
 

Volume 61, Number 2, 2021                                                    ACTA TECHNICA NAPOCENSIS                                                                                                                             

Electronics and Telecommunications 

________________________________________________________________________________ 

Manuscript received August 1, 2021; Revised December 2, 2021  

25 

DEVICE LEVEL PROGRAMMABILITY USING RESTCONF PROTOCOL: 

AN INTRODUCTORY APPROACH 

 
Vlad-Andrei MONORANU1, Tudor-Mihai BLAGA1, Virgil DOBROTA1 

1Communications Department, Technical University of Cluj-Napoca, Romania  
Corresponding author: Virgil Dobrota (e-mail: Virgil.Dobrota@com.utcluj.ro) 

 
Abstract: This paper presents an implementation of a virtualized testbed emulated with GNS3 version 2.2.19, controlled by 
Postman API client and by Python3 scripts. A GNS3 VM (virtual machine) running Ubuntu acted as remote server for hosting 
the network devices images. The aim was to involve RESTCONF (Representational State Transfer Configuration Protocol) 
which uses HTTP requests, as an alternative solution for NETCONF. The scenario included one Cisco IOS-XE-based virtual 
router CSR1000v 16.6.7 with RESTCONF enabled. By using a GET request on a specified URL, a list of capabilities of the 
router could be displayed. In the first scenario different other types of requests (PUT, POST, PATCH, and DELETE) have 
been checked, too. Another two Cisco CSR1000v routers were added in the network topology and their manual configuration 
was approached in the second scenario. Following static IPs allocations the behavior of the RESTCONF configured router was 
tested. As proof of feasibility, we enabled OSPF (Open Shortest Path First) routing protocol on all routers, assisting the 
discovery of neighboring devices. The major outcome of this project was that we were able to get long lists of capabilities that 
can be split in individual items and reused later for automatic configuration.   
 
Keywords: Cisco Router; GNS3; RESTCONF. 

 
 

I. INTRODUCTION 
The network configuration management is the continuing 
process of supervising the installation and upkeep of all 
network devices which may be administrated through 
several options. Most of the network engineers are familiar 
with CLI (Command Line Interface). This is an interface 
found on network devices (e.g. routers, switches) and 
allowing their management and control. It processes 
commands to a computer program in the form of lines of 
text. In the case of automation, the CLI does not meet the 
requirements for strict data structures. NETCONF 
(Network Configuration Protocol) is an alternative solution 
for it as it allows the management of network devices 
through RPC-s (Remote Procedure Calls) which contain 
well-defined XML (Extensible Markup Language) 
messages [1]. In this paper we preferred to use HTTP that 
provides a programmatic interface for accessing data 
defined in YANG, using the datastore concepts defined in 
the NETCONF [2]. This protocol is called RESTCONF 
(Representational State Transfer Configuration Protocol). 
We enabled it on a Cisco CSR1000v router which runs on 
a VMware virtual machine through GNS3 emulator. Its 
functionality was presented with the help of Postman. The 
objective of this work is to get a list of capabilities of the 
network devices, in order to use them later for automatic 
configuration,    
 The rest of the paper is organized as follows: Section II 
discusses the related work, followed by an overview of   
RESTCONF. Section IV presents the implementation and 
experimental results. Last section includes conclusions and 
future work. 
 

II.  RELATED WORK 
The IT infrastructure scalability may be helped by network 
automation even if it executes complicated analyses based 

on inputs from the many devices accessible inside your 
network. The practice of using software to automate the 
network, the security provisioning, and the administration 
in order to continually enhance network efficiency and 
functionality is known as network automation. Network 
virtualization is frequently used along network automation. 
When it comes to deploying and administrating both 
conventional and cloud-native applications, IT 
departments are looking for scalability, agility, and 
consistency [3]. 
 Data centers, service providers, and businesses can use 
hardware and software-based solutions to automate their 
networks, increasing productivity, reducing human error, 
and lowering operational costs. The rise in IT expenditures 
for network operations is one of the most pressing concerns 
for network administrators. Data and device growth are 
outpacing IT capabilities, rendering manual procedures 
practically unfeasible. Despite this, up to 95% of network 
modifications are done manually, resulting in operating 
expenses that are two to three times greater than the 
network's cost. Businesses must increase their IT 
automation, which must be handled centrally and remotely, 
in order to keep up with the digital world [4]. 
 Paper [5] discusses how embedded device resource 
constraints, heterogeneity, and network dynamics must all 
be taken into account while developing Internet of Things 
(IoT) management systems. From the network provider’s 
point of view conventional standards-based solutions may 
be insufficient, the use of proprietary platforms being 
requested. On the other hand developers must integrate 
many platforms and work with a range of APIs. This 
creates significant issues, such as supporting 
heterogeneous devices and integrating open and 
proprietary management solutions, as well as managing 
multi-technology, multi-vendor, and multi-standard 



 

Volume 61, Number 2, 2021                                                   ACTA TECHNICA NAPOCENSIS                                                                                                                        

Electronics and Telecommunications 

________________________________________________________________________________ 

 
 26 

systems. With these considerations in mind, the Internet 
Engineering Task Force established a number of standards 
aimed at integrating and interoperating heterogeneous 
devices, including the Representational State Transfer 
Configuration Protocol. This article concludes that 
alongside other standard management protocols that are 
applicable to IoT Systems, RESTCONF might potentially 
be a useful alternative in the case of non-constrained 
devices. 
 A two-stage technique for automated RESTCONF 
agent conformity testing is provided in [6]. To generate and 
to issue requests, as well as to receive and to interpret the 
answers, the Python curl package was utilized. A flaw in 
unittest (i.e. a unit testing framework) was discovered is 
the absence of capability for constructing data-driven 
generic tests. A technique for creating unittest cases based 
on the metadata required to be supplied. The tool was 
tested against an agent under development, and the results 
were quite positive, since it was able to find errors at a very 
cheap cost.  
 In [7] the authors describes a multi-layer Programmable 
Optical Network with SDN capabilities (PROnet). This is 
a two-layer Research and Education Network (REN) 
deployed at and around the UT Dallas campus. It uses the 
PROnet Orchestrator, having a Gaussian-Noise-model-
based quality of transmission estimator module 
incorporated. It demonstrated its capacity to forecast signal 
to noise ratio and optimal transmission power. The PROnet 
Orchestrator involves the quality of transmission estimator 
module to quickly and efficiently provide light paths in the 
optical network for host-to-host large data transmission. In 
order to identify network topology and nodes, the Resource 
Management module interacts with Ethernet and optical 
nodes using Rest APIs supplied by Ethernet controllers and 
RESTCONF optical plugin. The Orchestrator uses this 
protocol to detect the WDM topology and supply light 
paths.  
 Paper [8] demonstrates that Network Functions 
Virtualization (NFV) created a new approach to develop 
and deploy network security services, but without a 
standard interface between them. Thus it may fail to create 
a viable ecosystem that seamlessly integrates network 
security services. The proposed architecture enables users 
to define their security needs in a user-friendly way by 
offering high-level security interfaces that do not need 
detailed knowledge of network resources and protocols. A 
web server is designed to offer to the administrator a more 
accessible solution. A few web sites provide administrators 
the ability to define high-level security rules using user 
interfaces. A new network protocol such as RESTCONF 
provides a programmatic interface through HTTP to 
retrieve data described in a YANG model [19]. Note that 
YANG is a data modeling language for designing 
configuration and operating functions. It determines the 
scope and the type of functions that can be performed by 
NETCONF and RESTCONF APIs. Back to [8], a 
communication channel based on RESTCONF is built to 
allow interaction between the NSF client and the Security 
management system. Furthermore, because the NSF client 
is built on web applications in this design, RESTCONF is 
favored over the Network Configuration Protocol 
(NETCONF). 
 Authors in [9] present a technique for subscribing and 
pushing updates to the YANG datastore, which improves 
the performance of prior technologies. RESTCONF is used 

to standardize the REST API structure amongst SDN 
controllers, which is specified by the underlying YANG 
data stores. There are articles which show that these 
components can widely extend their applicability in 
domains other than networking. In [10] the authors are 
implementing a way of remotely controlling a car where 
the data related with the automobile was modelled, 
managed, and controlled using NETCONF/ RESTCONF 
and YANG.  
 In paper [11] it is specified that the open source 
operating system OpenWrt has been a popular choice for 
replacing proprietary firmware on networking devices like 
residential routers and access points in past years. To 
customize an OpenWrt system, such as putting up firewall 
rules, the user must either login in to the web interface or 
use SSH to alter configuration files on the device manually. 
RESTCONF is the chosen solution for managing the 
configurations, this being compared to other similar 
implementations.   
 

III. OVERVIEW OF RESTCONF 

REpresentational State Transfer (REST) is an architectural 

approach for establishing standards across web-based 

computer systems, allowing them to interact more easily. 

REST-compliant systems, often known as RESTful 

systems, are distinguished by their statelessness and 

separation of client and server concerns. 

Separation of Client and Server 

The client and server implementations under the REST 

architectural style can be managed separately of one 

another, without knowing about each other. This implies 

that the client's code can be updated at any moment without 

impacting the server's operation, and the server's code may 

be changed without affecting the client's operation. 

They may be maintained modular and independent as 

long as one side knows what type of communications to 

transmit to the other. It increases the flexibility of the 

interface over platforms and improve scalability by 

isolating the user interface issues from the data storage 

issues by simplifying the structuring. Furthermore, the 

feature enables each component to develop independently. 

Multiple users access the same REST endpoints, execute 

the same operations, and receive the same replies when 

exploiting a REST interface. 

Statelessness of REST 

The REST architecture is stateless, which means the 

server does not have to recognize what state the client is in 

or the client does not have to know about the state of the 

server. Both the server and the client may interpret any 

message received in this form, even if they have not seen 

prior messages. The use of resources, rather than 

instructions, enforces the statelessness condition. The 

resources are nouns of the Web for communicating, which 

represent any item, document, or thing that the user would 

want to save or transfer to other services. REST systems do 

not require the development of interfaces because they 

communicate through normal operations on resources. 

These restrictions enhance RESTful applications achieving 

stability, speed, and scalability by acting as elements that 



 

Volume 61, Number 2, 2021                                                   ACTA TECHNICA NAPOCENSIS                                                                                                                        

Electronics and Telecommunications 

________________________________________________________________________________ 

 
 27 

can be controlled, changed, and reused without impacting 

the system as a whole, even while it is in use. 

In order to communicate with the server, the clients 

submit requests to retrieve or change resources, and servers 

respond to these requests using the REST architecture. 

RESTful APIs are web service APIs that follow the REST 

architectural restrictions. The characteristics of HTTP-

based RESTful APIs [12] are the following: 

• http://api.example.com/ is an example of a base 

URI. 

• GET, POST, PUT, and DELETE are examples of 

typical HTTP methods. 

• A media type that defines data components for state 

transitions 

RESTCONF provides RESTful APIs using structured 

data (XML or JSON) and YANG, allowing programmatic 

access to various network devices. HTTPS approaches are 

used by RESTCONF APIs, while YANG is being used as 

data modeling language for designing configuration and 

operating functions. YANG determines the scope and the 

type of functions that can be performed by the RESTCONF 

APIs [12]. The RESTCONF major components are 

depicted in Figure 1 [3]. 

 
Figure 1. RESTCONF components  

Being a stateless protocol that provides CRUD 

(CREATE, READ, UPDATE, DELETE) operations it uses 

HTTPS methods which are shown in Table 1 [6]. 

 

Options Methods 

GET Read 

PATCH Update 

PUT Create or Replace 

POST Create or Operations (reload, default) 

DELETE Deletes the targeted resource 

HEAD Header metadata (no response body) 

Table 1. RESTCONF operations 

 Using Postman, these HTTPS requests can be executed 
with less tedious work. Postman is a popular, free of charge 
API client, which offers a simple user interface for the 
consumers that would like to dissect different RESTful 
APIs without the need for coding [13]. This tool also has 
the capacity of storing environments for later use and of 
displaying the responses back. In this way, the process of 
semi-automating the router configurations is enhanced. 
 

IV. IMPLEMENTATION AND EXPERIMENTAL 
RESULTS 

This paper presents an implementation of a virtualized 
testbed emulated with GNS3 version 2.2.19 [20], 
controlled by Postman API client and by Python3 scripts. 
A GNS3 VM (virtual machine) running Ubuntu acted as 
remote server for hosting the network devices images. The 
aim was to involve RESTCONF as an alternative solution 
for NETCONF.  The principle is presented in Figure 2.  
 

 
Figure 2. Principle of the testbed scenario 

 The detailed scenario (see Figure 3) included one Cisco 
IOS-XE-based virtual router CSR1000v 16.6.7 with 
RESTCONF enabled [18]. By using a GET request on a 
specified URL, a list of capabilities of the router were 
obtained and displayed. In the first scenario different other 
types of requests (PUT, POST, PATCH, and DELETE) 
have been checked, too. Another two Cisco CSR1000v 
routers were added in the network topology and their 
manual configuration was approached in the second 
scenario. 
  

 
Figure 3. GNS3 network topology 

 It is out of the scope of this paper to discuss step-by-
step the installation of GNS3, VMware Workstation 16 
Player and GNS3 VM, Cisco CSR1000V virtual routers 
etc. Details are presented in [15], [16]. 
   This section presents now the scenarios that 
demonstrated how RESTCONF protocol works, various 
request types using PyCharm [21] and Postman, how to 
check the connectivity between network devices, and 
packet analysis using Wireshark. 
 

A. Experiments with Postman and Python HTTP 
requests 

When it comes to RESTCONF, there are several modules 
to choose from. Information can be obtained from each of 
these modules. For example, we may view all interfaces, 
including those that are based on the IETF standard, or we 
can establish a new interface. As an alternative, CLI is 
available, but more convenient is to use a GUI-based tool 
allowing to call these URLs. Postman allows us to accept 
URLs and then send instructions from the GUI. It also has 



 

Volume 61, Number 2, 2021                                                   ACTA TECHNICA NAPOCENSIS                                                                                                                        

Electronics and Telecommunications 

________________________________________________________________________________ 

 
 28 

great capacity to let us modify and tune what goes in the 
header for those requests or what data types we are 
expecting. Before we proceeded, a new free account had to 
be registered on the Postman official website: 
https://www.postman.com/. Figure 4 offers a brief 
explanation of the Postman GUI: 
1. A new workspace and a new collection were created. 

The collection was used to keep together the request 
and the data received as a response.  

2. The type of request can be selected from a drop-down 
menu (e.g. GET herein).  

3. Regarding of what information we want to retrieve, the 
specific URL was introduced. 

4. The type of authentication can be selected from a drop-
down menu (in this case Basic Authentication). 

5. The username and the password are introduced just as 
in CLI, mentioning that they are stored.  

6. The encoding format can be selected (i.e. XML). 
7. The body is the response received after calling the 

method on the specified URL (herein the response was 
provided by a GET request). 
 

 

Figure 4. Postman GUI components 

 There are hundreds of modules that may be called by 
using RESTCONF. Some are Cisco-specific, others are 
versions of the IOS that we are running, and some are IETF 
generic. The number of things we can call on or seek for is 
virtually endless. A GET request was used again to obtain 
all the capabilities of our router. In addition, the 
environment variables option provided by Postman were 
leveraged to ease the job for automation. This option 
allowed us to create variables that stored values. Later on 
they were used to replace the repetitive tasks (typing 
username, password or host etc.). The environment was 
called RESTCONF demo (see Figure 5): 
1. The environment was created from “eye”. 
2. The needed was selected from the list of environments. 
3. The variables were created and their values were 

obtained from the user input. 
4. The environment was then saved (otherwise the 

settings are not updated). 

 

Figure 5. Creating an environment in Postman 

 The way the variables are used is shown in Figure 6. 

The variable’s name is put between double curly brackets 
to reference the value (e.g. {{variable}}). There was a 
significant number of modules, therefore the outcome of 
this request was not entirely visible. 

 

Figure 6. Variables to get the modules of RESTCONF 

OSPF (needed in the second scenario) was enabled on 

all routers of the topology. When we tried to retrieve 

OSPF-related information, we compared the output of the 

SSH Client with the output of Postman (Figures 7 and 8). 

Note that the path to make a request was: 

https://192.168.100.39/restconf/data/Cisco-IOS-XE-

native:native/router/ospf.  

 

Figure 7. OSPF networks enabled on R2 in Postman 

 

Figure 8. OSPF interfaces on R2 in SSH Client 

R2#show ip ospf interface brief 

Intf PID Area IP Addr/Mask   Cost St Nbrs 

F/C 

Gi2  1   0  192.168.100.39/24  1   DR   0/0 

Gi3  1   0  20.1.1.254/24      1   DR   0/0 

Gi1  1   0  10.1.1.254/24      1   DR   0/0 

https://www.postman.com/
https://192.168.100.39/restconf/data/Cisco-IOS-XE-native:native/router/ospf
https://192.168.100.39/restconf/data/Cisco-IOS-XE-native:native/router/ospf


 

Volume 61, Number 2, 2021                                                   ACTA TECHNICA NAPOCENSIS                                                                                                                        

Electronics and Telecommunications 

________________________________________________________________________________ 

 
 29 

 The returned answer, which was initially delivered back 
in XML format, was easily converted to JSON encoding 
using Postman. In the Headers tab, the value 
application/yang-data+json should have the Accept 
Key (Figure 9).  
 

 

Figure 9. JSON encoding Postman settings 

 Next, information about the network interfaces 
available on the router had to be retrieved (see Figure 10). 
The response was then compared to the console output, as 
in Figure 11.  

 

Figure 10. Network interfaces available on the router via 

Postman 

The path for the call in Figure 10 was  
https://192.168.100.39/restconf/data/Cisco-IOS-

XE-native:native/interface. 

 

 

Figure 11. Network interfaces available on the router via 

SSH 

 The interface GigabitEthernet4 (Gi4) was also present 
on the router but it did not have an IP address allocated. 
Using a PATCH request, this time via Python, a new IP 
address was set to 50.1.1.1, with mask 255.255.255.0 
(Figure 13). The other interfaces could have been set much 
easier using this method. The variable url stored the path 
to the network interface which was configured. auth stored 
the credentials of the users, whilst headers was used to  
display the result in a JSON format and to use the data in 
the same format as the information patched directly on the 
router. Variable verify was set to false to ignore the SSL 
(Secure Sockets Layer) verification. After the requests 
library was imported, the request was done (Figure 12). 
Note that InsecureRequestWarning was used to disable 
warnings in requests' vendored urllib3. This meant that 
there were no Python warnings on the output console. 

 

 

Figure 12. Python PATCH request 

 After the request was done, information about the new 
interface settings was displayed in the SSH terminal (see 
Figure 13). In the PyCharm console a code was printed. 
The status code differed from one type of request to another 
and the acknowledgement that the operation was 
successfully done was given by a 3-digit number starting 
with the digit 2. If the operation failed, a 3-digit number 
starting with the digit 4 was displayed.  

R2#show ip interface brief 

Intf IP-Address     OK? Method Status  Prot. 

Gi1  10.1.1.254     YES NVRAM  up      up 

Gi2  192.168.100.39 YES DHCP   up      up 

Gi3  20.1.1.254     YES NVRAM  up      up 

# RESTCONF Interface Configuration 

import requests 

import json 

from urllib3.exceptions import 

InsecureRequestWarning 

requests.packages.urllib3.disable_warnings(ca

tegory=InsecureRequestWarning) 

response = requests.patch( 

   url = 

'https://192.168.100.39/restconf/data/Cisco-

IOS-XE-

native:native/interface/GigabitEthernet=4', 

   auth = ('admin', 'cisco'), 

   headers = { 

      'Accept': 'application/yang-data+json', 

      'Content-Type': 'application/yang-

data+json' 

   }, 

   data = json.dumps({ 

      'Cisco-IOS-XE-native:GigabitEthernet': 

{ 

         'ip': { 

            'address': { 

               'primary': { 

                  'address': '50.1.1.1', 

                  'mask': '255.255.255.0' 

               } 

            } 

         } 

      } 

   }), 

   verify = False) 

# Printing and verifying the HTML response 

code 

print('Response Code: ' + 

str(response.status_code)) 

if (int(response.status_code / 100) == 2): 

   print ("Success!") 

else: 

   print ("Failed!") 

https://192.168.100.39/restconf/data/Cisco-IOS-XE-native:native/interface
https://192.168.100.39/restconf/data/Cisco-IOS-XE-native:native/interface


 

Volume 61, Number 2, 2021                                                   ACTA TECHNICA NAPOCENSIS                                                                                                                        

Electronics and Telecommunications 

________________________________________________________________________________ 

 
 30 

  

 

Figure 13. IP allocation through Python request checking 

 Then we used Postman to add a loopback virtual 
interface. Being unique, the machine communicates with 
itself via this logical device [14]. This is mostly used for 
diagnostics and troubleshooting, as well as for connecting 
to local servers. After the GET request at the path 
https://192.168.100.39/restconf/data/ietf-

interfaces:interfaces, a JSON object of the returned 
interfaces was simply copied and modified in order to 
fulfill the task. In the body of a POST request with the same 
path, the object was pasted and the request was made 
(Figure 14). This interface had the IP address 6.6.6.6 with 
mask 255.255.255.0.  
 

 

Figure 14. Creating a Loopback interface using POST 

request via Postman 

 In order to be able to display the result in a JSON format 
and post the data in the same format, the following Headers 
were included (Figure 15) just as in the Python script from 
Figure 16.  
 

 

Figure 15. POST request headers 

 Figure 16 shows only a single 1 in the console's body 
which was the response of the request. In the right side, the 
Status 201 Created acknowledged that the request was 
successfully made. A notice was also shown on the router 
SSH terminal. To ensure that the interface was up and 
functioning, a quick check was performed immediately in 
the console (Figure 17). 

 

 

Figure 16. The interfaces available on the router 

 A ping was used to test connection to a second device 
at the Network Layer. It did this by sending and receiving 
Internet Control Message Protocol (ICMP) Echo Request 
messages. In Windows, the ping command sent four 
queries by default unless it has been modified [14]. The 
Loopback interface’s functionality was tested using this 
method (Figure 18). 

 

 

Figure 17. Ping response 

 The Python script ran again, this time with changes to 
the response body to ensure that the DELETE method 
worked too. After a successful run, a message was printed 
in the SSH console (Figure 18) and the interface was now 
removed. 
 

 

Figure 18. Loopback interface deletion 

B. Experiments with OSPF 

The accessible and active network interfaces on the router 

R2 were set through Postman or Python using the 

RESTCONF protocol, as previously shown. OSPF was 

enabled on all three routers and after the RESTCONF-

manner configuration of router R2, OSPF functionality 

was verified. This routing protocol allowed the delivery of 

packets to the neighbors in order to build and to maintain 

Jun 6 15:55:50.352: %DMI-5-CONFIG_I:  F0: 

nesd:  Configured from NETCONF/RESTCONF by 

admin, transaction-id 2913 

R2#show ip interface brief 

Intf IP-Address     OK? Method Status   Prot. 

Gi1  10.1.1.254     YES NVRAM  up       up 

Gi2  192.168.100.39 YES DHCP   up       up 

Gi3  20.1.1.254     YES NVRAM  up       up 

Gi4  50.1.1.1       YES other  adm.down down 

Jun  6 10:40:17.459: %LINEPROTO-5-UPDOWN: 

Line protocol on Interface Loopback6, changed 

state to up 

Jun  6 10:40:17.485: %DMI-5-CONFIG_I:  F0: 

nesd:  Configured from NETCONF/RESTCONF by 

admin, transaction-id 1545 

R2#show ip interface brief 

Intf IP-Address     OK? Method Status   Prot. 

Gi1  10.1.1.254     YES NVRAM  up       up 

Gi2  192.168.100.39 YES DHCP   up       up 

Gi3  20.1.1.254     YES NVRAM  up       up 

Gi4  unassigned     YES NVRAM  adm.down down 

Lo6  6.6.6.6        YES other  up       up 

R2#ping 6.6.6.6 

Type escape sequence to abort. 

Sending 5, 100-byte ICMP Echos to 6.6.6.6, 

timeout is 2 seconds: 

!!!!! 

Success rate is 100 percent (5/5), round-trip 

min/avg/max = 1/2/4 ms 

Jun  6 11:14:53.924: %DMI-5-CONFIG_I:  F0: 

nesd:  Configured from NETCONF/RESTCONF by 

admin, transaction-id 3366 

Jun  6 11:14:53.925: %DMI-5-SYNC_NEEDED:  F0: 

syncfd:  Configuration change requiring 

running configuration sync detected - 'no 

interface Loopback6 '. The running 

configuration will be synchronized to the 

NETCONF running data store. 

Jun  6 11:14:55.875: %LINEPROTO-5-UPDOWN: Line 

protocol on Interface Loopback6, changed state 

to down 

 

https://192.168.100.39/restconf/data/ietf-interfaces:interfaces
https://192.168.100.39/restconf/data/ietf-interfaces:interfaces


 

Volume 61, Number 2, 2021                                                   ACTA TECHNICA NAPOCENSIS                                                                                                                        

Electronics and Telecommunications 

________________________________________________________________________________ 

 
 31 

adjacencies, to transmit and to receive requests, to assure 

reliable delivery of Link-state Advertisements (LSAs) to 

neighbors, and to define link-state databases. All of the 

LSAs that an area router sends and receives were used to 

create link-state databases. The Shortest Path First (SPF) 

technique was then used to build the shortest-path spanning 

tree involving the link-state database [17]. A Hello packet 

was a specific packet delivered by a router to create and 

validate network adjacency connections on a regular basis. 

These packets were captured in the R1-R2 network and 

displayed using Wireshark (Figure 19).   

 

 
Figure 19. OSPF Hello packets exchanged between 

router R1 and router R2 

Through OSPF, the path to the neighboring network 

interfaces was now known by all routers. The ping 

command was used to exemplify the accessibility of 

devices (Figure 20).  

 

 
Figure 20. Ping command flow chart between router R3 

and router R1 

Each of the routers had a routing table available (see 

Figure 21-23). The router configured via RESTCONF 

functioned identically to the routers configured manually. 

The OSPF routes could also be seen in the previously 

mentioned figures.  

 

 

 

 

 
Figure 21. Routing table for router R1 

 
Figure 22. Routing table for router R2 

 

 

Gateway of last resort is 10.1.1.254 to 

network 0.0.0.0 

S* 0.0.0.0/0 [1/0] via 10.1.1.254 

   10.0.0.0/8 is variably subnetted, 2 

subnets, 2 masks 

C  10.1.1.0/24 is directly connected, 

GigabitEthernet1 

L  10.1.1.1/32 is directly connected, 

GigabitEthernet1 

   20.0.0.0/24 is subnetted, 1 subnets 

O  20.1.1.0 [110/2] via 10.1.1.254, 00:22:20, 

GigabitEthernet1 

   30.0.0.0/8 is variably subnetted, 2 

subnets, 2 masks 

C  30.1.1.0/24 is directly connected, 
GigabitEthernet2 

L  30.1.1.1/32 is directly connected, 

GigabitEthernet2 

O  192.168.100.0/24 [110/2] via 10.1.1.254, 

00:32:53, GigabitEthernet1 

Codes: L - local, C - connected, S - static, 

R - RIP, M - mobile, B – BGP, D - EIGRP, EX - 

EIGRP external, O - OSPF, IA - OSPF inter 

area, N1 - OSPF NSSA external type 1, N2 - 

OSPF NSSA external type 2, E1 - OSPF external 

type 1, E2 - OSPF external type 2, i - IS-IS, 

su - IS-IS summary, L1 - IS-IS level-1, L2 - 

IS-IS level-2, ia - IS-IS inter area, * - 

candidate default, U - per-user static route,  

o - ODR, P - periodic downloaded static 

route, H - NHRP, l – LISP, a - application 

route, + - replicated route, % - next hop 

override, p - overrides from PfR 

 

Gateway of last resort is 192.168.100.1 to 

network 0.0.0.0 

 

S* 0.0.0.0/0 [1/0] via 192.168.100.1 

   10.0.0.0/8 is variably subnetted, 2 

subnets, 2 masks 

C  10.1.1.0/24 is directly connected, 

GigabitEthernet1 

L  10.1.1.254/32 is directly connected, 

GigabitEthernet1 

   20.0.0.0/8 is variably subnetted, 2 

subnets, 2 masks 

C  20.1.1.0/24 is directly connected, 

GigabitEthernet3 

L  20.1.1.254/32 is directly connected, 

GigabitEthernet3 

   30.0.0.0/24 is subnetted, 1 subnets 

O  30.1.1.0 [110/2] via 10.1.1.1, 00:06:03, 

GigabitEthernet1 

   192.168.100.0/24 is variably subnetted, 2 

subnets, 2 masks 

C  192.168.100.0/24 is directly connected, 

GigabitEthernet2 

L  192.168.100.39/32 is directly connected, 

GigabitEthernet2 



 

Volume 61, Number 2, 2021                                                   ACTA TECHNICA NAPOCENSIS                                                                                                                        

Electronics and Telecommunications 

________________________________________________________________________________ 

 
 32 

 
Figure 23. Routing table for router R3 

 
VI. CONCLUSIONS AND FUTURE WORK 

Being a REST-like protocol and employing the well-
known HTTP methods, RESTCONF is an optimal 
alternative to NETCONF for automating the networks. 
Following the implementation steps available in the Cisco 
Programmability Configuration Guide, the functionality of 
the protocol has been verified through Command Line 
Interface instructions. The Postman software simplified the 
way requests were made by providing a Graphical User 
Interface. Thus, we managed to rapidly execute router 
configuration tasks. A first scenario was to enable 
RESTCONF, involving just a single Cisco CSR 1000V 
virtual router connected directly from GNS3 to the 
physical network. Once different types of requests have 
been double-checked and the router has been fully 
configured, another two Cisco CSR1000V virtual routers 
were added in the network topology’s infrastructure. To 
evaluate the behavior of the RESTCONF configured router 
we selected the OSPF protocol to assist the discovery of all 
nearby interfaces. Obviously we wanted to demonstrate 
with these experiments that RESTCONF has an excellent 
potential to automate the network devices configuration in 
more complex infrastructures, being deployed on a larger 
scale.   
 A major outcome of this project was that we were able 
to get long lists of capabilities at 
https://{{host}}/restconf/data/netconf-

state/capabilities, that can be split in individual items 
and reused later for automatic configuration.   
 

ACKNOWLEDGMENT 
A preliminary work was presented at Student Symposium 
on Electronics and Telecommunications SSET 2021 - Cluj-
Napoca 28 May 2021. An expanded version was presented 
by V.A. Monoranu as B.Sc. thesis in Telecommunications 
Technologies and Systems in 16 July 2021.  
 
 

REFERENCES 
[1] S.M. Albercht, “RESTCONF Tutorial - Everything you need to 

know about RESTCONF in 2020”, Ultraconfig.com 2020, [Online], 

Available: https://ultraconfig.com.au/blog/restconf-tutorial-

everything-you-need-to-know-about-restconf-in-2020/ 

[2] “RESTCONF protocol”, IETF, 2017, Available: 
https://tools.ietf.org/html/rfc8040. 

[3] “Network automation”, VMware, 2021, [Online], Available: 

https://www.vmware.com/topics/glossary/content/network-
automation 

[4]  “What Is Network Automation?”, Cisco, 2021, [Online] 

https://www.cisco.com/c/en/us/solutions/automation/network-
automation.html 

[5] S. Sinche et al., "A Survey of IoT Management Protocols and 

Frameworks," in IEEE Communications Surveys & Tutorials, vol. 
22, no. 2, pp. 1168-1190, Secondquarter 2020, doi: 

10.1109/COMST.2019.2943087. 

[6] A. G. Prieto, A. Leung and K. Rockwell, "Automating the testing of 
RESTCONF agents," 2015 IFIP/IEEE International Symposium on 

Integrated Network Management (IM), 2015, pp. 984-989, doi: 

10.1109/INM.2015.7140422. 

[7] A. Ferrari et al., "A Two-Layer Network Solution for Reliable and 

Efficient Host-to-Host Transfer of Big Data," 2018 20th 

International Conference on Transparent Optical Networks 
(ICTON), 2018, pp. 1-4, doi: 10.1109/ICTON.2018.8473597. 

[8] O. Sanghak, E. Kim, J. (Paul) Jeong, H. Ko, and K. Hyoungshick. 

2017. A flexible architecture for orchestrating network security 
functions to support high-level security policies. In Proceedings of 

the 11th International Conference on Ubiquitous Information 

Management and Communication (IMCOM '17). Association for 
Computing Machinery, New York, NY, USA, Article 44, 1–5. 

DOI:https://doi.org/10.1145/3022227.3022270 

[9] A. Mayoral et al., "First demonstration of YANG push notifications 
in Open Terminals," 2020 International Conference on Optical 

Network Design and Modeling (ONDM), 2020, pp. 1-3, doi: 

10.23919/ONDM48393.2020.9133037. 
[10] R. Vilalta et al., "Control and Management of a Connected Car 

Using SDN/NFV, Fog Computing and YANG data models," 2018 

4th IEEE Conference on Network Softwarization and Workshops 

(NetSoft), 2018, pp. 378-383, doi: 

10.1109/NETSOFT.2018.8460131. 
[11] M. Granderath and J. Schönwälder, "A Resource Efficient 

Implementation of the RESTCONF Protocol for OpenWrt 

Systems," NOMS 2020 - 2020 IEEE/IFIP Network Operations and 
Management Symposium, 2020, pp. 1-6, doi: 

10.1109/NOMS47738.2020.9110458. 

[12] "Programmability Configuration Guide, Cisco IOS XE Fuji 16.9.x," 
Cisco, First Published: 2018-07-18, pp. 120-130 

[13] “What is Postman and how to use postman to test api?”, 

Testrigtechnologies 2020, [Online], Available: 
https://www.testrigtechnologies.com/what-is-postman-and-how-to-

use-postman-to-test-api/ 

[14] J. Edwards, “IT Basics: The Ping Utility Explained 
“,whatsupgold.com 2020, [Online], Available: 

https://www.whatsupgold.com/blog/it-basics-the-ping-utility-

explained 
[15] V.A. Monoranu. V. Dobrota., “Device Level Programmability 

Using RESTCONF”, Student Symposium on Electronics and 

Telecommunications SSET 2021, Cluj-Napoca 28 May 2021. 
[16] V.A. Monoranu, “Device Level Programmability Using 

RESTCONF”, B.Sc. Thesis, Technical University of Cluj-Napoca, 

16 July 2021. 
[17] “Packet types for OSPF “, IBM, 2021, [Online], Available: 

https://www.ibm.com/docs/en/i/7.1?topic=concepts-packet-types-

ospf 
[18] “Cisco Cloud Services Router 1000v Data Sheet”, Cisco, 2018, 

[Online], Available: 

https://www.cisco.com/c/en/us/products/collateral/routers/cloud-
services-router-1000v-series/data_sheet-c78-733443.html 

[19] B. Claise, J. Clarke, J. Lindblad, “Network Programmability with 

YANG”, Addison-Wesley Professional, 2019  
[20] “GNS3 Windows Install”, GNS3, 2021, [Online], Available: 

]https://docs.gns3.com/docs/getting-started/installation/windows/ 

[21] “PyCharm”, Wikipedia, 2021 [Online], Available: 
https://en.wikipedia.org/wiki/PyCharm. 

Gateway of last resort is 20.1.1.254 to 

network 0.0.0.0 

 

S* 0.0.0.0/0 [1/0] via 20.1.1.254 

   10.0.0.0/24 is subnetted, 1 subnets 

O  10.1.1.0 [110/2] via 30.1.1.1, 00:08:39, 

GigabitEthernet2 

   20.0.0.0/8 is variably subnetted, 2 

subnets, 2 masks 

C  20.1.1.0/24 is directly connected, 

GigabitEthernet3 

L  20.1.1.5/32 is directly connected, 

GigabitEthernet3 

   30.0.0.0/8 is variably subnetted, 2 

subnets, 2 masks 

C  30.1.1.0/24 is directly connected, 

GigabitEthernet2 

L  30.1.1.254/32 is directly connected, 

GigabitEthernet2 

O  192.168.100.0/24 [110/3] via 30.1.1.1, 

00:08:39, GigabitEthernet2 

https://www.vmware.com/topics/glossary/content/network-automation
https://www.vmware.com/topics/glossary/content/network-automation
https://www.cisco.com/c/en/us/solutions/automation/network-automation.html
https://www.cisco.com/c/en/us/solutions/automation/network-automation.html

