that the model can be 
compared easy in terms of performance if the two 
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algorithms are exposed approximately to the same signal 
and channel information, hence the model approximates 
another ED function which is agnostic of signal 
characteristics and requires no prior knowledge regarding 
the PU configuration of communication medium access. 
Although other feature engineering techniques are shown to 
greatly increase NNs performance. 

IV. SIMULATION RESULTS  
To evaluate the discussed SS methods three popular 
scenarios are simulated and presented below. Each 
simulation resulted in the synthetization of the 
corresponding PU signal together with the afferent features 
extracted from the PU signal and channels characteristics 
such as the power of the PU signal, the PU signal denoised 
according to the Bayes, respectively Visu algorithms based 
on the wavelet discrete transform, the magnitudes and 
frequencies coefficients resulted from the wavelet 
transform, the channel noise and its variance, and the 
ground truth of the PU signal. In an attempt to identify other 
possible features by experimentally employing non-linear 
functions the history of the logistic map is also stored as a 
time series. Despite being reasonably sufficient correlated 
with the ground truth this feature proved to be trivial and 
thus redundant according to a correlation analysis with the 
rest of the features, as it shows high correlation with the 
power of the PU signal, although the later one is more 
correlated with the ground truth. In Figure 6 is briefly 
illustrated how the data is generated for the first two 
scenarios and the NN model employed. Similarly, the third 
scenario is generated by additionally accounting for the 
multipath propagation and Doppler effect parameters. 

 
Figure 6. Training, validation, and test set data 

synthetization characteristics (signal modulation, channel 
type, ground truth distribution, length of data) for the 
AWGN and Rayleigh flat fading channel performance 

simulations. Note: Train Set & Validation Set are 
dedicated for the NN model training. 

A. Additive White Gaussian Noise Channel 
The AWGN channel is the very first type of channel 

simulation model available in the proposed framework and 
the simplest one. The implementation of the block is class-
based of which attributes are the input signal and the 
expected SNR value at the receiving endpoint. In this 
scenario, if equation (2) or (3) is considered, the channel 
transfer function has no impact on the gain or spectrum of 
the transmitted signal. Thus, for computation efficiency and 

simplicity only the noise signal is modelled accordingly for 
the channel parameters and simply summed up with the 
primary signal if existing or added alone to simulate the 
noisy channel with no existing or active primary signal. For 
the work of this paper the PU signal is selected to be 
generated in a discontinuous manner to generate diverse and 
realistic events. Although a vigorous implementation takes 
in consideration the process of modelling the channel 
according to either equation (2) or (3) under the constraint 
that the transfer function must present a single complex 
coefficient and the modulus or absolute value of the transfer 
function must have the unity value, which is virtually 
equivalent to a neutral element for the convolution operation 
(despite the fact that mathematically the convolution has no 
identity element). The data for this scenario is generated 
with a 0.5 probability of having an active PU over the 
channel, meaning that the rest of 0.5 is non-active, so the 
channel is free. By these means the testing set is designed to 
be balanced. Performance analysis from Figure 7 indicates 
that the NN model is drastically outperformed at low SNR if 
compared to both ED methods, although the Bayes and Visu 
methods have similar performance regardless of the SNR 
value. At higher SNR, the NN model is still outperformed 
but comparable to ED model.  

 
Figure 7. SNR related ROC curves of NN model and ED 

algorithm with corresponding denoising methods for 
AWGN Channel 

B. Rayleigh Flat Fading Channel 
Considering again equation (1), for this scenario the channel 
transfer function is modelled as a finite impulse response 
filter with a single complex coefficient. This type of channel 
can be simulated either by employing the TDL addon 
specifying to sample a single complex coefficient from the 
Rayleigh distribution, or by the GMEDS method in which 
the discrete path delays have a single delay with the 
corresponding path gain and Doppler shift, making it 
equivalent with a Rayleigh Flat fading channel. For the 
simulation diversity the TDL model is selected in this 
scenario and the GMEDS is dedicated for the last one. The 
ED and NN performance can be analysed in Figure 8. The 
observations made from Figure 6 are still valid for the Flat 
Fading scenario with a slight change in the detection 
proportion as the signal is also affected by the fading 
process and not just noise. To be noted that the curve of the 
NN model in the case of -15 dB SNR converges to the 
diagonal, suggesting a performance comparable to a random 
classifier. 
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Figure 8. SNR related ROC curves of NN model and ED 

algorithm with corresponding denoising methods for 
Rayleigh Flat Fading Channel 

C. Rayleigh frequency-selective fading channel 
The purpose of this channel scenario is to analyse how the 
frequency-selective fading process generate by multipath 
propagation together with the Doppler spread effect 
emerged from mobility of the terminals impact the ED and 
NN detection ability. This type of scenario is much closer to 
real-life scenario, especially in the urban areas where the 
signal is likely to reflect and scatter due to existing moving 
or static objects. For this type of scenario additional 
parameters come into play like stated in previous 
paragraphs, as the discrete path delays which describe the 
time delay for each reflected and the discrete path gains 
which usually assign an attenuation for the reflected, 
delayed paths. Additionally, the Doppler frequency shift 
which is directly related to the relative movement between 
transmitter and receiver where the relative velocity and the 
incident angle is taken in account. This parameter is filled 
with a floating-point value so that the model can make 
abstraction of the actual values of the carrier frequency, 
relative velocity, and the incident angle. For this scenario is 
precisely 0.01. 
For the multipath configuration six paths contribute to the 
frequency-selective fading process with an increasing fading 
attenuation proportional to the increase of delay time. The 
rest of the data characteristics are preserved to be same with 
the ones from previous scenarios. The same NN-based 
model employed for inference in the first two channel types 
is considered here for performance comparison with the ED 
algorithm. The results are presented in Figure 9. 
When compared with the two previous simulations, in this 
scenario for the case of -15 dB SNR the NN-based model 
and the ED algorithm perform slightly better than in the 
scenario of the flat fading channel. This can be explained by 
the fact that the randomly generated flat fading complex 
coefficient implied a deeper fade in contrast with the fade 
introduced by the frequency-selective channel. For the case 
of 15 dB SNR the ROC curve of the NN-based model 
suggests a decrease in detection performance compared to 
AWGN channel. The cause of this can be due to still 
relevant fading effect of the frequency-selective channel 
even in the case of higher SNR values, especially if the fade 
phenomena affect the lower spectra of the signal. The curve 
of the NN-based model almost matches both Bayes and 
Visu denoising resulted curves of the ED algorithm at 0 dB 
starting with the false alarm rate of approximately 0.2. 

Otherwise, the classic ED algorithm with dynamic threshold 
outperforms the NN-based model still for the region bellow 
0.2 false alarm rate, ensuring a clear increased performance 
with difference of 0.88-0.7 detection rate for a false alarm 
rate of 0.01. 

 
Figure 9. SNR related ROC curves of NN model and ED 

algorithm with corresponding denoising methods for 
Rayleigh frequency-selective fading channel 

A technique for tailored models, if performed correctly, can 
lead to a significant detection improvement with a decrease 
of the false alarm rate, specifically in a narrow range of 
SNR values. This technique implies generation of training 
data with a higher density of samples for the desired SNR 
range. Furthermore, another solution implies the training of 
ensemble of ED models to perform the classification voting. 
Each model from the ensemble technique is expected to be 
trained on a constrained set of data parameters, hence the 
variance within the data is distributed across the models, 
resulting in predicting specialization relative to the channel. 
Also increasing diversity within training data can have a 
positive impact on the overall detection ability of the model. 
Taking into account the presented aspects, we generated a 
new training and testing set in the same manner as before 
with two differences: the resulted training set contains the 
files for AWGN, Rayleigh flat fading and frequency-
selective fading channels, with an increase of samples 
density in the range of -5 dB, 0 dB and -5 dB SNR values, 
and the new testing set is composed only of files 
corresponding to the Rayleigh frequency-selective fading 
channel. The ROC curves of the previous, respectively 
resulted model can be visualized in Figure 10 and Figure 11 
again compared to the ED algorithm. 

 
Figure 10. SNR (-5 dB, 0 dB and 5 dB) related ROC 
curves of ED algorithm and previous NN model on 

Rayleigh frequency-selective fading channel 
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Figure 11. SNR (-5 dB, 0 dB and 5 dB) related ROC 

curve of ED algorithm and newly resulted NN model on 
Rayleigh frequency-selective fading Channel 

By comparing the detection performance of the NN-based 
model to the classic ED algorithm with dynamic threshold. 
Although from the 5 dB value the detection ability starts to 
decrease in comparison with the previous model. For a fixed 
value of TP ≈ 0.8, the NN model achieves this detection rate 
with a cost of FP ≈ 0.12 in the case of -5 dB SNR, while the 
ED algorithm achieves the same detection rate with a cost of 
FP ≈ 0.2. In the case of 0 dB SNR, if the detection rate is 
fixed to 0.95, the NN model ensures this value by 
introducing the rate of FP ≈ 0.1. Same detection rate is 
achieved by the ED model with an acceptance rate of FP ≈ 
0.23. 

V. CONCLUSIONS 
In this paper the performances of both classical ED 
algorithm with a single dynamic threshold and NN-based 
ED techniques are compared for a narrowband spectrum 
sensing application in the AWGN, respectively Rayleigh 
flat and frequency-selective fading channel given a range of 

±15 dB SNR. Realistic, rich, and diverse data is generated 

by employing the dedicated Python framework for each 
scenario in a stochastic manner. The framework is 
comparable in terms of utilization and quality of results with 
other common closed-source tools for wireless 
communication channels simulation. Both detection models 
indicate promising performance for moderate and high SNR 
values, although the NN model becomes unreliable in 
scenarios with low SNR. From first results the threshold-
based approach outperforms the baseline NN model on all 
treated scenarios if the training data is scarce, making the 
ED algorithm a fit solution for real applications due to its 
performance and low complexity. The detection 
performance of the NN model can be improved in the same 
approach and paradigm by designing training datasets most 
representative for a specific narrow range of SNR values 
with a detriment of decreased detection outside the selected 
range. The NN model trained with this approach of more 
diverse and dense data in a narrow SNR range outperforms 
the ED algorithm in that range. 

Future work will focus on the extension of the Python 
framework to generate datasets of spectrograms/scalograms 
resulted from short-time Fourier transforms and superlet 
transforms. Focus is also set to deploy the researched 
solutions on real-case scenario applications by integration in 
a transmit-receive simulation system which operates on 
SDR-based equipment.  
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