

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received October 29, 2022; revised November 30, 2022

19

A SYN FLOODING DDoS ATTACK DETECTION IN P4-BASED

PROGRAMMABLE NETWORKS

Calin-Marian IURIAN, Daniel ZINCA, Iustin-Alexandru IVANCIU,
Tudor-Mihai BLAGA, Virgil DOBROTA

Communications Department, Technical University of Cluj-Napoca, Romania
Marian.Iurian@com.utcluj.ro; Daniel.Zinca@com.utcluj.ro; Iustin.Ivanciu@com.utcluj.ro;

Tudor.Blaga@com.utcluj.ro; Virgil.Dobrota@com.utcluj.ro

Abstract: Recent studies related to Distributed Denial-of-Service (DDoS) attacks were focused on determining how to leverage
data plane programmability, enabled by P4 language, to identify intrusions directly in network switches, without the involvement
of Software-Defined Networking (SDN) controllers. This facilitates the detection of TCP SYN flooding, for instance, without
changing the flow paths through a central controller, therefore increasing the speed for managing workloads. In this paper, we
propose a novel mechanism by introducing the capability of P4-based data planes to implement real-time detection and to respond
effectively to attacks that require stateful functionalities (e.g., port scan).

Keywords: DDoS, P4, SDN, TCP SYN flooding, TCP SYN port scan.

I. INTRODUCTION
The more available information related to a wide area of
activity domains becomes, the more complex the
information systems and Tactics, Techniques and
Procedures (TTPs) used by the attackers are.
 Denial-of-Service (DoS) attacks have increased
significantly since a higher number of devices access the
Internet of Things (IoT) and the businesses now support the
remote connectivity technologies to complement existing
infrastructure. No matter their size, organizations frequently
disregard asset and inventory management guidelines that
would enable them to fully comprehend their security
vulnerabilities. Furthermore, IoT devices commonly use
default passwords and do not possess strong security
policies, leaving them open to hacking and to other forms of
exploitation. Users are typically unaware that gadgets are
infected, and an attacker may simply access hundreds of
thousands of these devices to launch a significant attack.
 As presented in [1], Distributed Denial-of-Service
(DDoS) have grown in volume, length, and complexity
during the past few years. According to the Q2 2022 DDoS
report, SYN flood attacks accounted for 53% of all network-
based attacks, thus remaining the primary attack method
today. Their functionality is based on exploiting the stateful
TCP handshake's initial connection request. During the
initial request, servers do not have any information about
the new TCP connection, and without conventional
protection they may find it difficult to mitigate a flood of
initial connection requests. As long as the "Three-way
Handshake" procedure is not terminated or canceled when it
reaches the second phase, the connection is considered to be
"Half open" (the server is awaiting the last ACK). A "Half
open connection" occurs when the destination machine has
already transmitted the SYN+ACK segment and is awaiting
the arrival of the last ACK segment in order to establish the
connection. The destination will wait a certain amount of
time for the last ACK segment to arrive. During this time,

the information about the upcoming connection will be
registered and processed. This step will require a particular
amount of memory and processing resources of the
destination system.
 Software-Defined Networking (SDN) is regarded as a
next-generation network architecture. The main feature of
SDN is that it employs a centralized controller to decouple
the data plane from the control plane. The security of the
network and the traffic rules can be easily implemented
using a centralized controller, which acts as a network
administrator who monitors the incoming and outgoing
traffic. As a result, the controller has a global view of the
network and, with ready-to-use resources, it is possible to
build complex algorithms for network management (e.g.,
network security, congestion control, load balancing). The
rapid and accurate identification and mitigation of abnormal
behavior, such as DDoS attacks, is critical for network
security. Nonetheless, traffic must be routed through a
controller equipped with a DDoS attack detection
mechanism. In addition to a substantial demand of
processing resources for DDoS attack detection techniques,
in general, classifying all flows in a controller will surpass
the usable processing power, especially for flooding-based
attacks [2].
 The P4-based programmable data plane (Figure 1) can
prevent large-scale attacks with low overhead, it can detect
attacks per packet, and it can react to constantly changing
threats with strong performance programmable hardware
switches. This facilitates DDoS attack detection without
changing the flow paths through a central controller, and
thus enhancing speed and workload management.
 In this work, we propose a novel approach for DDoS
attack detection of TCP SYN flooding, by leveraging the
potential of a TCP SYN (half-open) scan on the target host.
Since this will respond with a RST segment if the port is
closed, or with a SYN+ACK segment if the port is open, it
is not necessary to finish the three-way handshake with the

mailto:Marian.Iurian@com.utcluj.ro
mailto:Daniel.Zinca@com.utcluj.ro
mailto:Iustin.Ivanciu@com.utcluj.ro
mailto:Tudor.Blaga@com.utcluj.ro
mailto:Virgil.Dobrota@com.utcluj.ro

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 20

final ACK reply. As a result, just half of the connection to
the target port is made in order to determine its status.

Figure 1. Evolution from the traditional architecture to
the mixed SDN model with programmable data planes [3]

II. RELATED WORK

The effects of DDoS assaults and potential security
strategies have been the subject of several research papers in
recent years. In this part, we address related papers on
DDoS defensive techniques in SDN.
 One of the solutions for securing the network traffic
across multiple environments is presented in [4]. The
authors describe the current state of programmable switches
and the opportunities and challenges encountered when
mitigating DDoS attacks. For this reason, they developed a
rapid and cost-efficient protection system that overcomes
the major constraints of today’s security.
 Another defense system for detecting DDoS attacks is
proposed in [5].
 The Floodlight controller uses the sFlow RT [6] in order
to develop the modules needed for attack detection and for
blocking applications. The proposed defensive system
classifies normal and attack traffic using the Support Vector
Machine (SVM) approach. According to the experimental
results, it provides a remarkable accuracy of 96.55%.
 In [7], the authors propose a DDoS attack detection
solution for a vehicular network. For this purpose, the
suggested system uses machine learning (ML) and SDN
characteristics. It is based on a Packet_In based trigger
method that reduces the attack detection time. It also
incorporates feature extraction utilizing the flow table's
entries. A classification model is trained and its
performance is evaluated using the retrieved features.
According to the data, the suggested solution reduces the
false alarm rate and attack detection time.
 The impact of spoofed and non-spoofed TCP-SYN
flooding attacks on the controller resources in SDN is
discussed in detail in [8]. The authors highly suggest an
intrusion detection solution based on machine learning. The
traffic is classified by using five distinct categorization
models that are assessed with various performance metrics.
These models are validated using a cross-validation
approach which efficiently categorizes the traffic. The
experiments demonstrate that all of the categorization
models that were taken into consideration performed
significantly better.
 Study [9] considers the P4 technology in the context of a
multi-layer SDN over an optical network. It demonstrates

that effective dynamic traffic engineering (TE) actions can
be deployed at the data plane level without engaging the
SDN controller due to the stateful capacity of P4 nodes. As
a second use case, the authors make use of the P4
technology to enforce cyber-security [10], demonstrating
the capability to respond to cyberattacks effectively without
the need for specialized hardware, such as firewalls. They
replaced the SDN controller to manage the traffic and to
take decisions on flow entry changes, as is the case with
OpenFlow switches. P4 domain specific targets are now
used to directly decide particular actions on the switch itself
[11]. The P4 implementations have undergone experimental
validation on BMv2 P4 switches, demonstrating excellent
performance in terms of scalability with the size of the
program and in terms of switch latency to carry out
operations.
 Networks frequently experience harmful attacks like
TCP SYN flooding and UDP flooding. The attacks block
the network in addition to using up a lot of the target
server’s resources and network transfer rate. In SDN,
several new and innovative defense techniques are put out
to protect the network against the attacks mentioned before.
Still, the majority of protection mechanisms only work
against attacks that use a particular protocol, such TCP or
UDP. As a result, the authors of [12] provide a generally
applicable defense system in P4-based SDN. The
experimental results demonstrate how successfully the
suggested protection mechanism may liberate server
resources (six times quicker than the associated work after
identifying the threat for SYN flooding). In comparison to
previous studies, the suggested protection system can
minimize the volume of malicious traffic for UDP flooding
by around two thirds.
 A P4-programmable switch-based SYN flooding DDoS
attack detection mechanism is provided in [13]. The
detection of the malicious process is moved from a
centralized controller to programmable P4 switches, which
reduces detection time and distributes workload across the
network. The active detection system extends passive
classification techniques and seizes SYN flooding DDoS
assaults by selective packet dropping. As a result, it is
expected to have a more precise detection under overloaded
network circumstances compared to the legacy solutions.
 In [14], the authors compare Standalone and Correlated
DDoS Attacks Detection (DAD) architectures while
evaluating ML-assisted DDoS attack detection frameworks
for use in SDN environments. Applying the data-plane
programmability that the P4 language makes possible, the
authors studied how detection latency is decreased when
features extraction is carried out at P4 switches level. To
achieve this, they evaluated the accuracy and computational
efficiency of several ML classifiers and deployed the
algorithms in a real-time environment where the P4 switch
provided the ML algorithm with various sorts of data,
including packet mirroring, header mirroring, and P4-
metadata extraction. Using P4 for feature extraction, the
results demonstrate that the attack detection can be
accomplished with classification accuracy, precision, and a
F1-score higher than in 98% of cases. Additionally, in the
situation where P4 is employed for features extraction, there
is a significant time decrease, down to less than 200 µs.

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 21

III. OVERVIEW OF P4 LANGUAGE AND
PROGRAMMABLE SWITCHES

As described in [15], the Programming Protocol-
Independent Packet Processors (P4) is a declarative
programming language used to specify how packets are
handled by a network forwarding component, such as NIC,
switch, router, or a service-oriented appliance. It is built on
an abstract forwarding architecture (Figure 2) that consists
of a parser and a group of match + action table elements that
are classified into ingress and egress.

Figure 2. P4 abstract forwarding architecture

 A standard P4 program consists of five fundamental
components:

• Header: defines the packet header structure
• Parser: the granted header series within packets
• Table: for identifying the appropriate fields and the

matching action
• Action: creates a set of instructions
• Flow controller: describes the way tables are organized

inside the pipeline and how packets move through it.

 Next, P4 applications are compiled into configuration
binaries using the compiler. Its task is split into two phases:
mapping the target independent intermediate representation
(IR) to a particular target and translating P4 programs into
IR.

 As mentioned in [15], the compiler integrates two
fundamental functions: (1) development of runtime mapping
metadata to enable the control and data planes to interact
using P4 runtime; and (2) creating an executable file for the
particular data plane, describing the header format and the
appropriate procedure.

 P4 programmable nodes, also known as targets, can be
acquired using either specialized hardware or CPU-based
software (e.g., FPGA, ASIC). Described as a programming
paradigm, the P4 architecture offers a functional perspective
of the processing based on specific target. Therefore, target
producers implement different P4 architectures. For
instance, the SimpleSumeSwitch architecture is used by
NetFPGA-based devices, the V1Model architecture is used
by software switches such as BMv2, whilst the Protocol-
Independent Switching Architecture (PISA) architecture is

implemented by programmable switches such as Intel
Tofino ASIC.
 The workflow of a P4 program is divided into several
control blocks, so the input packet is processed and then
transferred to the following control block in the pipeline.
For example, the PISA architecture describes data
processing by introducing three main blocks:

• Parser: it describes how to interpret the packet’s header.

A finite state machine is used to illustrate the steps, and
each state is in charge of extracting one header structure.

• Match-Action Pipeline: it has several match-action tables
(MAT), each one containing keywords and related action
information. These tables compare packets based on
various header attributes and specify the actions to take
when a match is found.

• Deparser: it arranges the updated headers into packets in
a fixed order and transfers them to the next phase.

 The final block within Figure 2 is represented by an
Application Programming Interface (API) called P4
Runtime [16], and it is used to interconnect the control
plane and data plane. It protects the hardware characteristics
of the data plane and is unaltered by the capabilities and the
protocol that the data plane provides.
 According to [17], the primary characteristics of
programmable switches are:

• Agility: the capability of designing, testing and

embracing new protocols and components in less time.
• Top-down design: In comparison with the traditional

bottom-up approach, where all the fixed-function ASICs
are located at the bottom, the programmable switches
define protocols and features in the ASICs. It is worth
noting that the physical layer and certain MAC layer
components might not be programmable.

• Visibility: Programmable switches offer a better view of
how the network is operating. Without the involvement
of the control plane, In-band Network Telemetry (INT)
is an example of a framework for collecting and
recovering data from the data plane.

• Reduced complexity: Fixed-function are less difficult
since they accommodate a wide set of protocols. The
processing mechanism, which is hard-coded in silicon,
becomes more sophisticated and uses resources as
resources as a result of these protocols. Engineers can
choose to implement only the necessary protocols using
programmable switches.

• Separation: The protocols and unique features can be
implemented without the knowledge of the chip
manufacturer.

• Improved performance: The performance is enhanced
since programmable switches do not degrade the
efficiency of the network. Instead, they might operate
more effectively than fixed-function switches. For a
better understanding,

 Table 2 compares Intel Tofino2 programmable switches
[18] to fixed-function switches. Based on common features,
the P4-based switches present the following benefits: 14%
greater performance, 14% lower power, better burst
absorption, and real-time visibility.

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 22

Technology Programmable

Switches
Fixed-function
ASICs

Technology 16nm 16nm
L2/L3 Throughput 6.5 Tb/s 6.5 Tb/s
Availability Yes Yes
Max forwarding rate 4.8B packets/sec 4.2B packets/sec
Max 25G/10G Ports 256/258 128/130
Programmability Yes No
Typical system
power draw

4.2W per port 4.9W per port

Large scale NAT Yes (100k) No
Large scale stateful
ACL

Yes (100k) No

Large scale tunnels Yes (192k) No
Packet buffer Unified Segmented
LAG/ECMP Hash
algorithm

Full entropy,
programmable

Hash seed, reduced
entropy

ECMP 256-way 128-way
Telemetry and
analytics

Line-rate per low
stats

Sflow (Sampled)

Table 1. Comparison between a P4 programmable switch

and a fixed-function switch [18]

IV. IMPLEMENTATION
When dealing with network attacks, the programmable data
plane features three main benefits over OpenFlow: visibility
per packet, scalability, and high-speed processing
capabilities. As shown in Figure 3, traditional security
applications and defense mechanisms can be implemented
at the hardware level including access control lists (ACLs)
and packet filtering techniques, whereas higher-level
firewalls and deep packet inspection tactics must be
implemented by software [19]. This is also a major reason
why traditional switches must transmit sampled packets to
the controller. The programmable switch can handle every
layer's protocol fields at the hardware level, provide deep
packet analysis and protocol field change, and enable
customized protocols and complex defensive mechanisms.

Figure 3. OSI model for security: (1) traditional devices;
(2) programmable devices

 In order to mitigate the DDoS attack, the SYN scanning
approach is proposed as a strategy to determine the status of
a communications port without establishing a complete
connection. Our approach uses the TCP SYN scan, which is
a version of the standard SYN scan. It is a fast and effective
scan that is not blocked by firewalls since it never completes
the entire TCP connection. As a result, TCP SYN scanning
is also known as half-open scanning and can identify open,
filtered, or closed port status.
 In our work, the attacker used TCP SYN to do the port
scan. P4 switch detected it and blocked the packets sent
from H1. The detection method proposed and tested herein
blocked the connection when the number of SYN segments

minus the number of SYN+ACK segments was higher or
equal to 3 (see Figure 4).

Figure 4. Diagram of TCP SYN flooding detection

 For our experiments, we used Mininet as a working
environment. The P4 language is the vital component of the
P4-based solution, mainly due to the capacity of enabling
the specification of packet formats (protocol headers) to be
recognized by the P4 switch (BMv2 [20]), as well as of the
actions to be taken on arriving packets (forwarding, headers
modification, adding protocol header, etc.). The workflow
used to program the BMv2 switch is illustrated in Figure 5:

Figure 5. Workflow of BMv2 switch

 The P4 program (basic.p4) was divided into three parts:
protocols definition (data declaration), parser logic (parser
and deparser) and a series of control blocks with Match-
Action tables. The first section describes the protocol
headers that will be recognized by the switch (S1), i.e. the
IPv4 header (see Figure 6).

header ipv4_t {

 bit<4> version;

 bit<8> diffserv; (…)

 Figure 6. IPv4 header

 We only specified the header fields and their length. The
headers are used to parse the incoming data and to identify
the type of the packet. The Parser Logic is a finite state
machine that defines the stages involved in reading and
parsing incoming packets. It may be seen as a cyclic
network in which each node processes a protocol's header.
Additionally, we defined a number of control blocks in the
P4 program that contain Match-Action tables. See the
routing table in Figure 7.

 By reading the destination IPv4 address we checked the
match using the Exact comparison technique [21].

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 23

 table routing_table {
 key = {

 hdr.ipv4.dstAddr: exact;

 }

 actions = {

 forward;

 drop;

 }

 size = 1024;

 default_action = drop();

 } (…)

 Figure 7. IPv4 routing table

Then, for the packets that fit the rule, we performed either
forwarding or dropping. The final step was to define the
Deparser, which determined the order of packet headers for
outgoing packets, as in Figure 8.

control deparser(packet_out packet, in headers

hdr) {

 apply {

 packet.emit(hdr.ethernet);

 packet.emit(hdr.ipv4);

 packet.emit(hdr.tcp);

 packet.emit(hdr.udp);

 }

Figure 8. Deparser

 At this point, we only deployed the P4 switch’s data
plane, so we used Python to develop a simple controller
(controller.py) to listen to the packets being transmitted
from the data plane. After the network started, we ran the
controller script to populate the forwarding table of S1. The
controller was based on the Thrift API [22], and it was used
with any P4 switch. The implementation of the Thrift API
was built on the SimpleSwitchThriftAPI (as in Figure 9).

if (syn1-syn2>=3) and (TCP in pkt) and

pkt[TCP].flags==2:

 src = pkt.sprintf('{IP:%IP.src%}')

 if src not in blockip:

 self.controllers[“s1”].table_add(“block_pkt”,

“_drop”, [str(src))], [])

 blockip.append(src)

 Figure 9. SimpleSwitchThriftAPI

 The syn1 value represented the number of SYN packets
sent by the attacker, while the syn2 was the number of
SYN+ACK packets sent by the server. If the condition was
true, then the controller applied the drop packet rule and
sent it to the switch for blocking the incoming packets from
H1.

V. EXPERIMENTAL RESULTS
The following section illustrates the capacity of the P4
switch to block the incoming packets sent from the attacker
(Figure 10). We started from the implementation described
in [23], although their code was designed for investigating
Denial-of-Service (DoS) only. Note that our paper is
focused on DDoS, and as the work is in progress, herein we
present just the preliminary results.
 After the P4 program was initialized, the detection
mechanism began. As mentioned earlier, this mechanism
was implemented with the BMv2 software switch (see
Figure 11).

Figure 10. TCP SYN flood detection using P4 switch

simple_switch: no process found

Building mininet topology.

p4c --target bmv2 -arch v1model -std p4-16

"basic.p4"

Switch port mapping:

s1: 1:h1 2:h2 3:h3 4:sw-cpu

Figure 11. BMv2 switch in Mininet

 In order to verify the network connectivity, H1
performed a ping test to H3, as depicted in Figure 12.
Because no attack was detected by the controller, the syn1

and syn2 values were 0.

mininet> h1 ping -c 3 h3
PING 10.0.3.1 (10.0.3.1) 56(84) bytes of data.

64 bytes from 10.0.3.1: icmp_seq=1 ttl=63

time=1.92 ms

64 bytes from 10.0.3.1: icmp_seq=1 ttl=63

time=2.22 ms

--- 10.0.3.1 ping statistics ---

2 packets transmitted, 2 received, 0% packet

loss, time 1009ms

rtt min/avg/max/mdev = 1.921/2.073/2.225/0.152

ms

Figure 12. Server ping test

 H3 was set up as a server using the command python -
m SimpleHTTPServer. H1 tried to do a port scan on H3
(Figure 13) using Netcat (nc) utility program.

mininet> h1 nc -nvz -w 1 h3 80-85
nc: connect to 10.0.3.1 port 80 (tcp) failed:

Connection refused

nc: connect to 10.0.3.1 port 81 (tcp) failed:

Connection refused

nc: connect to 10.0.3.1 port 82 (tcp) failed:

Connection refused

nc: connect to 10.0.3.1 port 83 (tcp) failed:

Connection refused

nc: connect to 10.0.3.1 port 84 (tcp) timed out:

Operation now in progress

nc: connect to 10.0.3.1 port 85 (tcp) timed out:

Operation now in progress

Figure 13. H1 port scan on H3

 The controller detected the attack, and sent the drop
packet rule (Figure 14) to the P4 switch to block H1.

interface: s1-cpu-eth1

summary: Ether / IP / TCP 10.0.1.1:46416 >

10.0.3.1:82 S

count1[10.0.1.1, 10.0.3.1]= 3

syn1: 3 syn2: 0 syn3: 0 total: 3

Adding entry to exact match table block_pkt

match key: EXACT-0a:00:01:01

action: _drop

Figure 14. The controller set the rule “drop packet”

Volume 62, Number 2, 2022 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 24

 When H1 tried again to ping H3, the switch dropped all
the packets since it added the controller rule to block the
connection coming from the attacker (Figure 15).

mininet> h1 ping -c 3 h3
PING 10.0.3.1 (10.0.3.1) 56(84) bytes of data.

--- 10.0.3.1 ping statistics ---

2 packets transmitted, 0 received, 100% packet

loss, time 1010ms

 Figure 15. H1 blocked IP address

VI. CONCLUSIONS
In order to minimize the disruptions caused by DDoS
assaults, malicious traffic had to be detected and mitigated.
In this paper, we presented a TCP SYN flooding attack
detection system that was implemented using P4-
programmable switches. Unlike the related work, P4 was
used to effectively respond to attacks that required stateful
behaviors. In this case, the attacker wanted to do a port scan
to find the potential open ports on the target host, before
launching the attack. The implementation was
experimentally evaluated using BMv2 P4 switch. It showed
a notable scalability with increasing P4 program size and in
terms of switch latency with conducting P4 actions. We
proved that using this strategy in the data plane rather than
in an SDN centralized controller, we obtained a reliable
detection. Multiple vulnerabilities have to be addressed too
in a future development. For example, the detection system
must support a higher number of attackers and a wider range
of DDoS attack types. Because the current architecture was
implemented in the Mininet emulator, we plan to speed up
the processing power. This could be done by directly
compiling the P4 program in a dedicated hardware, hosted
either on-site, either in a cloud. We need to carry out
security experiments in a more complex network
architecture using realistic traffic.

ACKNOWLEDGMENT
This paper was financially supported by the Project
“Entrepreneurial competences and excellence research in
doctoral and postdoctoral programs - ANTREDOC”, project
co-funded by the European Social Fund financing
agreement no. 56437/24.07.2019.

REFERENCES
[1] “DDoS attack trends for 2022 Q2”, Cloudflare 2022,

[Online], Available: https://blog.cloudflare.com/ddos-attack-
trends-for-2022-q2/.

[2] Q. Niyaz et al. “A Deep Learning Based DDoS Detection
System in Software-Defined Networking (SDN).” EAI
Endorsed Trans. Security Safety 4 (2017): e2.

[3] “P4 Language”, PLVision, 2021 [Online], Available:
https://plvision.eu/expertise/sdn-nfv/p4.

[4] M. Zhang, et al., “Poseidon: Mitigating Volumetric DDoS
Attacks with Programmable Switches”, Network and
Distributed Systems Security (NDSS) Symposium, 23-26
February 2020, San Diego, CA, USA, ISBN 1-891562-61-4,
Available: 10.14722/ndss.2020.24007.

[5] J. Liu, Y. Lai, and S. Zhang, “FL-GUARD: A Detection and
Defense System for DDoS Attack in SDN”. In Proceedings of
the 2017 International Conference on Cryptography, Security
and Privacy (ICCSP '17). Association for Computing
Machinery, New York, NY, USA, 107–111.
https://doi.org/10.1145/3058060.3058074

[6] “sFlow-RT”, InMon 2022, [Online]. Available: https://sflow-
rt.com/.

[7] Y. Yu, L. Guo, Y. Liu, J. Zheng and Y. Zong, "An Efficient
SDN-Based DDoS Attack Detection and Rapid Response
Platform in Vehicular Networks," in IEEE Access, vol. 6, pp.
44570-44579, 2018, doi: 10.1109/ACCESS.2018.2854567.

[8] R. Swami, M. Dave, V. Ranga, “Detection and Analysis of
TCP-SYN DDoS Attack in Software-Defined Networking”,
Wireless Pers Commun 118, 2295–2317, 2021, Available:
https://doi.org/10.1007/s11277-021-08127-6

[9] F. Paolucci, F. Cugini and P. Castoldi, "P4-based Multi-Layer
Traffic Engineering Encompassing Cyber Security," 2018
Optical Fiber Communications Conference and Exposition
(OFC), 2018, pp. 1-3.

[10] Y. Afek, A. Bremler-Barr and L. Shafir, "Network anti-
spoofing with SDN data plane," IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications, 2017, pp.
1-9, doi: 10.1109/INFOCOM.2017.8057008.

[11] A. Sgambelluri, F. Paolucci, A. Giorgetti, F. Cugini and P.
Castoldi, "Experimental Demonstration of Segment Routing,"
in Journal of Lightwave Technology, vol. 34, no. 1, pp. 205-
212, 1 Jan.1, 2016, doi: 10.1109/JLT.2015.2473656.

[12] Z. -Y. Shen, M. -W. Su, Y. -Z. Cai and M. -H. Tasi,
"Mitigating SYN Flooding and UDP Flooding in P4-based
SDN," 2021 22nd Asia-Pacific Network Operations and
Management Symposium (APNOMS), 2021, pp. 374-377,
doi: 10.23919/APNOMS52696.2021.9562660.

[13] P. Golchin, L. Anderweit, J. Zobel, R. Kundel, R. Steinmetz,
“In-Network SYN Flooding DDoS Attack Detection Utilizing
P4 Switches”, Accessed: October 03, 2022. [Online].
Available: https://tinyurl.com/y9hm6nf9.

[14] F. Musumeci, “Machine-Learning-Enabled DDoS Attacks
Detection in P4 Programmable Networks”, Journal of
Network and Systems Management (2022) 30:21,
https://doi.org/10.1007/s10922-021-09633-5

[15] Y. Gao, Z. Wang, “A Review of P4 Programmable Data
Planes for Network Security“, Hindawi Mobile Information
Systems Volume 2021, Article ID 1257046, 24 pages,
https://doi.org/10.1155/2021/1257046

[16] N. McKeown, T. Sloane, and J. Wanderer, “P4 Runtime-
Putting the Control Plane in Charge of the Forwarding Plane”,
2017, https://p4.org/api/p4-runtime-putting-the-control-plane-
in-charge-of-theforwarding-plane.html.2017.

[17] A. Shapiro, “P4-programming data plane use-cases.” in P4
Expert Roundtable Series, [Online]. Available:
https://tinyurl.com/y5n4k83h.

[18] P. Kennedy, “Intel Tofino2 Next-Gen Programmable Switch
Detailed”, ServeTheHome 2022,
https://www.servethehome.com/intel-tofino2-next-gen-
programmable-switch-detailed/.

[19] E. F. Kfoury, J. Crichigno and E. Bou-Harb, "An Exhaustive
Survey on P4 Programmable Data Plane Switches:
Taxonomy, Applications, Challenges, and Future Trends," in
IEEE Access, vol. 9, pp. 87094-87155, 2021, doi:
10.1109/ACCESS.2021.3086704.

[20] “Behavioral Model (bmv2)”, GitHub 2022, [Online].
Available: https://github.com/p4lang/behavioral-model.

[21] L. Wang, “Advanced Computer Networks. Programmable
Data Plane”, [Online]. Available:
https://linwang.info/docs/acn21/lec10-pdp.pdf.

[22] “P4-Utils API reference”, Networked Systems Group 2021,
[Online], Available: https://nsg-ethz.github.io/p4-
utils/p4utils.utils.thrift_API.html.

[23] C.-H. Ke, “Anti TCP SYN Port Scan”, Department of
Computer Science and Information Engineering, National
Quemoy University, Kinmen, Taiwan, 2020 [Online].

https://blog.cloudflare.com/ddos-attack-trends-for-2022-q2/
https://blog.cloudflare.com/ddos-attack-trends-for-2022-q2/
https://plvision.eu/expertise/sdn-nfv/p4
https://sflow-rt.com/
https://sflow-rt.com/
https://doi.org/10.1007/s11277-021-08127-6
https://tinyurl.com/y9hm6nf9
https://doi.org/10.1007/s10922-021-09633-5
https://p4.org/api/p4-runtime-putting-the-control-plane-in-charge-of-theforwarding-plane.html.2017
https://p4.org/api/p4-runtime-putting-the-control-plane-in-charge-of-theforwarding-plane.html.2017
https://tinyurl.com/y5n4k83h
https://www.servethehome.com/intel-tofino2-next-gen-programmable-switch-detailed/
https://www.servethehome.com/intel-tofino2-next-gen-programmable-switch-detailed/
https://github.com/p4lang/behavioral-model
https://linwang.info/docs/acn21/lec10-pdp.pdf
https://nsg-ethz.github.io/p4-utils/p4utils.utils.thrift_API.html
https://nsg-ethz.github.io/p4-utils/p4utils.utils.thrift_API.html

