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Abstract: This research focuses on the use of fine-tuning techniques to analyze various scenarios where some of the learnable 
layers in a CNN model are frozen and some are fine-tuned. The experimental section involves popular CNN architectures such 
as AlexNet and Vgg, and analyzes the classification performance of such models by freezing successively the convolutional and 
fully connected layers. The classification layers in the proposed technique are substituted with new ones that are trained 
starting with random values, while the other layers are either frozen or fine-tuned. For the frozen layers, the knowledge 
obtained from training on a vast dataset is applied to the new classification task, whereas for fine-tuned layers, the network 
parameters are changed to suit the new problem. The goal of this research is to identify the network location that enables the 
ideal balance between the generality and specificity of extracted features. The experimental study was undertaken using a small 
public dataset of medical images. The results are also compared against those obtained when fine-tuning is performed for all 
layers, as well as when all network parameters are directly transferred from pre-trained models for various learning rate 
values. For the considered models, the point that offered the optimum compromise between specificity and generality was 
found. The worst results are obtained when no layers are frozen. When utilizing the same weights from the pre-trained model, 
the results demonstrate that the classification scores may be improved by appropriately modifying the learning rate of the new 
classification layers. 
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I. INTRODUCTION 
In this day and age, massive amounts of different types of 
information are created every day and images account for 
a considerable proportion of the data that is generated.  As 
a consequence, one can rely on recent technology such as 
deep learning methods to rapidly interpret visual scenes 
and conduct image classification tasks. Deep learning 
approaches can solve this task by learning from labelled 
samples using supervized learning techniques. The task of 
providing a label to a given image is known as image 
classification. Deep learning approaches can estimate the 
class of membership for new images based on a training 
procedure in which a learning process takes place.  
 Such techniques have lately proved their capabilities in 
classifying efficiently images for a range of applications 
including but not limited to the medical and agricultural 
domains, home security, self-driving vehicles, biometric 
data-based applications, industry, and many more. The 
most extensively used deep-learning method for image 
processing tasks is the Convolutional Neural Network 
(CNN). CNNs include four main layer types: 

• Convolutional  
 These layers are responsible for extracting different 
characteristics from the input data. The mathematical 
convolution is done between the input and a filter by 
swiping it over the input image. The result is referred to as 
the feature map which is later given to further layers in 
order for them to learn numerous other attributes about the 
original image. 

• Pooling  
 A convolutional layer is typically succeeded by a 

pooling layer type. This layer's major objective is to reduce 
the dimension of the feature maps. In this way, the 
computational overhead of the network is lowered. This 
process is conducted independently for each obtained 
feature map. There are diverse types of pooling procedures 
depending on the employed approach such as max pooling 
(where the highest value from a considered region is 
selected) and average pooling (where the average value is 
kept) [1].  

• Non-linear  
 The activation function, which imparts non-linearity to 
the network, is one of the most significant components of 
a CNN. The ReLU, tanh, and sigmoid functions are some 
of the most often utilized activation functions [1]. 

• Fully connected  
  These layers are often the final layers of a CNN model 
that based on the attributes acquired by the convolutional 
and pooling layers, perform the actual classification. A 
flattening process is required before the generated feature 
maps can be fed into a fully connected structure. The 
process entails converting the feature map into a 1D vector. 
 There are also other types of layers such as the 
normalization and dropout layers that can be used to 
improve the network performance in certain situations.  
 The appropriate weights (values of the filters) and 
biases of the network are learned by the CNN during 
training which is performed with the help of the 
backpropagation technique. It operates under the theory 
that by altering the weights of the inputs, the expected 
outcome can be obtained. The network learns based on 
knowing the actual correct response of an input, then using 
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that information to modify the weights of its filters. 
 CNNs can serve as an entire classification chain by 
combining the convolutional layers that identify the most 
important attributes of the image under consideration with 
the fully-connected ones that are capable of conducting the 
classification process. This strategy's main drawback is 
that the classification performance is strongly influenced 
by the number of training samples employed. It is possible 
to not get adequately good results if a high amount of data 
is not accessible and as a result, the transfer learning 
strategy gains considerable value. According to this 
method, the data gathered for an initial assignment might 
serve as the foundation for a subsequent classification 
problem [2]. The benefit is the ability to handle data 
quickly and efficiently without manually creating complex 
CNN networks or using highly specialized hardware. The 
most popular strategy is to employ well-known CNN 
architectures that yielded significant results and that have 
already been pre-trained on massive amounts of data that 
come from a wide variety of categories. 
 The two primary methodologies in transfer learning 
involve either directly employing pre-trained CNN models 
or applying a fine-tuning procedure. We already explored 
methods that incorporate pre-trained models and used the 
same learnt weights in new classification tasks in [3]–[5]. 
 This study focuses on the application of fine-tuning 
methods to examine multiple situations where a variable 
number of layers are frozen in a CNN. This is crucial for 
improving the model accuracy when datasets with a limited 
number of samples are employed. This is particularly 
helpful for such datasets containing images that deviate 
significantly from the original dataset that was used for 
training. This research aims to find the network node that 
achieves the best possible balance between generality and 
specificity. In this way, the model can then learn additional 
particular characteristics linked to the new classification 
topic once all deeper layers have been adjusted. Secondly, 
since there are weights already learnt that are linked to 
more general properties not necessarily particular to the 
primary classification scenario, they are maintained the 
same by freezing all layers before that ideal point.  
 Transfer learning has been effectively applied to a 
number of CNN models, including GoogleNet [6], VggNet 
[7], AlexNet [8], ResNet [9], Inception-v3 [10], and 
InceptionResnet-v2 [11]. In [12], the authors employed 
fine-tuning strategies for the classification of images 
belonging to a small medical image dataset for the 
detection of oral cancer. The classification of liver-related 
abnormalities from computerized tomography (CT) images 
is also addressed in [13] by considering fine-tuning 
approaches based on the Resnet CNN model. Fine-tuning 
was also part of the methodology considered in [14] for X-
ray images involving data acquired for the detection of 
Covid-19 disease. Besides the medical domain, there are 
also other applications in which fine-tuning proved to be 
successful such as the identification of emotions from 
facial image data [15] or the classification of plant diseases 
[16]. 
  

II. PROPOSED METHOD 
The proposed method makes use of a ConvNet that has 
previously been trained by considering ImageNet [17], a 
very large dataset. In order to tackle a new classification 
task, one of the models under consideration is used as a 
starting place. Transfer learning speeds up the fine-tuning 

process compared to starting from a random initialization 
of the network weights. The output layers of the considered 
pre-trained model, which are the fully connected, softmax, 
and classification layers, are configured for 1000 labels, 
which match the number of classes of ImageNet. As a 
result, new layers (termed in the following as new 
classification layers) that are suited for training data related 
to the current task are used to replace the output layers of 
the CNN architecture. The number of outputs 
corresponding to the newly introduced layers is determined 
by the number of categories associated with the new 
dataset.  
 The learning rate is a crucial training process variable. 
Although a high learning rate makes the model learn more 
quickly, it is more probable in this case to obtain 
suboptimal weight values. While training takes longer if 
the learning rate has a smaller value, it is more likely to 
reach better-suited values for the network parameters.  
 Since the output layers in the proposed technique are 
replaced with new ones, they must be trained from scratch. 
In this case, the learning rate is changed such as the 
learning is faster in these layers with respect to the other 
layers in the ConvNet model. This adjustment is done by 
multiplying the global learning rate by 10 for the weights 
and biases associated with these new layers. 
 The two models investigated in this study are shown in 
Figure 1. Their configuration can be found in [18]. 
 

 
 

Figure 1. The CNN models employed in the study 

 The initial stage in the fine-tuning procedure is 
changing the size of the input images to suit the size criteria 
of the CNN model being taken into account and both 
training and testing images go through this process. The 
training images are also subjected to an augmentation 
process that takes into account random translation, 
flipping, rotation, and scaling. This method helps lower the 
possibility of overfitting which means that a model 
becomes so skilled at retaining the details of the training 
examples that it is unable to generalize to previously 
unseen images. Figure 2 presents the processing steps that 
are applied to the images from the considered dataset. 
 

 
Figure 2. Processing of images from the dataset  
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Figure 3. The considered fine-tuning strategy 

 The next step consists in considering all fully connected 
and convolutional layers (except the new classification 
layers at the end of the network) in each model to analyze 
the influence of freezing the weights and biases of the 
network. For each such learnable layer for the considered 
CNN architectures, there is analysed the scenario of 
freezing that specific layer and all layers before it. This 
means that for these layers (termed in the following as 
frozen layers), the weights and biases already acquired 
from the pre-training procedure (on ImageNet) are retained 
without any modification. This is done by considering a 
zero learning rate for these specific layers. In this case, no 
learning takes place and the parameters are kept exactly the 
same.  
 For the other layers in the network (termed in the 
following as fine-tuned layers) that are not frozen, fine-
tuning is applied. This signifies that training is carried out 
for the fine-tuned layers in order to modify the weights and 
biases to suit the new classification task. Fine-tuning 
requires in this case a lower value for the learning rate 
relative to the new classification layers since the fine-tuned 
layers have previously been trained on ImageNet. The 
reason behind this is the fact that in these situations since 
training was done on a large dataset, the weights and biases 
are already adapted to detect different attributes in the input 
image. This means that the convolutional filters are already 
tuned to detect different types of features, so they do not 
need a large learning rate.  
 We also considered the situation in which the freezing 
is not performed at all and fine-tuning takes place for all 
layers. 
 The next step is the training process that is performed 
for each identified learnable layer for the considered CNN 
models. In this case, the optimizer used is the Stochastic 
Gradient Descent (SGD) with momentum [19] (with a 
contribution of 0.99 from the preceding step) and the global 
learning rate is 10−4. The size of the mini-batch used is 10 
and training is performed on 6 epochs, which is enough for 
fine-tuning operations.  
 For the validation step, several performance metrics are 
computed: accuracy, macro-averaging precision, macro-
averaging recall, and F1 score. Apart from the F1 score, the 
other parameters are the same as in [5]. As the harmonic 
mean of precision and recall, the F1 score is a useful 
statistic that takes both values into account as expressed in 
Eq. (1): 

                          𝐹1=
2 × precision × recall

precision + recall
                     (1). 

  
 Figure 3 presents the workflow involved in the 
proposed method. 
 

III. EXPERIMENTAL RESULTS 
1. Dataset 
The experimental evaluation makes use of dermoscopic 
images of melanocytic lesions obtained with a mole 
analyzer. The dataset was obtained by [20] and is known 
as PH2. Figure 4 shows the setup used.  
 

 
Figure 4. The considered setup 

 Some example images from this dataset are presented 
in Figure 5. 
 

 
Figure 5. Image samples 

2. Results and discussion 
The experimental assessment entails assessing the 
classification ability of two CNN models in situations with 
a varying number of frozen layers.  
 The results are also compared to the ones achieved by 
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considering fine-tuning for all layers and by transferring all 
network parameters directly from pre-trained models. For 
all obtained results the same random partition of training 
and test images is considered. The layers in the CNN model 
are numbered as in [18] when all layers including learnable 
layers (convolutional and fully connected) but also ReLu, 
normalization, pooling and dropout layers are included.  
 Figure 6 presents the F1 score obtained using the 
AlexNet CNN architecture for three different values of the 
learning rate by freezing consecutively every learnable 
layer in the network. Table I presents the best results 
obtained for each learning rate value (𝑙𝑟) along with scores 
achieved when no layer is frozen and all layers are frozen.  
 

Table I. Classification scores  [%] obtained for AlexNet 

Conditions Accuracy Precision Recall 
F1 

score 

Global learning rate: 0.000025 

Layer 6 and 

all layers 

before are 

frozen 

90.00 85.23 82.50 83.84 

No layer is 

frozen 
84.00 91.67 60.00 72.53 

All layers are 

frozen 
78.00 70.50 78.75 74.40 

Global learning rate: 0.0001 

Layer 10 and 

all layers 

before are 

frozen 

92.00 87.50 87.50 87.50 

No layer is 

frozen 
82.00 90.82 55.00 68.51 

All layers are 

frozen 
86.00 78.57 87.50 82.80 

Global learning rate: 0.0002 

Layer 12 and 

all layers 

before are 

frozen 

80.00 75.00 87.50 80.77 

No layer is 

frozen 
20.00 60.00 50.00 54.55 

All layers are 

frozen 
92.00 90.18 83.75 86.85 

 
 The best result is obtained when a global learning rate 
of 10−4 is considered and all layers up until and including 
layer 10 are frozen. So, the optimal point that generated the 
best balance between specificity and generality is in this  
case layer 10 (see [18]).  
 If no layer is frozen, it means that fine-tuning is 
performed for all layers and in this case, all network 
parameters are adjusted. For all learning rates, we can see 
that this situation is the one that obtained the worst 
classification scores. We can also observe that the F1 score 
decreases as the learning rate increases in this case. Since 
the new dataset is so small, overfitting occurs when all 
layers are trained and for higher learning rates, the results 
are even worse because there are taken bigger steps when 

adjusting the network parameters.  
 

Table II. Classification scores  [%] obtained by freezing 

all layers in AlexNet for different learning rate values 

Metric 
lr* = 
0.002 

lr* = 
0.01 

lr* = 
0.015 

lr* = 
0.02 

Accuracy 92 92 88 86 
Precision 90.18 95.45 80.70 78.07 

Recall 83.75 80 85 83.75 
F1 score 86.85 87.05 82.8 80.81 

*the learning rate of the new classification layers = 10×global learning 
rate 

Table III. Classification scores [%] obtained for Vgg16 

Conditions Accuracy Precision Recall 
F1 

score 

Global learning rate: 0.000025 

Layer 4 and 

all layers 

before are 

frozen 

94.00 96.51 85.00 90.39 

No layer is 

frozen 
88.00 81.25 81.25 81.25 

All layers 

are frozen 
90.00 88.21 78.75 83.21 

Global learning rate: 0.0001 

Layer 26 

and all 

layers 

before are 

frozen 

98.00 98.78 95.00 96.85 

No layer is 

frozen 
86.00 83.33 68.75 75.34 

All layers 

are frozen 
92.00 95.45 80.00 87.05 

Global learning rate: 0.00015 

Layer 26 

and all 

layers 

before are 

frozen 

92.00 87.50 87.50 87.50 

No layer is 

frozen 
80.00 90.00 50.00 64.29 

All layers 

are frozen 
92.00 95.45 80.00 87.05 

 
 The situation when all layers are frozen corresponds to 
using in fact the same weights as for the pre-trained 
AlexNet model by transferring them directly to the new 
classification task. The obtained F1 score in this case 
increases as the learning rate increases for the considered 
learning rate values. This happens because a higher global 
learning rate involves a higher learning rate for the new 
classification layers that are trained from scratch. In this 
case, bigger steps are considered for adjusting the 
parameters in these layers, and thus, these layers achieve 
better capabilities in performing the classification of 
features derived by the previous convolutional layers. To 
better investigate this scenario, several experiments were 
performed to observe if by increasing the learning rate even 
further the results can be improved.
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Figure 6. Obtained classification results using AlexNet 

 
Figure 7. Obtained classification results using Vgg16 

The obtained scores are shown in Table II. A small increase 
in performance can be observed when considering 0.01 as 
the learning rate for the new classification layers. However, 
the further increase seems detrimental to the classification 
performance.  
 Figure 7 shows the F1 score achieved by employing the 
Vgg16 model for different learning rate values by freezing 
successively every learnable layer in the network. Table III 
provides the top outcomes for each learning rate value 
together with the results achieved when no layer is frozen 
and all layers are frozen. In this case, the best score is 
achieved when considering the same global learning rate 
(10−4) as for AlexNet and by freezing all layers up until 
and including layer 26 (see [18]). The same remarks 
discussed for AlexNet regarding the scenarios when all 
layers are frozen and no layer is frozen remain valid for 
Vgg16. 
 In [21], [22], the authors reported a 97.5% accuracy for 
the same dataset using classical descriptors. Combining 
classical descriptors and features derived from deep 
learning methods produced an accuracy of 96.5% in [23], 
while the extraction of attributes from pre-trained CNNs 
generated a 93% accuracy in [24]. In [25], 88% accuracy 
was obtained by pooling features from the final layers of 
several pre-trained models. However, the authors enhance 
their results by using a feature selection technique and 
integrating CNN features with other classical descriptors, 
yielding a value of 98% accuracy. 

IV. CONCLUSIONS 
This study focuses on the use of fine-tuning deep learning 
methods to examine various situations in which certain 
learnable layers in a CNN model are frozen while for others 
the network parameters are adjusted. By freezing 
sequentially the convolutional and fully connected layers, 
the experimental section examines the classification 
performance of two well-known CNN designs, AlexNet 
and Vgg16. In the proposed technique, the classification 
layers are replaced with new ones for which training is 
performed starting with random values, while for the 
remaining layers, the parameters are either kept the same 
or adjusted. An exploratory investigation that used a 
limited public database of medical images was conducted 
by also varying the value of the learning rate. A 
comparison was made with two distinct scenarios: fine-
tuning all layers and directly importing all network 
parameters from previously trained models. In the 
experimental section, the ideal location that produced the 
best balance between specificity and generality was 
identified for the two models that were taken into 
consideration. The least accurate classification results are 
obtained when no layer is frozen. Due to the small size of 
the new dataset, overfitting appears when all layers are 
trained, and the results are considerably worse at higher 
learning rates. When all layers are frozen, it is equivalent 
to using the identical weights from the pre-trained model 
and in this case, the obtained classification scores can be 



 

Volume 62, Number 2, 2022                                                   ACTA TECHNICA NAPOCENSIS                                                                                                                        

Electronics and Telecommunications 

________________________________________________________________________________ 

 
 12 

improved by properly adjusting the learning rate of the new 
classification layers.  
 As future work, we intend to perform the presented 
evaluation on other small datasets from the medical or 
precision agriculture domains and to carry out a clinical 
validation. 
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