

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received: October 14, 2022; revised November 30, 2022

1

LEVERAGING SDN/SD-WAN IN VIRTUAL AND IOT DEPLOYMENTS

THROUGH AUTOMATION

Robert BOTEZ, Gabriel LAZAR, Iustin-Alexandru IVANCIU, Virgil DOBROTA

Technical University of Cluj-Napoca, Communications Department, Cluj-Napoca, Romania
Robert.Botez@com.utcluj.ro; Gabriel.Lazar@com.utcluj.ro; Iustin.Ivanciu@com.utcluj.ro;

Virgil.Dobrota@com.utcluj.ro

Abstract: This paper proposes a solution for the automation of Software-Defined Networking (SDN)/ Software-Defined Wide Area
Network (SD-WAN) testbeds using Infrastructure-as-Code and Configuration Management techniques. Through automation, our
solution also aims to reduce the difficulties raised by the implementation of the testbeds in various topologies with several
hardware architectures. A virtualized scenario including hosts, switches and an SDN Controller was leveraged by Vagrant and
configured using Ansible. We devised a second topology for edge deployments, incorporating multiple Raspberry Pi boards, to
validate the interoperability of the solution. The experimental results showed that the highest value of the configuration time
represents no more than half of the time needed in case of a manual approach.

Keywords: Ansible, IoT, ONOS, SDN, SD-WAN, Vagrant.

I. INTRODUCTION
Even though Software Defined Networking (SDN) was
introduced in the early days of the last decade, the need for
this technology has increased especially with the advent of
5G networks. As suggested in [1], the emergence of the 5th
generation of mobile networks and beyond increased the
demand for SDN, as this technology provides a wealth of
opportunities to meet the requirements needed for
deployments. Also, it is predicted that the SDN market size
will reach almost 73 million dollars by 2027, compared to
about 10 million dollars in 2019. The compound annual
growth rate (CAGR) is expected to increase to 28.2% from
2020 to 2027. While the accelerated rate of adoption for
SDN nowadays can be explained by the demands of
deploying complex networks required in 5G or B5G, the use
cases already existed even for older generation networks.
Such a use case is the network slicing mechanism, which
although mandatory for 5G, can be also enabled for 4G
networks. The feasibility of introducing such a mechanism
in previous networks using SDN was demonstrated in [2].
 Before deploying a novel algorithm or a new feature in a
network controlled by SDN, that feature should be
extensively tested and validated in order to avoid, for
example, connectivity issues or other unwanted behavior.
For this, many network administrators and developers use
different kinds of testbeds in order to implement and
validate their applications before sending them in
production environments. While many prefer network
simulation tools such as Mininet [3] for its accessibility and
ease of use, it can provide inaccurate network metrics which
can lead to erroneous results. Thus, real testbeds or network
emulators are needed in order to have a true validation of a
certain SDN application. These observations are reinforced
by the study conducted in [4], where the authors evaluate
the usefulness of Mininet in a proper SDN virtualized
testbed. They find that while Mininet can provide easy and
fast deployment in the case of a low-complexity test
environment, in the case of complex networks the

configuration becomes even more complicated than if
hardware or other virtualization solutions were used for the
testbed. Also, in addition to the possibility of providing
incorrect data, the authors suggest that Mininet also suffers
from the network security point of view. Another paper [5]
also points out that even though Mininet is consistent for
many scenarios, some parameters are not consistent, such as
the maximum Round Trip Time (RTT). Nonetheless, tools
like Mininet remain a viable solution to test the early phase
of an application before launching it in real environments.
Having regard to the foregoing, other testbeds have been
proposed to accurately reflect real-world scenarios, one of
them being [6]. Here, the authors proposed a physical
testbed, named SDN On-The-Go (OTG), consisting of four
dedicated ZodiacFX SDN switches deployed on Raspberry
Pi 3 hosts and a dedicated Kangaroo+ controller. Even
though this solution can be used for real scenarios, the
equipment involved costs approximately $1000 USD.
 Our approach focuses on delivering an accurate
environment for SDN and SD-WAN experiments, but
without the need for dedicated equipment, so the cost of
implementation is practically inexistent. We propose a fully
automated virtual testbed, using the VirtualBox [8]
hypervisor, and Vagrant [9] and Ansible [10] as automation
tools. Using only open-source tools, the testbed can be run
on any existing device which has VirtualBox installed. The
logical topology of the testbed consists of an ONOS [11]
SDN controller, two OpenFlow based virtual switches (we
opted for Open vSwitch [12]) and two Linux virtual
machines as hosts. We also validated our solution on
another test bench composed of Raspberry Pi boards, which
has another hardware architecture, to show its degree of
integrability.
 The motivation for this paper was to implement a testbed
in which we could conduct accurate SDN and SD-WAN
experiments in our research laboratory. Taking into account
the difficulties we encountered during the implementation,
we considered that the development of a general solution

mailto:Robert.Botez@com.utcluj.ro
mailto:Gabriel.Lazar@com.utcluj.ro
mailto:Iustin.Ivanciu@com.utcluj.ro
mailto:Virgil.Dobrota@com.utcluj.ro

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 2

would bring benefit for other researchers looking to
implement such a testbed. It is worth mentioning that even
if we used VirtualBox, the solution can be extended to other
virtualization solutions by changing the provider in the
Vagrant configuration file, along with other specific
configurations for the chosen provider. Finally, we created
our topology only to prove the feasibility of our solution.
Thus, changes should be made to the configuration files in
order to change the topology. However, any type of
topology can be automatically implemented with the right
configurations using our solution, thus reducing extensive
repetitive workloads and deployment times required for
manual configurations.
 The remainder of this paper is organized as follows.
Section 2 presents the related work and a brief overview of
SDN technology. The design and architecture of the
proposed solution are discussed in Section 3, followed by
experimental results and validation in Section 4. The paper
ends with conclusions and future works.

II. RELATED WORK
In [13], the authors use an automated approach for an SDN-
based testbed in order to evaluate the performance
evaluation of multipath TCP (MPTCP) protocol. The
testbed, consisting in network switches and hosts, was
simulated and deployed in an automated manner over
Mininet using a python application named MPTCP Test
Manager. The authors state that through automation they
could perform hundreds of experiments consecutively.
However, they conclude that there are many factors that can
affect the performance of an MPTCP connection; thus, the
results obtained through a simulator should be validated in a
real SDN network.
 Another solution that sets out to implement an academic
network testbed using SDN is presented in [14]. The authors
tried to test the feasibility of using SDN rather than physical
network resources in academia. Also, the challenges and
obstacles encountered during the SDN adoption are
presented. However, the networking component is emulated
using Mininet. The feasibility of a complete migration from
legacy to SDN-based networks should involve real
equipment, for the reasons given in [4] and [5].
 None of the solutions for deploying an SDN-based
testbed discussed earlier include the CM of the SDN
controller (SDNC). It is important to note that a fully
automated deployment should include all the elements from
resource provisioning (in virtual environments) to CM of all
the components of the testbed: hosts, virtual or physical
switches and SDN controller. Today, there are many types
of SDN controllers (SDNCs) as well as studies on them. A
very wide analysis was performed in [15] comparing twelve
different SDN controllers. These were compared
considering features like: programming language, quality of
documentation, modularity, southbound and northbound
interfaces, OpenFlow, OpenStack, platform and
multithreading support and application domain. Also,
different tests were done to evaluate the performances of
these controllers in terms of throughput and latency. It was
observed that the SDN controllers written in C/C++ had the
highest performance in terms of throughput and Maestro
had the best latency record. It was also observed that the
controllers written in C and Java had the highest
performance when varying the number of threads. However,
the authors concluded that all the factors must be evaluated
in order to do a fair comparison: ONOS and OpenDaylight

present a very high modularity and are the most widely used
controllers being integrated in many scenarios, whilst
others, such as RYU, are better suited for research purposes.
 Another study on the comparison between the most used
SDN controllers was fulfilled in [16]. In this paper, the
performance of four different SDNCs was evaluated: Ryu,
Floodlight, ONOS and OpenDaylight. The authors extended
the previous study [15] by adding an evaluation regarding
the impact of the network load on these controllers. The
comparison between the features of the controllers is the
same as before. They concluded that in terms of integration
with different vendors OpenDaylight is the best solution,
but in terms of throughput ONOS had the best results.

III. OVERVIEW OF SDN
Software-Defined Networking [19] refers, in general, to the
separation of the data plane from the control plane; this
feature is mandatory for managing and configuring
networks using software. In a legacy network, all the
devices within that network had to be manually configured
and managed, with the data and control planes being present
on every of these devices.
 The SDN concept is about moving the control plane
from all the devices of a network, such as the one previously
described, in order to have a centralized control plane for
the whole network. This will lead to an adaptable network
which will be sensitive to any change, such as a link failure
or congestion, and will be capable of redirecting the
network flow by changing the route. Given the above, SDN
will deliver a more efficient use of the network capacity and
will minimize the costs by virtualizing the actual network
devices.

Figure 1. Software-Defined Networking Architecture

 The SDN architecture is composed of three different
layers (Figure 1) which communicate through APIs: the
southbound API, which connects the Control and the Data
planes, and the northbound API that connects the
Application with the Control plane.

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 3

 The Application plane consists of the applications and
services implemented in order to assist the SDN controller
in applying suitable policies for the network flows. Some of
the common applications are monitoring modules that
gather network metrics from the topology. These metrics are
used to redirect the traffic in case of congestion.
 The Control Plane represents the brain of the entire
network; here resides the SDN controller which has a
central vision of the network. The SDN controller takes
instructions from the applications and applies them to the
network components. It also sends network information
back to the applications for analyzing the network state.
 The Data Plane is formed by the network components.
Different from a legacy approach, these components must
be instructed by the controller to know how to forward the
network traffic. The components can be switches, virtual
switches, routers or other virtual or physical components.
 The southbound API is used by the controller to
communicate with the devices from the forwarding plane,
so it could dynamically adjust the routes based on policies
defined in the Application plane. One of the most used
protocols for the southbound API is OpenFlow [22]. The
OpenFlow protocol uses flows to define the path for a
packet. These flows are stored in a flow table which is
present on every OpenFlow switch and, based on the table
flow, the switch will forward the traffic. Usually, when no
flow matches a given packet, the switch will query the
controller for the action it needs to take. Depending on the
answer received, a new flow rule will be injected to forward
the packet, or the packet will be dropped. The working
principle of OpenFlow is illustrated in Figure 2. Nowadays
other protocols can be also used for the southbound
interface such as NETCONF, OSPF, MPLS or BGP [20].

Figure 2. Working principle of OpenFlow

 The northbound API is implemented as RESTful APIs
and is used by the SDN controller to communicate with the
Application plane. It is used by some applications and
services which assist the SDN controller, but it can be also
used for the integration with other tools and platforms such
as OpenStack, Ansible, Chef or SaltStack [21].

III. ARCHITECTURE AND DESIGN

This paper presents a fully automated testbed for SDN/SD-
WAN deployments using automation techniques,
Infrastructure-as-Code (IaC) and CM tools such as Vagrant
and Ansible. The proposed architecture is illustrated in
Figure 3.

Figure 3. Network topology diagram

 To implement the previous testbed, we used a
management server having the requirements presented in
Table I.

TABLE I. HARDWARE SPECIFICATIONS OF THE HOST

Operating System Windows 10
CPU Intel Core i7 7700 @ 3.60

GHz
RAM 32 GB DDR4
Storage 512 GB SSD
Network Adapter Gigabit Ethernet

 The flow of the process contains an Ansible playbook
with 4 plays and will be described next. The first play
includes the provisioning phase, but if the deployment is to
be done on existing resources, this can be skipped.
Otherwise, resources should be provisioned prior to
implementation. In this step, a Vagrant file is copied to the
target host. Based on the previous file, Vagrant will instruct
the provider VirtualBox how to configure the VMs and also
how to start them. We used five virtual machines configured
as follows: one SDNC, two OpenFlow switches, and two
hosts. Each virtual switch should have three network
interfaces: one for communication with the controller, one
to communicate with the other switch and one for
communication with the hosts. The last two interfaces were
added as ports to a bridge created by Open vSwitch.
Another important thing to be mentioned here is that these
interfaces which define the data plane should be set in
promiscuous mode. Otherwise, the LLDP and ARP frames
used for link and host discovery will not be forwarded and
thus will not be visible to SDNC. The last steps imply the
configuration of the virtual machines based on their Ansible
roles: SDNC, vSwitch or host. In this step multiple
applications needed for tasks such as host or link discovery,
OpenFlow support or reactive forwarding were activated.
Additionally, we created another playbook which is
responsible for deleting the deployment, as well as the
underlying virtual machines. The entire flow of leveraging
the previous testbed is illustrated in Figure 4.

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 4

Figure 4. The flow of the process

 The above configurations can also be used for physical
instances running Ubuntu operating systems newer than
version 18 or based on Debian. This is possible because the
package manager is the same, apt, and the installed software
packages can be found on all these distributions. However,
the previous task was only a use case, but we aimed for a
general solution for automating an SDN testbed. As a result,
we developed an algorithm suited with both physical and
virtual topologies. The algorithm is illustrated next.

Algorithm 1 SDN Testbed Deployment Algorithm
 Initialize the configurations and the number

of:

 SDN Controllers -> SDNC,

 Switches -> S and

 Hosts -> H

 if infrastructure does not exist then
 for index =1, SDNC + S + H do
 Provision the virtual resources

according to its

configuration

 end for
 end if
 for index =1, SDNC do
 Deploy and configure the SDN Controllers

 end for
 for index =1, S do
 Deploy and configure the OpenFlow

switches

 Connect the switches to the SDNC

 end for
 for index =1, H do
 Deploy the hosts

 end for

The quantity of resources must be stated as part of the input
data for each entity, be it an SDNC, OpenFlow switch, or
host. In the event that the infrastructure on which the testbed
is to be built does not already exist, it is necessary to create
it in advance. In this particular instance, it is given as data
and input in addition to various settings for the components
that have already been discussed, such as the number of
CPU cores, RAM memory, IP addresses, and operating
systems.
 In such a case, each entity must be configured
individually. The configuration stages are determined by the
SDNC solution that is selected. In this particular piece of
work, ONOS was used, and the procedures that needed to be
carried out were outlined in advance. On the other hand, in
our future work, we will include a flag that allows the user
to choose the controller solution from a list that has been
preset. In this instance, we will make use of many
playbooks, the specifics of which will be determined by the
controller version that is selected.
 To illustrate the algorithm's versatility, we intended to
evaluate it on a separate testbed with a different hardware
architecture. For the second experiment, we chose a
different topology focused on edge deployments. This
topology consists of one Raspberry Pi 4 acting as an OvS,
two Raspberry Pi Zero 2 W acting as hosts and one VM
running Ubuntu 20 deployed in a private cloud orchestrated
by OpenStack as SDNC. In this case, as stated above, we
skipped the provisioning tasks, since this time the
deployment is based on physical hardware. Only the virtual
machine running the ONOS controller hosted in OpenStack
was provisioned. The testbed together with its logical
architecture are illustrated in Figure 5 and Figure 6.

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 5

Figure 5. The second testbed consists of Raspberry Pi
boards

Figure 6. The logical architecture of the second testbed

 As shown in Figure 5, we used three TP-Link USB 3.0 to
Gigabit Ethernet Network adapters [17]. Theoretically, we
could realize the deployment in fully wireless fashion
without using additional components. However, we
considered the wireless interface of the devices as a
management network to connect to them via SSH. This is
important for controlling the devices without a display, but
also because Ansible configures devices through SSH.

IV. EXPERIMENTAL RESULTS
We validated our solution using two methods: first we
created a TCP connection between hosts with the iperf [18]
tool to check the connectivity and measure the throughput.
The second experiment was to measure the time needed for
both scenarios to complete. We used the default TCP
windows size in iperf and a timeframe of 100 seconds. For
the first scenario, we measured a throughput between 1.3
and 1.7 Gbps between hosts. Since all the virtual machines
were created with the same hypervisor under the same host,
the obtained values are strictly dependent on the host
capabilities, which were presented in Table 1. For the
second scenario however, the obtained values were
dependent on the components. Since the Zero 2 W model
has only one micro USB port, we connected an On the Go
(OTG) cable to it and cascaded also to the TP-Link adapter.
The throughput varies between 310 and 360 Mbps, which is
below 480 Mbps, the maximum achievable data transfer
with USB 2.0. The measured values were captured together
with the IP addresses of the hosts for both scenarios in the
ONOS GUI as illustrated in Figure 7 and 8. Note that the

values in the figures are instantaneous values obtained
during the measurement, which vary within the specified
range.

Figure 7. Connectivity between the hosts for the first
scenario

Figure 8. Connectivity between the hosts for the second
scenario

 The OpenFlow handshake was captured between the
Raspberry Pi 4, which acts as an OvS (10.8.8.239), and
ONOS controller (10.8.8.229), as shown in Figure 9. For the
sake of brevity, we only included the captures for one of the
possible scenarios.

Figure 9. OpenFlow handshake

 Then, we measured the configuration time needed to
deploy the entire testbed for both scenarios (Figure 10). The
measured time for the virtualized scenario (depicted with
orange) ranged between 563s up to 590s, with an average
value of 575.8 seconds. For the Raspberry Pi deployment,
the measured time (depicted with blue) varied from 328s up
to 352s, with an average value of 341.8 seconds. We
observed that the average configuration time for the
Raspberry Pi deployment was smaller with almost 4 minutes
(234 seconds) than the other one. This is because the
provisioning step was omitted, and we used fewer devices.
However, the average provisioning time was 1 minute and 5
seconds per instance. In our case, the provisioning time
increases with the number of instances. Note that if we had
chosen a cloud-based environment, we could have
parallelized this step, thus obtaining a constant provisioning
time. The maximum obtained time was 590 seconds (almost
10 minutes) for the virtualized testbed. But if a manual
configuration were used to deploy that testbed the time
required would be on average 20 minutes even for an
experienced user. The time difference becomes much more

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 6

noticeable if the required number of configuration instances
is taken into account.

Figure 10. Configuration time for both scenarios

V. CONCLUSIONS AND FUTURE WORK
This paper presents a general solution for automatically
deploying test benches for SDN/SD-WAN architectures.
We involved Vagrant and Ansible as IaC and CM tools in
order to achieve the automation degree needed for such an
application. The testbed was validated on a virtualized
environment using VirtualBox as a hypervisor, but also on a
physical topology consisting of Raspberry Pi boards, thus
proving in this way the high degree of interoperability that
our solution possesses. Finally, we measured the
configuration time for both the Raspberry Pi and virtual
machines scenarios. We observed that the configuration
time is higher for deployments that need resources to be
provisioned prior to implementation. If in our case the
provisioning time increases with the number of instances, in
a cloud-based environment this step can be parallelized in
order to obtain a constant provisioning time, regardless of
the number of instances. However, we estimated that for the
maximum value of 590 seconds obtained for the virtualized
testbed, a manual approach should take at least a double
amount of configuration time.
 For future work, we plan to focus more on SD-WAN
deployments and extend our experiments for multi-domains
interconnectivity. We are also working on an application for
monitoring metrics such as Available Transfer Rate (ATR),
One-Way Delay (OWD) and Packet Loss (PL) in SDN
topologies. By analyzing these metrics, we want to create an
algorithm for calculating the optimal path in SDN and SD-
WAN networks. The algorithm can be integrated into 5G
backhaul networks to create network slicing mechanisms.

REFERENCES
[1] R. Rake, V. Gaikwad & V. Kumar, “Software Defined Networking

Market: Global Opportunity Analysis and Industry Forecast, 2020-

2027”, Allied Market Search, 2020, [Online], Available:

https://www.alliedmarketresearch.com/software-defined-networking-

market.

[2] R. Botez, J. Costa-Requena, I.-A. Ivanciu, V. Strautiu, and V.

Dobrota, “SDN-Based Network Slicing Mechanism for a Scalable

4G/5G Core Network: A Kubernetes Approach,” Sensors, vol. 21, no.

11, p. 3773, May 2021, doi: 10.3390/s21113773.

[3] “Mininet: An Instant Virtual Network on your Laptop (or other PC) –

Mininet”, Mininet Project Contributors, 2022, [Online], Available:

http://mininet.org/.

[4] O. Flauzac, E. M. Gallegos Robledo and F. Nolot, "Is Mininet the

Right Solution for an SDN Testbed?," 2019 IEEE Global

Communications Conference (GLOBECOM), 2019, pp. 1-6, doi:

10.1109/GLOBECOM38437.2019.9013145.

[5] J. Ortiz, J. Londoño and F. Novillo, "Evaluation of performance and

scalability of Mininet in scenarios with large data centers," 2016

IEEE Ecuador Technical Chapters Meeting (ETCM), 2016, pp. 1-6,

doi: 10.1109/ETCM.2016.7750830.

[6] J. Alcorn, S. Melton and C. E. Chow, "SDN On-The-Go (OTG)

physical testbed," 2017 IEEE Conference on Dependable and Secure

Computing, 2017, pp. 202-208, doi: 10.1109/DESEC.2017.8073808.

[7] “GNS3 – The software that empowers network professionals”,

GNS3, 2022, [Online], Available: https://www.gns3.com/.

[8] “VirtualBox Documentation”, Oracle, 2022, [Online], Available:

https://www.virtualbox.org/.

[9] “Vagrant”, Vagrant 2022, [Online], Available:

https://www.vagrantup.com/.

[10] “Red Hat Ansible Automation Platform, Ansible, 2022, [Online],

Available: https://www.ansible.com/.

[11] “ONOS Project”, ONOS 2022, [Online], Available:

https://wiki.onosproject.org/display/ONOS/ONOS.

[12] Open vSwitch. Available: https://www.openvswitch.org/.

[13] N. Kukreja, G. Maier, R. Alvizu and A. Pattavina, "SDN based

automated testbed for evaluating multipath TCP," 2016 IEEE

International Conference on Communications Workshops (ICC),

2016, pp. 718-723, doi: 10.1109/ICCW.2016.7503872.

[14] M. Raza, S. Chowdhury and W. Robertson, "SDN based emulation of

an academic networking testbed," 2016 IEEE Canadian Conference

on Electrical and Computer Engineering (CCECE), 2016, pp. 1-6,

doi: 10.1109/CCECE.2016.7726828.

[15] O. Salman, I. H. Elhajj, A. Kayssi and A. Chehab, "SDN controllers:

A comparative study," 2016 18th Mediterranean Electrotechnical

Conference (MELECON), 2016, pp. 1-6, doi:

10.1109/MELCON.2016.7495430.

[16] L. Mamushiane, A. Lysko and S. Dlamini, "A comparative evaluation

of the performance of popular SDN controllers," 2018 Wireless Days

(WD), 2018, pp. 54-59, doi: 10.1109/WD.2018.836.

[17] “USB 3.0 to Gigabit Ethernet Network Adapter”, TP Link 2022,

[Online], Available: https://www.tp-link.com/ro/home-

networking/computer-accessory/ue300/.

[18] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP”, iPerf

2022, [Online], Available: https://iperf.fr/.

[19] C. Jackson, J. Gooley, A. Iliesiu and A. Malegaonkar, “Cisco

Certified DevNet Associate DEVASC 200-901 Official Cert Guide”,

Cisco Press, 2020.

[20] “What Are SDN Southbound APIs?”, SDX Central, 2014, [Online],

Available:

https://www.sdxcentral.com/networking/sdn/definitions/southbound-

interface-api/.

[21] “What are SDN Northbound APIs (and SDN REST APIs)?”, SDX

Central, 2014, [Online], Available:

https://www.sdxcentral.com/networking/sdn/definitions/north-bound-

interfaces-api/.

[22] “OpenFlow Switch Specification”, Open Networking 2012, [Online],

Available: https://opennetworking.org/wp-

content/uploads/2014/10/openflow-spec-v1.3.0.pdf.

https://www.alliedmarketresearch.com/software-defined-networking-market
https://www.alliedmarketresearch.com/software-defined-networking-market
http://mininet.org/
https://www.gns3.com/
https://www.virtualbox.org/
https://www.vagrantup.com/
https://www.ansible.com/
https://wiki.onosproject.org/display/ONOS/ONOS
https://www.openvswitch.org/
https://www.tp-link.com/ro/home-networking/computer-accessory/ue300/
https://www.tp-link.com/ro/home-networking/computer-accessory/ue300/
https://iperf.fr/
https://www.sdxcentral.com/networking/sdn/definitions/southbound-interface-api/
https://www.sdxcentral.com/networking/sdn/definitions/southbound-interface-api/
https://www.sdxcentral.com/networking/sdn/definitions/north-bound-interfaces-api/
https://www.sdxcentral.com/networking/sdn/definitions/north-bound-interfaces-api/
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf

