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Abstract: This paper proposes a solution for the automation of Software-Defined Networking (SDN)/ Software-Defined Wide Area 
Network (SD-WAN) testbeds using Infrastructure-as-Code and Configuration Management techniques. Through automation, our 
solution also aims to reduce the difficulties raised by the implementation of the testbeds in various topologies with several 
hardware architectures. A virtualized scenario including hosts, switches and an SDN Controller was leveraged by Vagrant and 
configured using Ansible. We devised a second topology for edge deployments, incorporating multiple Raspberry Pi boards, to 
validate the interoperability of the solution. The experimental results showed that the highest value of the configuration time 
represents no more than half of the time needed in case of a manual approach.  
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I. INTRODUCTION 
Even though Software Defined Networking (SDN) was 
introduced in the early days of the last decade, the need for 
this technology has increased especially with the advent of 
5G networks. As suggested in [1], the emergence of the 5th 
generation of mobile networks and beyond increased the 
demand for SDN, as this technology provides a wealth of 
opportunities to meet the requirements needed for 
deployments. Also, it is predicted that the SDN market size 
will reach almost 73 million dollars by 2027, compared to 
about 10 million dollars in 2019. The compound annual 
growth rate (CAGR) is expected to increase to 28.2% from 
2020 to 2027. While the accelerated rate of adoption for 
SDN nowadays can be explained by the demands of 
deploying complex networks required in 5G or B5G, the use 
cases already existed even for older generation networks. 
Such a use case is the network slicing mechanism, which 
although mandatory for 5G, can be also enabled for 4G 
networks. The feasibility of introducing such a mechanism 
in previous networks using SDN was demonstrated in [2].  
 Before deploying a novel algorithm or a new feature in a 
network controlled by SDN, that feature should be 
extensively tested and validated in order to avoid, for 
example, connectivity issues or other unwanted behavior. 
For this, many network administrators and developers use 
different kinds of testbeds in order to implement and 
validate their applications before sending them in 
production environments. While many prefer network 
simulation tools such as Mininet [3] for its accessibility and 
ease of use, it can provide inaccurate network metrics which 
can lead to erroneous results. Thus, real testbeds or network 
emulators are needed in order to have a true validation of a 
certain SDN application. These observations are reinforced 
by the study conducted in [4], where the authors evaluate 
the usefulness of Mininet in a proper SDN virtualized 
testbed. They find that while Mininet can provide easy and 
fast deployment in the case of a low-complexity test 
environment, in the case of complex networks the 

configuration becomes even more complicated than if 
hardware or other virtualization solutions were used for the 
testbed. Also, in addition to the possibility of providing 
incorrect data, the authors suggest that Mininet also suffers 
from the network security point of view. Another paper [5] 
also points out that even though Mininet is consistent for 
many scenarios, some parameters are not consistent, such as 
the maximum Round Trip Time (RTT). Nonetheless, tools 
like Mininet remain a viable solution to test the early phase 
of an application before launching it in real environments. 
Having regard to the foregoing, other testbeds have been 
proposed to accurately reflect real-world scenarios, one of 
them being [6]. Here, the authors proposed a physical 
testbed, named SDN On-The-Go (OTG), consisting of four 
dedicated ZodiacFX SDN switches deployed on Raspberry 
Pi 3 hosts and a dedicated Kangaroo+ controller. Even 
though this solution can be used for real scenarios, the 
equipment involved costs approximately $1000 USD. 
 Our approach focuses on delivering an accurate 
environment for SDN and SD-WAN experiments, but 
without the need for dedicated equipment, so the cost of 
implementation is practically inexistent. We propose a fully 
automated virtual testbed, using the VirtualBox [8] 
hypervisor, and Vagrant [9] and Ansible [10] as automation 
tools. Using only open-source tools, the testbed can be run 
on any existing device which has VirtualBox installed. The 
logical topology of the testbed consists of an ONOS [11] 
SDN controller, two OpenFlow based virtual switches (we 
opted for Open vSwitch [12]) and two Linux virtual 
machines as hosts. We also validated our solution on 
another test bench composed of Raspberry Pi boards, which 
has another hardware architecture, to show its degree of 
integrability.  
 The motivation for this paper was to implement a testbed 
in which we could conduct accurate SDN and SD-WAN 
experiments in our research laboratory. Taking into account 
the difficulties we encountered during the implementation, 
we considered that the development of a general solution 

mailto:Robert.Botez@com.utcluj.ro
mailto:Gabriel.Lazar@com.utcluj.ro
mailto:Iustin.Ivanciu@com.utcluj.ro
mailto:Virgil.Dobrota@com.utcluj.ro


 

Volume 62, Number 2, 2022                                                   ACTA TECHNICA NAPOCENSIS                     

                                                                                                   Electronics and Telecommunications 

________________________________________________________________________________ 

 
 2 

would bring benefit for other researchers looking to 
implement such a testbed. It is worth mentioning that even 
if we used VirtualBox, the solution can be extended to other 
virtualization solutions by changing the provider in the 
Vagrant configuration file, along with other specific 
configurations for the chosen provider. Finally, we created 
our topology only to prove the feasibility of our solution. 
Thus, changes should be made to the configuration files in 
order to change the topology. However, any type of 
topology can be automatically implemented with the right 
configurations using our solution, thus reducing extensive 
repetitive workloads and deployment times required for 
manual configurations. 
 The remainder of this paper is organized as follows. 
Section 2 presents the related work and a brief overview of 
SDN technology. The design and architecture of the 
proposed solution are discussed in Section 3, followed by 
experimental results and validation in Section 4. The paper 
ends with conclusions and future works.  
  

II. RELATED WORK 
In [13], the authors use an automated approach for an SDN-
based testbed in order to evaluate the performance 
evaluation of multipath TCP (MPTCP) protocol. The 
testbed, consisting in network switches and hosts, was 
simulated and deployed in an automated manner over 
Mininet using a python application named MPTCP Test 
Manager. The authors state that through automation they 
could perform hundreds of experiments consecutively. 
However, they conclude that there are many factors that can 
affect the performance of an MPTCP connection; thus, the 
results obtained through a simulator should be validated in a 
real SDN network. 
 Another solution that sets out to implement an academic 
network testbed using SDN is presented in [14]. The authors 
tried to test the feasibility of using SDN rather than physical 
network resources in academia. Also, the challenges and 
obstacles encountered during the SDN adoption are 
presented. However, the networking component is emulated 
using Mininet. The feasibility of a complete migration from 
legacy to SDN-based networks should involve real 
equipment, for the reasons given in [4] and [5]. 
 None of the solutions for deploying an SDN-based 
testbed discussed earlier include the CM of the SDN 
controller (SDNC). It is important to note that a fully 
automated deployment should include all the elements from 
resource provisioning (in virtual environments) to CM of all 
the components of the testbed: hosts, virtual or physical 
switches and SDN controller. Today, there are many types 
of SDN controllers (SDNCs) as well as studies on them. A 
very wide analysis was performed in [15] comparing twelve 
different SDN controllers. These were compared 
considering features like: programming language, quality of 
documentation, modularity, southbound and northbound 
interfaces, OpenFlow, OpenStack, platform and 
multithreading support and application domain. Also, 
different tests were done to evaluate the performances of 
these controllers in terms of throughput and latency. It was 
observed that the SDN controllers written in C/C++ had the 
highest performance in terms of throughput and Maestro 
had the best latency record. It was also observed that the 
controllers written in C and Java had the highest 
performance when varying the number of threads. However, 
the authors concluded that all the factors must be evaluated 
in order to do a fair comparison: ONOS and OpenDaylight 

present a very high modularity and are the most widely used 
controllers being integrated in many scenarios, whilst 
others, such as RYU, are better suited for research purposes.  
 Another study on the comparison between the most used 
SDN controllers was fulfilled in [16]. In this paper, the 
performance of four different SDNCs was evaluated: Ryu, 
Floodlight, ONOS and OpenDaylight. The authors extended 
the previous study [15] by adding an evaluation regarding 
the impact of the network load on these controllers. The 
comparison between the features of the controllers is the 
same as before. They concluded that in terms of integration 
with different vendors OpenDaylight is the best solution, 
but in terms of throughput ONOS had the best results. 
 

III. OVERVIEW OF SDN 
Software-Defined Networking [19] refers, in general, to the 
separation of the data plane from the control plane; this 
feature is mandatory for managing and configuring 
networks using software. In a legacy network, all the 
devices within that network had to be manually configured 
and managed, with the data and control planes being present 
on every of these devices. 
 The SDN concept is about moving the control plane 
from all the devices of a network, such as the one previously 
described, in order to have a centralized control plane for 
the whole network. This will lead to an adaptable network 
which will be sensitive to any change, such as a link failure 
or congestion, and will be capable of redirecting the 
network flow by changing the route. Given the above, SDN 
will deliver a more efficient use of the network capacity and 
will minimize the costs by virtualizing the actual network 
devices.  

 
 

Figure 1. Software-Defined Networking Architecture 
 
 The SDN architecture is composed of three different 
layers (Figure 1) which communicate through APIs: the 
southbound API, which connects the Control and the Data 
planes, and the northbound API that connects the 
Application with the Control plane. 
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 The Application plane consists of the applications and 
services implemented in order to assist the SDN controller 
in applying suitable policies for the network flows. Some of 
the common applications are monitoring modules that 
gather network metrics from the topology. These metrics are 
used to redirect the traffic in case of congestion.  
 The Control Plane represents the brain of the entire 
network; here resides the SDN controller which has a 
central vision of the network. The SDN controller takes 
instructions from the applications and applies them to the 
network components. It also sends network information 
back to the applications for analyzing the network state. 
 The Data Plane is formed by the network components. 
Different from a legacy approach, these components must 
be instructed by the controller to know how to forward the 
network traffic. The components can be switches, virtual 
switches, routers or other virtual or physical components. 
 The southbound API is used by the controller to 
communicate with the devices from the forwarding plane, 
so it could dynamically adjust the routes based on policies 
defined in the Application plane. One of the most used 
protocols for the southbound API is OpenFlow [22]. The 
OpenFlow protocol uses flows to define the path for a 
packet. These flows are stored in a flow table which is 
present on every OpenFlow switch and, based on the table 
flow, the switch will forward the traffic. Usually, when no 
flow matches a given packet, the switch will query the 
controller for the action it needs to take. Depending on the 
answer received, a new flow rule will be injected to forward 
the packet, or the packet will be dropped. The working 
principle of OpenFlow is illustrated in Figure 2. Nowadays 
other protocols can be also used for the southbound 
interface such as NETCONF, OSPF, MPLS or BGP [20]. 

 
 

Figure 2. Working principle of OpenFlow 
 
 The northbound API is implemented as RESTful APIs 
and is used by the SDN controller to communicate with the 
Application plane. It is used by some applications and 
services which assist the SDN controller, but it can be also 
used for the integration with other tools and platforms such 
as OpenStack, Ansible, Chef or SaltStack [21].  

 
III. ARCHITECTURE AND DESIGN 

This paper presents a fully automated testbed for SDN/SD-
WAN deployments using automation techniques, 
Infrastructure-as-Code (IaC) and CM tools such as Vagrant 
and Ansible. The proposed architecture is illustrated in 
Figure 3.  

 
 

Figure 3. Network topology diagram 
 
 To implement the previous testbed, we used a 
management server having the requirements presented in 
Table I. 

TABLE I.  HARDWARE SPECIFICATIONS OF THE HOST 

Operating System Windows 10 
CPU Intel Core i7 7700 @ 3.60 

GHz 
RAM 32 GB DDR4 
Storage 512 GB SSD  
Network Adapter Gigabit Ethernet 
  
 The flow of the process contains an Ansible playbook 
with 4 plays and will be described next. The first play 
includes the provisioning phase, but if the deployment is to 
be done on existing resources, this can be skipped. 
Otherwise, resources should be provisioned prior to 
implementation.  In this step, a Vagrant file is copied to the 
target host. Based on the previous file, Vagrant will instruct 
the provider VirtualBox how to configure the VMs and also 
how to start them. We used five virtual machines configured 
as follows: one SDNC, two OpenFlow switches, and two 
hosts. Each virtual switch should have three network 
interfaces: one for communication with the controller, one 
to communicate with the other switch and one for 
communication with the hosts. The last two interfaces were 
added as ports to a bridge created by Open vSwitch. 
Another important thing to be mentioned here is that these 
interfaces which define the data plane should be set in 
promiscuous mode. Otherwise, the LLDP and ARP frames 
used for link and host discovery will not be forwarded and 
thus will not be visible to SDNC. The last steps imply the 
configuration of the virtual machines based on their Ansible 
roles: SDNC, vSwitch or host. In this step multiple 
applications needed for tasks such as host or link discovery, 
OpenFlow support or reactive forwarding were activated. 
Additionally, we created another playbook which is 
responsible for deleting the deployment, as well as the 
underlying virtual machines. The entire flow of leveraging 
the previous testbed is illustrated in Figure 4.
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Figure 4. The flow of the process 
 

 The above configurations can also be used for physical 
instances running Ubuntu operating systems newer than 
version 18 or based on Debian. This is possible because the 
package manager is the same, apt, and the installed software 
packages can be found on all these distributions. However, 
the previous task was only a use case, but we aimed for a 
general solution for automating an SDN testbed. As a result, 
we developed an algorithm suited with both physical and 
virtual topologies. The algorithm is illustrated next. 
 

Algorithm 1 SDN Testbed Deployment Algorithm 
 Initialize the configurations and the number 

of: 

     SDN Controllers -> SDNC, 

     Switches -> S and 

     Hosts -> H  

 if infrastructure does not exist then 
     for index =1, SDNC + S + H do 
             Provision the virtual resources 

according to its                      

configuration  

         end for 
     end if 
     for index =1, SDNC do 
         Deploy and configure the SDN Controllers  

     end for            
     for index =1, S do 
         Deploy and configure the OpenFlow 

switches 

         Connect the switches to the SDNC  

     end for  
     for index =1, H do 
     Deploy the hosts  

     end for 

 

  

The quantity of resources must be stated as part of the input 
data for each entity, be it an SDNC, OpenFlow switch, or 
host. In the event that the infrastructure on which the testbed 
is to be built does not already exist, it is necessary to create 
it in advance. In this particular instance, it is given as data 
and input in addition to various settings for the components 
that have already been discussed, such as the number of 
CPU cores, RAM memory, IP addresses, and operating 
systems. 
 In such a case, each entity must be configured 
individually. The configuration stages are determined by the 
SDNC solution that is selected. In this particular piece of 
work, ONOS was used, and the procedures that needed to be 
carried out were outlined in advance. On the other hand, in 
our future work, we will include a flag that allows the user 
to choose the controller solution from a list that has been 
preset. In this instance, we will make use of many 
playbooks, the specifics of which will be determined by the 
controller version that is selected. 
 To illustrate the algorithm's versatility, we intended to 
evaluate it on a separate testbed with a different hardware 
architecture. For the second experiment, we chose a 
different topology focused on edge deployments. This 
topology consists of one Raspberry Pi 4 acting as an OvS, 
two Raspberry Pi Zero 2 W acting as hosts and one VM 
running Ubuntu 20 deployed in a private cloud orchestrated 
by OpenStack as SDNC. In this case, as stated above, we 
skipped the provisioning tasks, since this time the 
deployment is based on physical hardware. Only the virtual 
machine running the ONOS controller hosted in OpenStack 
was provisioned. The testbed together with its logical 
architecture are illustrated in Figure 5 and Figure 6. 
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Figure 5. The second testbed consists of Raspberry Pi 
boards 

 
 

Figure 6. The logical architecture of the second testbed 
 
 As shown in Figure 5, we used three TP-Link USB 3.0 to 
Gigabit Ethernet Network adapters [17]. Theoretically, we 
could realize the deployment in fully wireless fashion 
without using additional components. However, we 
considered the wireless interface of the devices as a 
management network to connect to them via SSH. This is 
important for controlling the devices without a display, but 
also because Ansible configures devices through SSH. 
 

IV. EXPERIMENTAL RESULTS 
We validated our solution using two methods: first we 
created a TCP connection between hosts with the iperf [18] 
tool to check the connectivity and measure the throughput. 
The second experiment was to measure the time needed for 
both scenarios to complete.  We used the default TCP 
windows size in iperf and a timeframe of 100 seconds.  For 
the first scenario, we measured a throughput between 1.3 
and 1.7 Gbps between hosts. Since all the virtual machines 
were created with the same hypervisor under the same host, 
the obtained values are strictly dependent on the host 
capabilities, which were presented in Table 1. For the 
second scenario however, the obtained values were 
dependent on the components. Since the Zero 2 W model 
has only one micro USB port, we connected an On the Go 
(OTG) cable to it and cascaded also to the TP-Link adapter. 
The throughput varies between 310 and 360 Mbps, which is 
below 480 Mbps, the maximum achievable data transfer 
with USB 2.0. The measured values were captured together 
with the IP addresses of the hosts for both scenarios in the 
ONOS GUI as illustrated in Figure 7 and 8. Note that the 

values in the figures are instantaneous values obtained 
during the measurement, which vary within the specified 
range. 

 
 

Figure 7. Connectivity between the hosts for the first 
scenario 

 
 

Figure 8. Connectivity between the hosts for the second 
scenario 

 
 The OpenFlow handshake was captured between the 
Raspberry Pi 4, which acts as an OvS (10.8.8.239), and 
ONOS controller (10.8.8.229), as shown in Figure 9. For the 
sake of brevity, we only included the captures for one of the 
possible scenarios. 

 
 

Figure 9. OpenFlow handshake 
 
 Then, we measured the configuration time needed to 
deploy the entire testbed for both scenarios (Figure 10). The 
measured time for the virtualized scenario (depicted with 
orange) ranged between 563s up to 590s, with an average 
value of 575.8 seconds. For the Raspberry Pi deployment, 
the measured time (depicted with blue) varied from 328s up 
to 352s, with an average value of 341.8 seconds. We 
observed that the average configuration time for the 
Raspberry Pi deployment was smaller with almost 4 minutes 
(234 seconds) than the other one. This is because the 
provisioning step was omitted, and we used fewer devices. 
However, the average provisioning time was 1 minute and 5 
seconds per instance. In our case, the provisioning time 
increases with the number of instances. Note that if we had 
chosen a cloud-based environment, we could have 
parallelized this step, thus obtaining a constant provisioning 
time. The maximum obtained time was 590 seconds (almost 
10 minutes) for the virtualized testbed. But if a manual 
configuration were used to deploy that testbed the time 
required would be on average 20 minutes even for an 
experienced user. The time difference becomes much more 
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noticeable if the required number of configuration instances 
is taken into account. 

 
 

Figure 10. Configuration time for both scenarios 
 

V. CONCLUSIONS AND FUTURE WORK 
This paper presents a general solution for automatically 
deploying test benches for SDN/SD-WAN architectures. 
We involved Vagrant and Ansible as IaC and CM tools in 
order to achieve the automation degree needed for such an 
application. The testbed was validated on a virtualized 
environment using VirtualBox as a hypervisor, but also on a 
physical topology consisting of Raspberry Pi boards, thus 
proving in this way the high degree of interoperability that 
our solution possesses. Finally, we measured the 
configuration time for both the Raspberry Pi and virtual 
machines scenarios. We observed that the configuration 
time is higher for deployments that need resources to be 
provisioned prior to implementation. If in our case the 
provisioning time increases with the number of instances, in 
a cloud-based environment this step can be parallelized in 
order to obtain a constant provisioning time, regardless of 
the number of instances. However, we estimated that for the 
maximum value of 590 seconds obtained for the virtualized 
testbed, a manual approach should take at least a double 
amount of configuration time. 
 For future work, we plan to focus more on SD-WAN 
deployments and extend our experiments for multi-domains 
interconnectivity. We are also working on an application for 
monitoring metrics such as Available Transfer Rate (ATR), 
One-Way Delay (OWD) and Packet Loss (PL) in SDN 
topologies. By analyzing these metrics, we want to create an 
algorithm for calculating the optimal path in SDN and SD-
WAN networks. The algorithm can be integrated into 5G 
backhaul networks to create network slicing mechanisms. 
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