

Volume 61, Number 2, 2021 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received July 30, 2021; revised November 29, 2021

19

AUTO DAKAR: A WEB APPLICATION FOR THE MANAGEMENT OF AN

AUTOMOBILE REPAIR SHOP

David GRUIAN, Iustin-Alexandru IVANCIU
Communications Department, Technical University of Cluj-Napoca, Romania

Corresponding author: Iustin-Alexandru Ivanciu (e-mail: Iustin.Ivanciu@com.utcluj.ro)

Abstract: When it comes to an automobile service, it is very important to ensure not only good communication with the customers
but also a strong online presence. This paper presents AUTO DAKAR, a highly customizable and easy to use web application
designed to provide online visibility for the company and communication methods between customers and the automobile service.
The application was developed with Laravel using the Voyager package for backend management, a Heroku server for testing and
a DigitalOcean server for production. The experimental results highlight the main advantages of AUTO DAKAR: flexibility, easy
maintenance and cost efficiency.

Keywords: automobile service, DigitalOcean, Heroku, Laravel, MySQL, PHP, web application

I. INTRODUCTION
In recent years, there has been a switch from the static
websites to a more interactive approach – web applications.
These web applications can be found in many of our daily
activities: from socializing to online shopping and even
public communication. The main advantage is the
availability on most devices without any installation
required. Moreover, as more efficient methods are
implemented, web applications are capable of providing
more features with less performance issues.
 In 2020, Romania registered a number of 14,102
economic agents with the object of activity included in the
CAEN code 4520 (Maintenance and repair of motor
vehicles) [1]. The number of economic agents has increased
in recent years. The analysis carried out by KeysFin shows
that in 2010 there were 9320 economic agents in Romania
and 5 years later their number reached 10,031 [2]. These
values indicate a significant increase in the number of car
services in recent years and imply a development of the
competitive market in this field.
 Many car services rely on person-to-person
recommendations and sketchy websites or platforms that
display outdated data about their company alongside ads or
unwanted content. The problem is that customers are not
able to learn more about the company and the quality of
services they provide. Users want to see reviews, to
communicate with the car service or ask for an estimate
without visiting the service. Without these features
businesses tend to lose trust and ultimately customers.
 Specialized studies do not present any report or analysis
on the quality of web pages of car services in Romania, so
in order to form a more accurate and relevant image, the
competitive area will be chosen for the service where the
application, named AUTO DAKAR, will be used.
Analyzing separately the companies with the CAEN code
4520 from the Alba County and from the city of Alba Iulia,
sorted in descending order of turnover, the following results
were obtained: out of 40 competing companies from the
county (without the city of Alba Iulia) analyzed, only 6 of

these have a website, and in the city of Alba Iulia, out of 15
companies analyzed, only 4 have a website.
 A web application is a reliable way to achieve online
presence and interact with the customer. To get an
application running, 3 main components are required:
1) Frontend, 2) Backend, and 3) Server hosting. Frontend
mainly refers to what the user sees and is the most relevant
from a business standpoint. The backend is required to
manage the functionality processes and send the data that
will be displayed to the user in frontend; the server is the
place where the application will be stored.
 When we talk about web applications, hosting is a very
important element. There are multiple methods to get the
application on the Internet and one of them is self-hosting. It
requires hardware acquisition, system administration
knowledge and usually a high cost to maintain. On the other
hand, cloud services provide a more cost-efficient and
hustle free method, in terms of configuration and
maintenance of hardware.
 The goal of this paper is to implement a web application
for managing the family business, an automobile repair shop
located in Alba Iulia. This application uses Laravel as a
backend framework, Voyager package as an admin panel
and on the client side, HTML, JavaScript and CSS
organized on Laravel blade structure. The development was
done using a local Windows machine, the testing
environment using a Platform as a Service (PaaS) Heroku
server and the production environment using an
Infrastructure as a Service (IaaS) DigitalOcean server for
cost reduction purposes.
 This paper is organized as follows: Section 2 presents
related work, while Section 3 discusses the general aspects
regarding web development tools and how they are working
together. Section 4 describes the proposed web application
and includes the setup of development environments.
Experimental results are presented in Section 5, and the
paper ends with conclusions and future work.

II. RELATED WORK
In paper [3], a comparison of PHP frameworks and their

Volume 61, Number 2, 2021 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 20

performance is analyzed. Laravel was chosen because it
provides its own ecosystem of built-in features and is
compatible with many open-source modules. Considering
that the application requires a client side and an
administration dashboard, a flexible framework was needed.
 An administration dashboard is needed for content
management. Such a page can be created from scratch or
using a Laravel package. Laravel recommends its own
product: Laravel Nova. This package works with a monthly
subscription and because of costs optimization, a free, open-
source package was chosen: Voyager. An administration
package is supposed to provide create, read, update and
delete (CRUD) methods alongside a graphical interface for
better usability.
 When it comes to frontend and user interface, there are
multiple JavaScript frameworks that use a Model-View-
Controller (MVC) structure as Laravel does [4]. Using such
frameworks will require an API point to get the data that
will be displayed to the user. Laravel is a backend-oriented
framework but it provides its own methods of creating
views. By integrating blade, the interface can be split into
components that display data provided by Laravel
controllers.
 Considering that the web application needs to be
available online, a web hosting service is required. The
focus is on finding a cost-efficient method so we’ve chosen
a cloud service to satisfy our needs. Our web application
uses a private testing environment and a public production
environment. In paper [5], a comparison between the main
providers and the quality of their services is made. Each
provider was evaluated by availability, reliability,
performance, cost and security. Based on those findings, a
better choice can be made regarding the type of server
wanted and its performance. The types of servers taken into
account are Platform as a Service and Infrastructure as a
Service. In paper [6], an in-depth research of the providers
for each type of servers is made. Considering the traffic
needs of the web application, the size will be set
accordingly. Also, based on budget and preferences, there
are options for monthly fixed payment or pay per
consumption. In most cases, PaaS services are more
expensive and offer less performance than IaaS, but require
less knowledge to setup and maintain.

III. WEB DEVELOPMENT TOOLS
Laravel [7] is a free and open-source PHP framework used
to develop web applications. The framework provides its
own ecosystem of built-in features and is compatible with
many open-source modules developed by the community. It
was created in 2011 by Taylor Otwel, using the MVC
architecture, based on the Symfony framework. Laravel
provides a variety of tools for faster and better development:
an Object Relational Mapper (ORM) for database
interaction, blade for frontend development through
reusable components, artisan commands for specific file
generation or a full authentication system generated through
a command and many more.
 Voyager is an open-source Laravel package developed
by The Control Group that offers a full administration
system built with blade using jQuery, Bootstrap and many
other small JavaScript libraries. Voyager offers features like
media manager – used for storage administration, a menu
builder for easy menu management, a database manager
which allows the manipulation of the database table
structure and a create, read, update, delete builder for any

table thus simplifying data manipulation.
 Hosting the project on the Internet requires a domain
name and a host. Heroku is a company that specializes in
PaaS cloud services. They provide a free tier where an app
can be used with limited resources, ideal for testing.
DigitalOcean [8] is a company that offers IaaS cloud
services, perfect for a project like the one presented herein.
 Ubuntu is one of the images that can be installed on a
server. Ubuntu is a Linux distribution composed mostly of
open-source software. Features like user privileges, network
and firewall control and the file structure make it a very
powerful and secure tool for hosting web applications in
different cloud environments.

IV. IMPLEMENTED WEB APPLICATION
The implementation process is composed of 2 stages: the
development stage and the deployment stage. The main
components and the tools used in each stage are illustrated
in Figure 1.

Figure 1. The main components of the web application

 Frontend & Design refers to what the end user or
customer will see and it integrates most of the visual tools.
The Administration or the Admin panel refers to the main
methods that were implemented for the automobile repair
shop and what the administrator can do using Voyager. The
backend is the component that makes the binding between
frontend and administration, and it consists of the Laravel
framework and multiple tools that add value to the
application. Server & Deployment represents the tools
required for the application to be available within the
Internet.
 During the development stage the following components
were integrated: User interface, consisting of static pages
with information, contact forms, pages with dynamic
content (manageable) and analysis tools. The admin
dashboard is composed of an administration panel
accessible with email and password, from where one can
manage the dynamic content on the site and see the
messages sent by customers. The backend enables the
communication between interfaces and is built with Laravel
and other packages such as: Voyager, mail, captcha,
Amazon Web Services (AWS) S3, cache-response, Laravel
mix, backup, etc. The development process is highly
dependent on the environment configuration so the next
section will focus on the steps taken on the local
environment to create such an application.

Volume 61, Number 2, 2021 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 21

A. Local environment
The framework was installed using the Composer command
line interface (CLI). Once the download finished, the
environment variables, specific to the new project and
located in the .env file, were configured accordingly. Note
that before actually starting to write code, some steps need
to be taken to ensure the correct functionality of the
platform. To run a PHP app locally a virtual host is required
and that was achieved using XAMPP because it provides a
MySQL database alongside its Apache server.
 To setup and bind localhost to the index.php file the
following code should be added:127.0.0.1 service.local
inside hosts file located in C:\Windows\System32\drivers\
etc. A virtual host should be added to XAMPP httpd-
vhosts.conf file. Note that a restart of the Apache server is
required for the changes to take effect.
 The database was created using the XAMPP MySQL
phpMyAdmin page: http://localhost/phpmyadmin/. After
creation, the credentials were added to the .env file. Git also
needed to be initialized so the project could be stored safely
into a GitHub repository. Using the steps provided by
GitHub, the project was added under an initial commit and
stored on the main branch.

B. Heroku server
The next stage of the project focuses on how to use the
Platform as a Service services offered by Heroku and how
to configure the Laravel application previously configured
on the local server. The first step is to create an account and
a new app on the platform. For better usability and manually
deployment, the Heroku CLI was installed. Note that
because we’re going to run a Laravel app, a Heroku specific
file is required to specify the location of the index.php from
where the application boots. The new file will be named
Procfile and will contain the following code: web:
vendor/bin/heroku-php-apache2 public/.
 The next step is to login to Heroku through CLI and
upload the code to a Heroku repository. The command
heroku login will start the authentication process. Once that
process is finished, the command git push heroku master
will upload the code and create a new app that can be found
on a subdomain provided by Heroku. Note that the .env file
configured locally will not be uploaded for security reasons
and it needs to be regenerated using Heroku’s own Config
Variables. Heroku offers an automatic build and deploy
method by binding a GitHub repository to itself and when a
change is detected, a new version of the app will be built
without the need for manually pushing to Heroku using git
commands.
 One important factor to be considered when employing
this type of server (PaaS) is that for every build, all the
temporary files, cached data or media files that are
untracked by the versioning system will be erased. This is a
big disadvantage because third party suppliers need to be
integrated and most of the time that adds more expenses.
The main features that needed change were the media
storage and database. We need to note that we’re looking
for sustainable resources at the lowest cost. Regarding
database storage, Heroku offers some add-ons that can be
integrated. The issue is that after a certain amount of
database storage (5MB) the cost per month will no longer be
zero. Considering this and the fact that the database version
and backup are not under our control, this type of server was
better suited as a testing ground and not a production one.
 JawsDB was the add-on chosen and after adding the

config variables to Heroku, MySQL Workbench was used
to connect remotely through TCP/IP using the credentials
provided by the add-on. A new database was created and
added to the config variables. The media storage however
needed cloud support as the app will grow and the storage is
limited no matter the type of server that is going to be used.
AWS S3 [9] was the perfect choice for us, as it offered free
services under a certain amount of usage and once the app
will surpass that threshold, the prices are low and based on
usage. To set it up, a new account was created and the S3
service was selected. Within it, a new bucket was generated
that keeps all the media files. To access it remotely through
our app some special credentials needed to be generated.
Identity Access Management (IAM) is a service provided by
AWS for this purpose. A new user was created with the role
AmazonS3FullAccess and a new access key was generated.
Those keys were also added to the local .env file and
Heroku’s Config Variables. To swap our Laravel app from
using default media storage to AWS S3 the
league/flysystem-aws-s3-v3 package was installed using
Composer. The FILESYSTEM_DRIVER=s3 environment
variable was added and the accessibility of future to be
stored files was set from private to public. This change is
important as the images won’t be visible when displayed
within the app or when accessed by link.

C. DigitalOcean server
To avoid costs related to database and server hosting as
demand and traffic rises, DigitalOcean has been chosen for
its IaaS type servers called droplets. DigitalOcean offers
1GB RAM and one vCPU for 5$ monthly while Heroku
offers the same performance starting at 50$ on their PaaS
servers. Heroku offers backups, fast deployment and
security by default but because that cost is significantly
higher than what is considered a cost-efficient application,
we tried to create those features from scratch on a droplet
using a Ubuntu Linux image.
 Once the droplet is available, we will use MobaXterm to
connect through SSH using the credentials provided by
DigitalOcean. The connection is through port 22 as root user
and a password. The most important security changes that
can be made refer to changing the default connection port
and closing all unused ports. After we’ve done that, a new
user was created and it was given sudo rights. Once that was
done, the root user was erased altogether to prevent
unwanted vulnerabilities. The last change was made to the
way the user is able to connect to the server. A public-
private login key was uploaded and all types of logins by
password were disabled. These changes do not guarantee
perfect security but they definitely make it harder for
unwanted access to occur. One other step that can be taken
in this direction is to use the proxy services provided by
Cloudflare, most of which are free. Cloudflare offers a
content delivery network (CDN) alongside multiple layers
of security and we used it to bind the domain name to our
DigitalOcean server.
 Once the security settings are in place, we can configure
the newly installed Ubuntu server. We decided to install the
LAMP (Linux+Apache+MySQL+PHP) type of packages
which is suitable for our Laravel app. After configuring the
virtual host once again on the droplet, we’ve updated PHP
extensions located in php.ini file and created a new database
using MySQL CLI commands. The next step is to download
the project code stored inside the GitHub repository. Using
git commands, the project was stored in the directory

Volume 61, Number 2, 2021 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 22

specified in the virtual hosts’ procedure above. Once the
download finished, composer install and php artisan
migrate commands were run to fully setup the project.
 The admin dashboard has been implemented using a
Laravel package named Voyager. It was downloaded using
composer and installed by running the command: php
artisan voyager:install. The Voyager admin routes were
added to the routes/web.php file so the /admin route will
work. The next step is to generate the database schema that
will map the users and the Voyager components. By running
the command: php artisan db:seed --class=
VoyagerDatabaseSeeder the default dashboard elements
will be generated. To generate a new admin user the
following command will be run: php artisan voyager:admin
admin@email.com –create.
 We wanted to create a panel from where the
administrator will manage the content displayed to the
frontend and a method to manage the messages sent via
contact forms. To implement such functionality a migration
was created containing data about the price offer request:
name, email, phone, car make, mode, year, vin, details. A
model to map the database structure was also added. Using
Voyager, we added some CRUD methods on this table.
Email notifications were also integrated such that when a
new request is submitted, an email with a link to that certain
request is sent to the administrator. By using composer to
install the guzzlehttp/guzzle package and configuring the
environment variables on all servers, our application was
capable of sending emails with email templates of our own
choosing.
 The client side is constructed with Laravel blade
components that implement code written in HTML,
compiled SASS, JavaScript and jQuery. Forms were
implemented to gather the customer requests. Each form has
frontend and backend validation of fields. Beside the inputs,
we’ve implemented a captcha field that requires the user to
solve a simple math problem before submitting the form to
ensure the senders are real people. A controller that
validates the answers and accordingly responds with
notifications was created.
 Because the application will be used in a real automobile
service, Google Analytics was integrated to track the type of
users and their habits. This was done by creating an account,
generating a tag manager key and then adding the
JavaScript code, provided in the documentation, inside the
main.blade.php file.
 During the development stage, several difficulties were
encountered in the process of configuring the servers and
publishing the applications. Even if the documentation is
well structured, the elements used in the project involve
modifications and packages that are not included in a
standard configuration. The implementation of Google
Analytics has also been cumbersome due to the lack of clear
documentation and the security changes made by Google in
recent months that have made components unusable.
Another unforeseen variable in the development process
was the media files. After integrating the Heroku server, it
was noticed that the uploaded images were lost, being
deleted at each start of the service. Thus, the integration of
AWS S3 services was needed.

V. EXPERIMENTAL RESULTS
The following experimental results will be presented: (A)
User point of view, (B) Administrator point of view and (C)
Application comparison with competitors.

A. User point of view
The application has a graphical interface through which the
user can find out information about the services and
availability of the company. This interface also provides
methods of communication and feedback for users. There
are 4 sections that make up the main page: 1) Introductory
image with the company's motto (Figure 2), 2) Short
description with a button to the contact form, 3) The service
panel that at the push of a button expands and provides
details, and 4) A testimonial slider that changes
automatically every few seconds or via buttons (Figure 3).
These sections present the most relevant information for the
customer and present multiple buttons that send the user to
the contact pages in order to make as many conversions as
possible.

Figure 2. Landing page motto

Figure 3. Testimonial slider

 Figure 4 shows one of the forms implemented in the
application. The testimonial form contains, in addition to the
personal data and message fields, 5 stars that can be selected
by users to evaluate the quality of services. On the right side
of the form, the average of the points received is displayed.

Figure 4. Testimonial form

 Within the contact form, depicted in Figure 5, personal
data is validated for the existence of at least one contact
method, either email or telephone number, of the applicant.

Volume 61, Number 2, 2021 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 23

Figure 5. Contact form

B. Administrator point of view
The administration panel offers accessibility, flexibility, and
allows for content customization. The images and fields in
the different forms are intuitive in order to facilitate the
learning and accommodation process. Accessing the
administration panel requires authentication. Each field is
validated and the remember me option allows for quick
authentication. Media file management is facilitated through
a dedicated panel connected directly to the AWS S3. This
panel, presented in Figure 6, depicts the images from the
gallery. By selecting an image, its characteristics can be
identified (size, type, and link).

Figure 6. Media administration panel

 Figure 7 shows the menu editing page. Items that are
indented are child items of menu items visible in the menu
on the left. The menu can also access the pages that are used
in the process of managing content within the user interface,
but also the pages where the customer messages are
displayed. Content management can be done from the
following pages: Galleries, Offers and Partners. Messages
and requests for quotation are referred to as messages and
appointments.

Figure 7. Admin menu configuration

 Gallery management can be performed by accessing the

gallery editing form presented in Figure 8. This form
includes the title, a field for selecting the date, and two
fields through which images can be uploaded.

Figure 8. Gallery editing form

 The administrator will receive email notifications
regarding multiple events such as: new message, request for
a quote, new testimonial or report on the status of the
backup process. The email announcing the backup contains
information about the date, file size, and storage method as
seen in Figure 9. Unlike the other types of emails, which
contain user-sent data and buttons that lead to the
administration page, this one is informative and does not
require any additional action.

Figure 9. Backup email notification

 User activity can be tracked in Google Analytics. Figure
10 illustrates the report from the last 7 days in which there
was an increase of 200%, the figure reaching 6 users of
which 4 are here for the first time. Also, the average time
spent on the site is 9 minutes and 4 seconds and, on the
right, it can be observed that no one has visited the
application in the last 30 minutes. By applying filters and
generating multiple types of tables, users’ habits and
preferences can be identified.

Figure 10. Google Analytics report of last 7 days

Volume 61, Number 2, 2021 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 24

C. Comparison with the direct competitors
The results obtained from the analysis of web applications
reflect a very good positioning of the AUTO DAKAR
application on the target market. Figure 11 presents the
scores obtained by the competitors organized by color:
yellow for the companies located in Alba Iulia, orange for
the companies from Alba County, green for the top
companies with online presence and purple for our project.
AUTO DAKAR achieved above average results and a
considerable difference from the competition. It obtained
the first place in each of the 4 categories analyzed: content,
design, organization and functionality. Each category had
multiple questions regarding the topic. The companies were
rewarded with 10 points if the answer was true or 0 if it was
false. For the performance and indexing metrics, the points
awarded were from 0 to 10 based on the results provided by
multiple testing websites used for this purpose. The
cumulative results show an average of 286.55 points out of
a total of 500 possible, which indicates a level of
satisfaction slightly above the mid value of this analysis but
unsatisfactory for users. The important goals of a site are to
represent the company online, produce conversions and
increase trust in the products and services offered. These
cannot be achieved if the page cannot be found by
customers. Following the analysis, it seems there is a low
interest in search engine optimization (SEO) and indexing
methods. At the same time, companies provide details about
services, location and offline contact methods to the
detriment of online communication and user education. The
lack of interaction with the user and the lack of a method to
find out additional information on the website can cause a
decrease in trust in the services offered or even the loss of
the potential customer.

Figure 11. Web pages analysis results

 However, it should be noted that the number of
companies that choose this form of promotion is very small
in the car services market in Alba County. The market is
very competitive and any advantage counts. According to
the analysis, only one company in the target group in the
city of Alba Iulia has a site with above average results, and
in the study only one company exceeded the threshold of
350 points. These results indicate an opportunity for
development and orientation towards online consumer
conversion and the proposed application can meet this need.

VI. CONCLUSIONS AND FUTURE WORK
The situation of the Romanian car market determines many
entrepreneurs to start businesses in the field of vehicle
maintenance, thus causing fierce competition between

companies. A common strategy for companies to increase
market share is promotion through recommendations. This
however may prove to be a long process with high risks
given the evolution of the market. Other companies choose
to create an online presence through a website, but few
understand its role and how it should be configured so that
its impact is as large as possible.
 This paper presents a method of building a web
application with minimal costs and multiple functionalities
in order to have an impact on the online environment. The
web application, called AUTO DAKAR, is based on the
Laravel framework, built with PHP, and combines the
following elements: an Admin package, called Voyager, a
MySQL database, an Apache server, DNS and Cloudflare
proxy, domain name, AWS S3 storage, and Google
Analytics. The application was built on a virtual local
server, tested on a PaaS server and made available online on
an IaaS server. The structure of the application not only
allows for easy addition of new features but it also means
that it can easily be updated and maintained for a long time
at minimum monthly costs.
 Future work involves the integration of Jenkins, for
automating the code update process, and Docker containers
and load-balancing methods for better resource
management. In the administration panel, a digital
document management engine will be added, alongside an
intervention tracking system, which will help clients get the
real-time status of their car.

REFERENCES
[1] TopFirme, „Top firme cod caen 4520 - Intretinerea si repararea
autovehiculelor, Romania,” TopFirme, 2021. [Interactive].
Available: https://www.topfirme.com/caen/4520/ [Accessed: June
24, 2021].
[2] A. Negrescu, „Analiză KeysFin. Tu unde îţi repari maşina?
Cum a ajuns România ţara service-urilor auto,” KeysFin, 17 10
2016. [Interactive]. Available: https://www.keysfin.com/
EN/#!/Pages/News/NewsDetails&title=analiza-keysfin-tu-unde-iti-
reparimasina-cum-a-ajuns-romania-tara-service-urilor-auto
[Accessed: June 24, 2021].
[3] N. Prokofyeva and V. Boltunova, “Analysis and Practical
Application of PHP Frameworks in Development of Web
Information Systems,” Procedia Computer Science, vol. 104, pp.
51–56, 2017, doi: 10.1016/j.procs.2017.01.059.
[4] S. Delcev and D. Draskovic, “Modern JavaScript frameworks:
A Survey Study,” 2018 Zooming Innovation in Consumer
Technologies Conference (ZINC), May 2018, doi:
10.1109/zinc.2018.8448444.
[5] S. S. Wagle, M. Guzek, P. Bouvry, and R. Bisdorff, “An
Evaluation Model for Selecting Cloud Services from
Commercially Available Cloud Providers,” 2015 IEEE 7th
International Conference on Cloud Computing Technology and
Science (CloudCom), Nov. 2015, doi: 10.1109/cloudcom.2015.94.
[6] M. Saraswat and R. C. Tripathi, “Cloud Computing: Analysis
of Top 5 CSPs in SaaS, PaaS and IaaS Platforms,” 2020 9th
International Conference System Modeling and Advancement in
Research Trends (SMART), 2020.
[7] „Laravel - The PHP Framework For Web Artisans,”
Laravel.com, 2011. [Interactive]. Available: https://laravel.com/
[Accessed: April 14, 2021].
[8] „DigitalOcean – The developer cloud,” Digitalocean.com,
2013. [Interactive]. Available: https://www.digitalocean.com/
[Accessed: April 14, 2021].
[9] „Amazon Web Services (AWS) - Cloud Computing Services,”
Amazon Web Services, Inc., 2012. [Interactive]. Available:
https://aws.amazon.com/ [Accessed: April 14, 20211].

