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Abstract: Recent studies related to Distributed Denial-of-Service (DDoS) attacks were focused on determining how to leverage 
data plane programmability, enabled by P4 language, to identify intrusions directly in network switches, without the involvement 
of Software-Defined Networking (SDN) controllers. This facilitates the detection of TCP SYN flooding, for instance, without 
changing the flow paths through a central controller, therefore increasing the speed for managing workloads. In this paper, we 
propose a novel mechanism by introducing the capability of P4-based data planes to implement real-time detection and to respond 
effectively to attacks that require stateful functionalities (e.g., port scan).  
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I. INTRODUCTION 
The more available information related to a wide area of 
activity domains becomes, the more complex the 
information systems and Tactics, Techniques and 
Procedures (TTPs) used by the attackers are. 
 Denial-of-Service (DoS) attacks have increased 
significantly since a higher number of devices access the 
Internet of Things (IoT) and the businesses now support the 
remote connectivity technologies to complement existing 
infrastructure. No matter their size, organizations frequently 
disregard asset and inventory management guidelines that 
would enable them to fully comprehend their security 
vulnerabilities. Furthermore, IoT devices commonly use 
default passwords and do not possess strong security 
policies, leaving them open to hacking and to other forms of 
exploitation. Users are typically unaware that gadgets are 
infected, and an attacker may simply access hundreds of 
thousands of these devices to launch a significant attack.   
 As presented in [1], Distributed Denial-of-Service 
(DDoS) have grown in volume, length, and complexity 
during the past few years. According to the Q2 2022 DDoS 
report, SYN flood attacks accounted for 53% of all network-
based attacks, thus remaining the primary attack method 
today. Their functionality is based on exploiting the stateful 
TCP handshake's initial connection request. During the 
initial request, servers do not have any information about 
the new TCP connection, and without conventional 
protection they may find it difficult to mitigate a flood of 
initial connection requests. As long as the "Three-way 
Handshake" procedure is not terminated or canceled when it 
reaches the second phase, the connection is considered to be 
"Half open" (the server is awaiting the last ACK). A "Half 
open connection" occurs when the destination machine has 
already transmitted the SYN+ACK segment and is awaiting 
the arrival of the last ACK segment in order to establish the 
connection. The destination will wait a certain amount of 
time for the last ACK segment to arrive. During this time, 

the information about the upcoming connection will be 
registered and processed. This step will require a particular 
amount of memory and processing resources of the 
destination system.  
 Software-Defined Networking (SDN) is regarded as a 
next-generation network architecture. The main feature of 
SDN is that it employs a centralized controller to decouple 
the data plane from the control plane. The security of the 
network and the traffic rules can be easily implemented 
using a centralized controller, which acts as a network 
administrator who monitors the incoming and outgoing 
traffic. As a result, the controller has a global view of the 
network and, with ready-to-use resources, it is possible to 
build complex algorithms for network management (e.g., 
network security, congestion control, load balancing). The 
rapid and accurate identification and mitigation of abnormal 
behavior, such as DDoS attacks, is critical for network 
security. Nonetheless, traffic must be routed through a 
controller equipped with a DDoS attack detection 
mechanism. In addition to a substantial demand of 
processing resources for DDoS attack detection techniques, 
in general, classifying all flows in a controller will surpass 
the usable processing power, especially for flooding-based 
attacks [2].  
 The P4-based programmable data plane (Figure 1) can 
prevent large-scale attacks with low overhead, it can detect 
attacks per packet, and it can react to constantly changing 
threats with strong performance programmable hardware 
switches. This facilitates DDoS attack detection without 
changing the flow paths through a central controller, and 
thus enhancing speed and workload management. 
 In this work, we propose a novel approach for DDoS 
attack detection of TCP SYN flooding, by leveraging the 
potential of a TCP SYN (half-open) scan on the target host. 
Since this will respond with a RST segment if the port is 
closed, or with a SYN+ACK segment if the port is open, it 
is not necessary to finish the three-way handshake with the 
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final ACK reply. As a result, just half of the connection to 
the target port is made in order to determine its status.  

 
 

Figure 1. Evolution from the traditional architecture to 
the mixed SDN model with programmable data planes [3] 

 
II. RELATED WORK 

The effects of DDoS assaults and potential security 
strategies have been the subject of several research papers in 
recent years. In this part, we address related papers on 
DDoS defensive techniques in SDN.  
     One of the solutions for securing the network traffic 
across multiple environments is presented in [4]. The 
authors describe the current state of programmable switches 
and the opportunities and challenges encountered when 
mitigating DDoS attacks. For this reason, they developed a 
rapid and cost-efficient protection system that overcomes 
the major constraints of today’s security.  
 Another defense system for detecting DDoS attacks is 
proposed in [5].  
 The Floodlight controller uses the sFlow RT [6] in order 
to develop the modules needed for attack detection and for 
blocking applications. The proposed defensive system 
classifies normal and attack traffic using the Support Vector 
Machine (SVM) approach. According to the experimental 
results, it provides a remarkable accuracy of 96.55%.  
 In [7], the authors propose a DDoS attack detection 
solution for a vehicular network. For this purpose, the 
suggested system uses machine learning (ML) and SDN 
characteristics. It is based on a Packet_In based trigger 
method that reduces the attack detection time. It also 
incorporates feature extraction utilizing the flow table's 
entries. A classification model is trained and its 
performance is evaluated using the retrieved features. 
According to the data, the suggested solution reduces the 
false alarm rate and attack detection time. 
 The impact of spoofed and non-spoofed TCP-SYN 
flooding attacks on the controller resources in SDN is 
discussed in detail in [8]. The authors highly suggest an 
intrusion detection solution based on machine learning. The 
traffic is classified by using five distinct categorization 
models that are assessed with various performance metrics. 
These models are validated using a cross-validation 
approach which efficiently categorizes the traffic. The 
experiments demonstrate that all of the categorization 
models that were taken into consideration performed 
significantly better. 
 Study [9] considers the P4 technology in the context of a 
multi-layer SDN over an optical network. It demonstrates 

that effective dynamic traffic engineering (TE) actions can 
be deployed at the data plane level without engaging the 
SDN controller due to the stateful capacity of P4 nodes. As 
a second use case, the authors make use of the P4 
technology to enforce cyber-security [10], demonstrating 
the capability to respond to cyberattacks effectively without 
the need for specialized hardware, such as firewalls. They 
replaced the SDN controller to manage the traffic and to 
take decisions on flow entry changes, as is the case with 
OpenFlow switches. P4 domain specific targets are now 
used to directly decide particular actions on the switch itself 
[11]. The P4 implementations have undergone experimental 
validation on BMv2 P4 switches, demonstrating excellent 
performance in terms of scalability with the size of the 
program and in terms of switch latency to carry out 
operations. 
 Networks frequently experience harmful attacks like 
TCP SYN flooding and UDP flooding. The attacks block 
the network in addition to using up a lot of the target 
server’s resources and network transfer rate. In SDN, 
several new and innovative defense techniques are put out 
to protect the network against the attacks mentioned before. 
Still, the majority of protection mechanisms only work 
against attacks that use a particular protocol, such TCP or 
UDP.  As a result, the authors of [12] provide a generally 
applicable defense system in P4-based SDN. The 
experimental results demonstrate how successfully the 
suggested protection mechanism may liberate server 
resources (six times quicker than the associated work after 
identifying the threat for SYN flooding). In comparison to 
previous studies, the suggested protection system can 
minimize the volume of malicious traffic for UDP flooding 
by around two thirds. 
 A P4-programmable switch-based SYN flooding DDoS 
attack detection mechanism is provided in [13]. The 
detection of the malicious process is moved from a 
centralized controller to programmable P4 switches, which 
reduces detection time and distributes workload across the 
network. The active detection system extends passive 
classification techniques and seizes SYN flooding DDoS 
assaults by selective packet dropping. As a result, it is 
expected to have a more precise detection under overloaded 
network circumstances compared to the legacy solutions. 
 In [14], the authors compare Standalone and Correlated 
DDoS Attacks Detection (DAD) architectures while 
evaluating ML-assisted DDoS attack detection frameworks 
for use in SDN environments. Applying the data-plane 
programmability that the P4 language makes possible, the 
authors studied how detection latency is decreased when 
features extraction is carried out at P4 switches level. To 
achieve this, they evaluated the accuracy and computational 
efficiency of several ML classifiers and deployed the 
algorithms in a real-time environment where the P4 switch 
provided the ML algorithm with various sorts of data, 
including packet mirroring, header mirroring, and P4-
metadata extraction. Using P4 for feature extraction, the 
results demonstrate that the attack detection can be 
accomplished with classification accuracy, precision, and a 
F1-score higher than in 98% of cases. Additionally, in the 
situation where P4 is employed for features extraction, there 
is a significant time decrease, down to less than 200 µs. 
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III. OVERVIEW OF P4 LANGUAGE AND 
PROGRAMMABLE SWITCHES 

As described in [15], the Programming Protocol-
Independent Packet Processors (P4) is a declarative 
programming language used to specify how packets are 
handled by a network forwarding component, such as NIC, 
switch, router, or a service-oriented appliance. It is built on 
an abstract forwarding architecture (Figure 2) that consists 
of a parser and a group of match + action table elements that 
are classified into ingress and egress. 

 
 

Figure 2. P4 abstract forwarding architecture  
      
 A standard P4 program consists of five fundamental 
components:   
 
• Header: defines the packet header structure 
• Parser: the granted header series within packets  
• Table: for identifying the appropriate fields and the 

matching action 
• Action: creates a set of instructions 
• Flow controller: describes the way tables are organized 

inside the pipeline and how packets move through it. 

 Next, P4 applications are compiled into configuration 
binaries using the compiler. Its task is split into two phases: 
mapping the target independent intermediate representation 
(IR) to a particular target and translating P4 programs into 
IR.  

 As mentioned in [15], the compiler integrates two 
fundamental functions: (1) development of runtime mapping 
metadata to enable the control and data planes to interact 
using P4 runtime; and (2) creating an executable file for the 
particular data plane, describing the header format and the 
appropriate procedure.        

 P4 programmable nodes, also known as targets, can be 
acquired using either specialized hardware or CPU-based 
software (e.g., FPGA, ASIC). Described as a programming 
paradigm, the P4 architecture offers a functional perspective 
of the processing based on specific target. Therefore, target 
producers implement different P4 architectures. For 
instance, the SimpleSumeSwitch architecture is used by 
NetFPGA-based devices, the V1Model architecture is used 
by software switches such as BMv2, whilst the Protocol-
Independent Switching Architecture (PISA) architecture is 

implemented by programmable switches such as Intel 
Tofino ASIC.   
 The workflow of a P4 program is divided into several 
control blocks, so the input packet is processed and then 
transferred to the following control block in the pipeline. 
For example, the PISA architecture describes data 
processing by introducing three main blocks: 
 
• Parser: it describes how to interpret the packet’s header. 

A finite state machine is used to illustrate the steps, and 
each state is in charge of extracting one header structure. 

• Match-Action Pipeline: it has several match-action tables 
(MAT), each one containing keywords and related action 
information. These tables compare packets based on 
various header attributes and specify the actions to take 
when a match is found.  

• Deparser: it arranges the updated headers into packets in 
a fixed order and transfers them to the next phase. 
 

 The final block within Figure 2 is represented by an 
Application Programming Interface (API) called P4 
Runtime [16], and it is used to interconnect the control 
plane and data plane. It protects the hardware characteristics 
of the data plane and is unaltered by the capabilities and the 
protocol that the data plane provides.  
 According to [17], the primary characteristics of 
programmable switches are: 
 
• Agility: the capability of designing, testing and 

embracing new protocols and components in less time. 
• Top-down design: In comparison with the traditional 

bottom-up approach, where all the fixed-function ASICs 
are located at the bottom, the programmable switches 
define protocols and features in the ASICs. It is worth 
noting that the physical layer and certain MAC layer 
components might not be programmable. 

• Visibility: Programmable switches offer a better view of 
how the network is operating. Without the involvement 
of the control plane, In-band Network Telemetry (INT) 
is an example of a framework for collecting and 
recovering data from the data plane. 

• Reduced complexity: Fixed-function are less difficult 
since they accommodate a wide set of protocols. The 
processing mechanism, which is hard-coded in silicon, 
becomes more sophisticated and uses resources as 
resources as a result of these protocols. Engineers can 
choose to implement only the necessary protocols using 
programmable switches. 

• Separation: The protocols and unique features can be 
implemented without the knowledge of the chip 
manufacturer. 

• Improved performance: The performance is enhanced 
since programmable switches do not degrade the 
efficiency of the network. Instead, they might operate 
more effectively than fixed-function switches. For a 
better understanding,  

 Table 2 compares Intel Tofino2 programmable switches 
[18] to fixed-function switches. Based on common features, 
the P4-based switches present the following benefits: 14% 
greater performance, 14% lower power, better burst 
absorption, and real-time visibility. 

 



 

Volume 62, Number 2, 2022                                                   ACTA TECHNICA NAPOCENSIS                     

                                                                                                   Electronics and Telecommunications 

________________________________________________________________________________ 

 
 22 

 
Technology Programmable 

Switches 
Fixed-function 
ASICs 

Technology 16nm 16nm 
L2/L3 Throughput 6.5 Tb/s 6.5 Tb/s 
Availability Yes Yes 
Max forwarding rate 4.8B packets/sec 4.2B packets/sec 
Max 25G/10G Ports 256/258 128/130 
Programmability Yes No 
Typical system 
power draw 

4.2W per port 4.9W per port 

Large scale NAT Yes (100k) No 
Large scale stateful 
ACL 

Yes (100k) No 

Large scale tunnels Yes (192k) No 
Packet buffer Unified Segmented 
LAG/ECMP Hash 
algorithm 

Full entropy, 
programmable 

Hash seed, reduced 
entropy 

ECMP 256-way 128-way 
Telemetry and 
analytics 

Line-rate per low 
stats 

Sflow (Sampled) 

 
Table 1. Comparison between a P4 programmable switch 

and a fixed-function switch [18] 
  

IV. IMPLEMENTATION 
When dealing with network attacks, the programmable data 
plane features three main benefits over OpenFlow: visibility 
per packet, scalability, and high-speed processing 
capabilities. As shown in Figure 3, traditional security 
applications and defense mechanisms can be implemented 
at the hardware level including access control lists (ACLs) 
and packet filtering techniques, whereas higher-level 
firewalls and deep packet inspection tactics must be 
implemented by software [19]. This is also a major reason 
why traditional switches must transmit sampled packets to 
the controller. The programmable switch can handle every 
layer's protocol fields at the hardware level, provide deep 
packet analysis and protocol field change, and enable 
customized protocols and complex defensive mechanisms.  

 
 

Figure 3. OSI model for security: (1) traditional devices; 
(2) programmable devices 

 In order to mitigate the DDoS attack, the SYN scanning 
approach is proposed as a strategy to determine the status of 
a communications port without establishing a complete 
connection. Our approach uses the TCP SYN scan, which is 
a version of the standard SYN scan. It is a fast and effective 
scan that is not blocked by firewalls since it never completes 
the entire TCP connection. As a result, TCP SYN scanning 
is also known as half-open scanning and can identify open, 
filtered, or closed port status. 
 In our work, the attacker used TCP SYN to do the port 
scan. P4 switch detected it and blocked the packets sent 
from H1. The detection method proposed and tested herein 
blocked the connection when the number of SYN segments 

minus the number of SYN+ACK segments was higher or 
equal to 3 (see Figure 4).  
 

 

Figure 4. Diagram of TCP SYN flooding detection  

 For our experiments, we used Mininet as a working 
environment. The P4 language is the vital component of the 
P4-based solution, mainly due to the capacity of enabling 
the specification of packet formats (protocol headers) to be 
recognized by the P4 switch (BMv2 [20]), as well as of the 
actions to be taken on arriving packets (forwarding, headers 
modification, adding protocol header, etc.). The workflow 
used to program the BMv2 switch is illustrated in Figure 5: 
 

 
 

Figure 5. Workflow of BMv2 switch 
 

 The P4 program (basic.p4) was divided into three parts: 
protocols definition (data declaration), parser logic (parser 
and deparser) and a series of control blocks with Match-
Action tables. The first section describes the protocol 
headers that will be recognized by the switch (S1), i.e. the 
IPv4 header (see Figure 6). 
 
header ipv4_t { 

    bit<4>    version; 

    bit<8>    diffserv; (…) 

 
 Figure 6. IPv4 header 

 We only specified the header fields and their length. The 
headers are used to parse the incoming data and to identify 
the type of the packet. The Parser Logic is a finite state 
machine that defines the stages involved in reading and 
parsing incoming packets. It may be seen as a cyclic 
network in which each node processes a protocol's header. 
Additionally, we defined a number of control blocks in the 
P4 program that contain Match-Action tables. See the 
routing table in Figure 7.  

 By reading the destination IPv4 address we checked the 
match using the Exact comparison technique [21]. 
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    table routing_table { 
        key = { 

            hdr.ipv4.dstAddr: exact; 

        } 

        actions = { 

            forward; 

            drop; 

        } 

        size = 1024; 

        default_action = drop(); 

    } (…) 

  Figure 7. IPv4 routing table 

Then, for the packets that fit the rule, we performed either 
forwarding or dropping. The final step was to define the 
Deparser, which determined the order of packet headers for 
outgoing packets, as in Figure 8. 

control deparser(packet_out packet, in headers 

hdr) { 

    apply { 

        packet.emit(hdr.ethernet); 

        packet.emit(hdr.ipv4); 

        packet.emit(hdr.tcp); 

        packet.emit(hdr.udp); 

    }  

Figure 8. Deparser 

 At this point, we only deployed the P4 switch’s data 
plane, so we used Python to develop a simple controller 
(controller.py) to listen to the packets being transmitted 
from the data plane. After the network started, we ran the 
controller script to populate the forwarding table of S1. The 
controller was based on the Thrift API [22], and it was used 
with any P4 switch. The implementation of the Thrift API 
was built on the SimpleSwitchThriftAPI (as in Figure 9). 

if (syn1-syn2>=3) and (TCP in pkt) and 

pkt[TCP].flags==2: 

  src = pkt.sprintf('{IP:%IP.src%}') 

  if src not in blockip:                        

   self.controllers[“s1”].table_add(“block_pkt”, 

“_drop”, [str(src))], []) 

   blockip.append(src) 

 Figure 9. SimpleSwitchThriftAPI 
 

 The syn1 value represented the number of SYN packets 
sent by the attacker, while the syn2 was the number of 
SYN+ACK packets sent by the server. If the condition was 
true, then the controller applied the drop packet rule and 
sent it to the switch for blocking the incoming packets from 
H1. 

V. EXPERIMENTAL RESULTS 
The following section illustrates the capacity of the P4 
switch to block the incoming packets sent from the attacker 
(Figure 10). We started from the implementation described 
in [23], although their code was designed for investigating 
Denial-of-Service (DoS) only. Note that our paper is 
focused on DDoS, and as the work is in progress, herein we 
present just the preliminary results.    
 After the P4 program was initialized, the detection 
mechanism began. As mentioned earlier, this mechanism 
was implemented with the BMv2 software switch (see 
Figure 11). 

 
Figure 10. TCP SYN flood detection using P4 switch 

   
 
simple_switch: no process found 

Building mininet topology. 

p4c --target bmv2 -arch v1model -std p4-16 

"basic.p4" 

Switch port mapping: 

s1: 1:h1  2:h2  3:h3  4:sw-cpu 

Figure 11. BMv2 switch in Mininet 

  In order to verify the network connectivity, H1 
performed a ping test to H3, as depicted in Figure 12. 
Because no attack was detected by the controller, the syn1 

and syn2 values were 0.   

mininet> h1 ping -c 3 h3 
PING 10.0.3.1 (10.0.3.1) 56(84) bytes of data. 

64 bytes from 10.0.3.1: icmp_seq=1 ttl=63 

time=1.92 ms 

64 bytes from 10.0.3.1: icmp_seq=1 ttl=63 

time=2.22 ms 

 

--- 10.0.3.1 ping statistics --- 

2 packets transmitted, 2 received, 0% packet 

loss, time 1009ms 

rtt min/avg/max/mdev = 1.921/2.073/2.225/0.152 

ms 

Figure 12. Server ping test 

  H3 was set up as a server using the command python -
m SimpleHTTPServer. H1 tried to do a port scan on H3 
(Figure 13) using Netcat (nc) utility program.  

mininet> h1 nc -nvz -w 1 h3 80-85 
nc: connect to 10.0.3.1 port 80 (tcp) failed: 

Connection refused 

nc: connect to 10.0.3.1 port 81 (tcp) failed: 

Connection refused 

nc: connect to 10.0.3.1 port 82 (tcp) failed: 

Connection refused 

nc: connect to 10.0.3.1 port 83 (tcp) failed: 

Connection refused 

nc: connect to 10.0.3.1 port 84 (tcp) timed out: 

Operation now in progress 

nc: connect to 10.0.3.1 port 85 (tcp) timed out: 

Operation now in progress 

Figure 13. H1 port scan on H3 

 The controller detected the attack, and sent the drop 
packet rule (Figure 14) to the P4 switch to block H1. 

interface: s1-cpu-eth1 

summary: Ether / IP / TCP 10.0.1.1:46416 > 

10.0.3.1:82 S 

count1[ 10.0.1.1, 10.0.3.1 ]= 3 

syn1: 3 syn2: 0 syn3: 0 total: 3 

Adding entry to exact match table block_pkt 

match key:           EXACT-0a:00:01:01 

action:              _drop 

Figure 14. The controller set the rule “drop packet” 
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  When H1 tried again to ping H3, the switch dropped all 
the packets since it added the controller rule to block the 
connection coming from the attacker (Figure 15). 

 
mininet> h1 ping -c 3 h3 
PING 10.0.3.1 (10.0.3.1) 56(84) bytes of data. 

 

--- 10.0.3.1 ping statistics --- 

2 packets transmitted, 0 received, 100% packet 

loss, time 1010ms 

  Figure 15. H1 blocked IP address 

VI. CONCLUSIONS 
In order to minimize the disruptions caused by DDoS 
assaults, malicious traffic had to be detected and mitigated. 
In this paper, we presented a TCP SYN flooding attack 
detection system that was implemented using P4-
programmable switches. Unlike the related work, P4 was 
used to effectively respond to attacks that required stateful 
behaviors. In this case, the attacker wanted to do a port scan 
to find the potential open ports on the target host, before 
launching the attack. The implementation was 
experimentally evaluated using BMv2 P4 switch. It showed 
a notable scalability with increasing P4 program size and in 
terms of switch latency with conducting P4 actions. We 
proved that using this strategy in the data plane rather than 
in an SDN centralized controller, we obtained a reliable 
detection. Multiple vulnerabilities have to be addressed too 
in a future development. For example, the detection system 
must support a higher number of attackers and a wider range 
of DDoS attack types. Because the current architecture was 
implemented in the Mininet emulator, we plan to speed up 
the processing power. This could be done by directly 
compiling the P4 program in a dedicated hardware, hosted 
either on-site, either in a cloud. We need to carry out 
security experiments in a more complex network 
architecture using realistic traffic.    
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