

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received October 18, 2024; revised November 29, 2024

15

KUBERNETES CONFIGURATION FILES CREATED WITH A PYTHON

QUART WEB INTERFACE FOR REAL LIFE SCENARIOS OF

KUBERNETES DEPLOYMENTS

Ioan-Alexandru DUMITRE1,2, Szabolcs-Gavril RUGINA2, Laszlo-Csongor LENGYEL2,

Andrei-Bogdan RUS1, Virgil DOBROTA1
1Communications Department, Technical University of Cluj-Napoca, Romania

2Frequentis Cluj-Napoca, Romania
Dumitre.Io.Ioan@student.utcluj.ro, Szabolcs.RUGINA@frequentis.com, laszlo-csongor.lengyel@frequentis.com

Bogdan.Rus@com.utcluj.ro, Virgil.Dobrota@com.utcluj.ro
Corresponding author: Virgil Dobrota (e-mail: Virgil.Dobrota@com.utcluj.ro)

Abstract: This paper presents the development of a web interface using Python Quart to simplify the creation and management
of Kubernetes manifest files. The interface allows users to create, update, delete, and manage Kubernetes resources through
an intuitive platform. Developed using Test-Driven Development (TDD) principles, the application minimizes errors and
improves reliability by ensuring that each component is rigorously tested before deployment. By leveraging Quart’s
asynchronous capabilities, it handles multiple requests efficiently, enhancing scalability and performance. Performance tests
with Locust and real-time monitoring with Prometheus show the system's ability to manage multiple users and highlight areas
for improvement in request latency.

Keywords: Asynchronous Programming, Docker, Kubernetes, Python Quart, Test-Driven Development, WSL.

I. INTRODUCTION
In recent years, container orchestration has become a
fundamental aspect of managing software deployment
across cloud-native environments. Kubernetes (k8s) has
established itself as the de facto standard for orchestrating
containerized applications, enabling seamless deployment,
scaling, and management of workloads across distributed
infrastructures. Originally developed by Google and now
managed by the Cloud Native Computing Foundation
(CNCF), Kubernetes is widely regarded as the "operating
system for the cloud" due to its ability to manage
applications consistently across various environments,
including on-premises data centers, public clouds, and
hybrid deployments [1][2].
 To address the demands of modern web applications,
the Python Quart framework is utilized for building
asynchronous web applications. Quart, which extends the
popular Flask framework, leverages the Asynchronous
Server Gateway Interface (ASGI) to support concurrency,
allowing the simultaneous handling of multiple tasks. This
characteristic makes Quart particularly well-suited for real-
time, high-concurrency applications that rely on
WebSockets and HTTP/2, offering enhanced performance
compared to traditional synchronous frameworks like
Flask [3]. The adoption of Quart in Kubernetes
management solutions enables developers to create
responsive, scalable web interfaces that improve user
interaction and system performance.
 Several Kubernetes management tools have been
developed to simplify the often-complex task of deploying
and managing services within Kubernetes clusters. These

tools provide capabilities such as multi-cluster
management, real-time monitoring, and intuitive interfaces
that abstract away the intricacies of Kubernetes
configuration files [1].
 This paper introduces a Kubernetes management web
interface developed using Python Quart, aimed at
providing a user-friendly, scalable, and efficient solution
for managing Kubernetes resources such as Deployments,
Services, PersistentVolumes, PersistentVolumeClaims,
and ConfigMaps. The application leverages Quart’s
asynchronous capabilities to enhance the responsiveness of
the interface, enabling users to interact with Kubernetes
resources in real time. By employing Test-Driven
Development (TDD) practices, the system ensures a high
degree of reliability, minimizing errors in configuration
and deployment processes [8].
 Performance testing with Locust was conducted to
assess the scalability of the web interface under increasing
user loads. The application demonstrated an ability to
handle multiple concurrent users without a significant
decrease in performance, maintaining proportional
request-handling capacity even as the number of requests
increased. However, it was observed that response times
increased slightly as user loads grew, indicating potential
areas for optimization in handling high traffic.
 Real-time monitoring with Prometheus provided
additional insights into the performance of the system, with
metrics such as request latency and request counts being
tracked to identify bottlenecks. As more users accessed the
application, request latency increased, highlighting
potential weak points that could be addressed to improve

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 16

performance under heavy loads. Overall, the results of the
tests demonstrated the robustness and scalability of the
system, confirming its ability to handle a substantial
number of users and maintain operational stability over
time.
 This paper presents the design, development, and
evaluation of a Python Quart-based web interface for
managing Kubernetes resources. The interface simplifies
Kubernetes management by offering an intuitive platform
for creating, managing, and deploying resources within a
Kubernetes cluster, while extensive performance testing
and monitoring demonstrate the system’s ability to scale
efficiently and handle concurrent requests under various
conditions.
 The rest of the paper is organized as follows: Section II
presents the related work; Section III describes the
implementation solution, followed by the experimental
results. The last section presents the conclusions and future
work.

II. RELATED WORK
With the rise of containerization and cloud-native
technologies, Kubernetes has become the de facto standard
for managing containerized applications. Numerous tools
have been developed to simplify and enhance the
Kubernetes management experience, addressing various
needs such as lifecycle management, deployment
automation, and user-friendly interfaces.
 One of the most widely adopted platforms for
Kubernetes cluster management is Rancher. Rancher, as
presented in [2], is an open-source platform designed to
streamline Kubernetes cluster management. It stands out
due to its ability to manage multiple clusters under diverse
environments, offering an intuitive user interface and
robust capabilities for monitoring, authentication, and
alerting. This comprehensive feature set makes Rancher
appealing to enterprises seeking a unified Kubernetes
management solution. However, despite its versatility,
Rancher’s additional abstraction layers can potentially
impact system performance. For example, in [2], the extra
overhead introduced by Rancher’s management layer was
shown to cause performance slowdowns, especially in
scenarios where high efficiency and low latency are
critical. The trade-off between usability and performance
is a recurring theme, as evidenced by [2][4], which
highlights the potential complications arising from
Rancher’s multi-layered architecture. In this paper, the
proposed application addresses the challenge of
performance overhead introduced by Rancher’s additional
abstraction layers. Unlike Rancher, which adds a
management layer to simplify multi-cluster operations, this
application directly interacts with Kubernetes through
kubectl commands. This ensures a more lightweight and
efficient interaction model, especially for single-cluster
deployments where minimal resource consumption and
low latency are critical. By avoiding Rancher’s multi-
layered architecture, the proposed system delivers
predictable performance even under increasing loads
without the added complexity or resource overhead of
managing multiple clusters.
 Another important tool in Kubernetes management is the
Kubernetes Dashboard, a web-based user interface
designed for the deployment and management of
applications within Kubernetes clusters. As outlined in [5],
the dashboard offers a graphical interface that simplifies
the deployment of applications and the monitoring of

resources. One of its key features is the ability to directly
deploy workloads through the UI, a capability that is
particularly advantageous for DevOps and SRE teams.
Users can create Kubernetes manifests either manually in
the browser or by uploading files from external sources
such as Git repositories. This level of integration with
external systems allows teams to streamline workflows.
However, it is worth noting that the Kubernetes Dashboard
must be deployed in the same cluster as the kubectl
command-line tool, which can complicate deployments in
multi-cluster environments, as noted in [5].
 Unlike the Kubernetes Dashboard, which must be
deployed within the same cluster as the kubectl command-
line tool, the proposed application is designed to operate
independently of the Kubernetes cluster. This decoupling
allows for greater deployment flexibility, enabling the
application to be hosted in lightweight environments or
external servers without imposing constraints on the
Kubernetes cluster itself. This independence simplifies
deployment workflows, especially in scenarios involving
hybrid or multi-cloud infrastructures which involve multi-
clusters environments, where tightly coupled deployments
like Kubernetes Dashboard can complicate configurations.
 In contrast, Cyclops, as described in [6], focuses on
easing the challenges associated with configuring and
managing distributed systems on Kubernetes. Cyclops uses
an intuitive web-based interface to transform complex
Kubernetes YAML configurations into simplified web
forms. These forms guide users through the process of
deploying applications by pre-filling common data fields,
which minimizes the chance of errors during deployment.
The structured approach of Cyclops reduces the steep
learning curve typically associated with Kubernetes
management, as users do not need extensive knowledge of
Kubernetes configuration syntax. Furthermore, Cyclops
tracks changes and updates made to the configuration
templates, facilitating collaboration among teams,
especially in scenarios requiring continuous deployment
and frequent rollbacks. Its integration with Helm further
enhances its utility by allowing users to seamlessly manage
Helm charts, which package Kubernetes applications into
reusable, configurable units. This integration makes
Cyclops a powerful tool for enterprises looking to manage
Kubernetes applications with greater efficiency and fewer
errors [8].
 Another tool that has gained popularity for its ability to
manage Kubernetes environments is Kustomize. Unlike
Cyclops or Helm, Kustomize takes a different approach by
focusing on customization without the need for templates.
As outlined in [10], it enables users to modify Kubernetes
objects such as Deployments, Services, and ConfigMaps
without altering the original YAML files. This is
accomplished using a “base and overlay” model, where
base files contain the common configuration applicable
across different environments, while overlays define the
environment-specific changes. This method allows teams
to maintain a single source of truth for configuration files,
improving consistency and reducing errors. Kustomize’s
ability to modify Kubernetes objects declaratively makes it
a valuable tool for managing configurations across diverse
environments. Its features, such as the secretGenerator
and configMapGenerator, further automate the generation
of sensitive data and configuration settings, streamlining
the deployment process while enhancing security [10] [11].
 Kustomize also differs from other tools like Helm in that

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 17

it doesn’t package applications but rather focuses on
patching existing Kubernetes resources. This approach
makes it particularly useful in cases where users want to
apply modifications to an existing deployment without
creating a whole new package. For instance, common
labels can be added to all resources, and specific
environment variables can be adjusted based on the
environment where the application is deployed. This
flexibility allows users to adjust deployment
configurations quickly and efficiently while maintaining
control over the base configurations. Additionally,
Kustomize’s patching mechanism ensures that changes can
be made dynamically, without the need for constant
modification of the core YAML files [11].
 The challenges that organizations face in deploying and
managing Kubernetes applications on a scale have spurred
the development of these various tools, each addressing
unique needs. While Rancher excels at offering a holistic
solution for managing multiple clusters across various
infrastructures, its additional layers of abstraction can
potentially cause performance degradation. On the other
hand, Kubernetes Dashboard simplifies the deployment
process through its web-based interface, though it requires
careful handling in multi-cluster setups due to its tight
coupling with the kubectl command-line tool. Cyclops
focuses on simplifying the complexities of Kubernetes
configuration management by providing a form-based
approach, reducing deployment errors and accelerating
onboarding for new users. Lastly, Kustomize provides a
flexible and declarative solution for managing
configurations across multiple environments without
modifying the core YAML files [2], [5], [6], [10], [11].
 In summary, the tools discussed—Rancher, Kubernetes
Dashboard, Cyclops, and Kustomize—represent key
innovations in the Kubernetes ecosystem. Each platform
addresses different aspects of Kubernetes management,
from lifecycle management and monitoring to deployment
and customization. While these tools offer varying
approaches to solving the complexities of Kubernetes, they
all share the common goal of making Kubernetes’
environments easier to manage, more efficient, and more
reliable for developers and operations teams alike.

III. IMPLEMENTATION
This design implements a web-based interface using
Python's Quart framework to manage Kubernetes clusters.
The system allows users to create, manage, and delete
Kubernetes resources such as deployments, services,
ConfigMaps, and persistent volumes (PVs/PVCs), all
through an intuitive and user-friendly web interface. The
application was developed using Test-Driven
Development (TDD) to ensure reliability and efficiency
while leveraging asynchronous capabilities of Quart and
Kubernetes' orchestration power. The proposed system
architecture [12] can be seen in Figure 1.
 The key technologies and platforms used in this project
were the following: Windows Subsystem for Linux (WSL)
with Ubuntu 22.04 for the development environment,
Microk8s as a lightweight Kubernetes distribution, Docker
as the container platform for managing resources,
Prometheus for real-time performance monitoring, Locust
for load testing and scalability assessment.

Figure 1. System architecture

A. Environment Setup
The setup process began by configuring the development
environment on a Windows machine using WSL. This was
followed by the installation of essential tools like Microk8s
for Kubernetes, Docker for container management, and
various Python libraries such as Quart for building the web
interface and pytest for unit testing, Prometheus for
monitoring, Locust for load testing. These tools facilitated
seamless Kubernetes cluster management through
commands prefixed with microk8s. The environment
setup included the key steps as can be seen in Figure 2.

alex@AlexDumitree:~$ sudo apt upgrade & apt update

alex@AlexDumitree:~$ pip install quart pytest pytest-

asyncio pyyaml

alex@AlexDumitree:~$ sudo apt install docker.io

alex@AlexDumitree:~$ sudo snap install microk8s –

classic
alex@AlexDumitree:~$ sudo usermod -a -G microk8s $USER

Figure 2. Environment setup

 The application is designed using layered architecture,
each layer responsible for specific aspects of the system.
This modular structure ensures maintainability and
scalability of the application.
a) Routing Layer: Defines the endpoints and routes for

user interactions.
b) Services Layer: It implements the core logic for

managing Kubernetes resources.
c) Kubernetes Utilities Layer: This layer facilitates the

deployment and management of Kubernetes resources
via YAML manifest files.

d) Configuration Management Layer: This converts user
input into properly formatted Kubernetes YAML
configuration files. Testing Layer: Provides test cases
to validate each feature of the application, ensuring that
it works as intended.

B. Layers
In the Routing Layer, various routes are defined to handle
user actions like creating deployments or services,
injecting data, or deleting Kubernetes resources. For
example, the route responsible for creating a Kubernetes
deployment can be seen in Figure 3. It illustrates how
HTTP requests (in this case, a POST request to /create-
deployment) are handled. The Routing Layer collects form
data, processes it by calling the service layer function
create_deployment(), and renders the result on the
result.html page.

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 18

@app.route('/create-deployment', methods=['POST'])

async def create_deployment_route():

try:

data = await request.form

except Exception:

return await render_template('result.html',

message="Invalid form data")

message, success = create_deployment(data)

return await render_template('result.html',

message=message)

Figure 3. Routing option

 The cores logic for Kubernetes resource management
resides in the Services Layer. Each function handles a
specific resource type, such as deployments, services, or
persistent volumes (PV/PVC). Figure 4 shows the function
of creating a Kubernetes service. This retrieved data from
the form, validated it, generated a Kubernetes service
configuration file (YAML format), and called the
Kubernetes utility function deploy_to_microk8s() to deploy
it.

submitted_configs = {}

def create_service(data):

service_name = data.get('service_name')

app_label = data.get('app_label')

port = data.get('port')

target_port = data.get('target_port')

protocol = data.get('protocol')

 service_type = data.get('type')
Figure 4. create_service function

 The Kubernetes Utilities Layer handles the interaction
between the web application and the Kubernetes cluster. It
contains utility functions responsible for deploying
resources, injecting data into existing resources, and
handling errors such as duplicate configurations. As seen
in Figure 5 the deploy_to_microk8s () function ensured
that Kubernetes resources were deployed properly by
interacting with the kubectl command:

def deploy_to_microk8s(deployment_config,

 service_config):

with open('/tmp/kubernetes_deployment.yaml', 'w') as f:

f.write(deployment_config)

with open('/tmp/kubernetes_service.yaml', 'w') as f:

f.write(service_config)

subprocess.run(['microk8s', 'kubectl', 'apply', '-f',

'/tmp/kubernetes_deployment.yaml'], check=True)

subprocess.run(['microk8s', 'kubectl', 'apply', '-f',

'/tmp/kubernetes_service.yaml'], check=True)

Figure 5. deploy_to_microk8s function

 Finally, the Configuration Management Layer is
responsible for configuration management, converting the
data from the form into YAML format. This has two main
components: (1) config_generator.py to copy the
predefined dictionary templates; and (2)
deployment_templates.py to populate them with data from
the user (see Figure 6). Each field of the template was
matched with the corresponding data from the user input
that was passed as arguments to the functions.

service_config['metadata']['name'] = service_name

service_config['spec']['type'] = service_type

service_config['spec']['selector']['app'] = app_label

service_config['spec']['ports'][0]['protocol'] =

protocol

service_config['spec']['ports'][0]['port'] = port

service_config['spec']['ports'][0]['targetPort'] =

target_port

Figure 6. config_generator.py file

 Moving on to the Testing Layer to ensure that each

functionality of the application was working properly
various test cases were developed in test_routes.py. These
tests simulated different HTTP requests with valid, invalid,
and missing data sent to the Quart application testing how
the application responds. To set up an instance of the
application for testing purposes, the QuartClient module
has been used. The code in Figure 7 was essential for
testing the application.

@pytest.fixture

@pytest.mark.asyncio

async def client():

async with QuartClient(app) as client:

 yield client
Figure 7. test_routes.py file

 The client function built the environment and verified
that everything was set up for testing. The decorator
pytest.fixture transformed this function into a fixture.
This offered a stable basis for tests to operate smoothly and
repeatably, by providing the state or context for the tests.
The other decorator pytest.mark.asyncio was used to
indicate that this fixture was asynchronous.
QuartClient(app) provided an instance of a client
interacting with the application and as client assigned this
instance to the client variable. The statement yield client
gave access to the client to all the tests that used this
fixture. Several test cases were tested in test_routes.py: (1)
creation of a deployment with valid and invalid data
respectively duplicate data; (2) creation of a service with
valid and invalid data respectively duplicate data; (3)
creation of a configmap, injecting a configmap, retrieving
of deployments, services, and pods.

C. Performance Monitoring and Load Testing
The system integrated Prometheus for performance
monitoring. It scraped metrics from the web application
and visualized them on a dashboard. The configuration in
Figure 8 added the web app as a target for Prometheus
monitoring.

scrape_configs:

- job_name: 'prometheus'

static_configs:

- targets: ['localhost:9090']

- job_name: 'your_app'

static_configs:

 -targets: [`127.0.0.1:5000’] ['127.0.0.1:5000']
Figure 8. prometheus.yml file

 The script locustfile.py was used for load testing,
simulating high-traffic scenarios by creating and deleting
resources in a rapid sequence. According to Figure 9, it
generated random names for deploying, to create, and then
to delete them to test system performance.

class UserBehavior(HttpUser):

wait_time = between(1, 5)

def generate_unique_name(self, base):

unique_suffix =

''.join(random.choices(string.ascii_lowercase +

string.digits, k=6))

 return f"{base}-{int(time.time())}-{unique_suffix}"
Figure 9. locustfile.py file

D. Front-end Interface
The front-end of the application was developed using
HTML and CSS, with JavaScript providing interactivity.
The forms on the main page were designed to be

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 19

dynamically shown or hidden based on the user's selection.
This was managed through the toggleForm()JavaScript
function that can be seen in Figure 10.

<head>

<title>Kubernetes Management</title>

<link rel="stylesheet" href="/static/styles.css">

</head>

<body>

 <h1>Kubernetes Management</h1>

 <p>This project provides a web interface for

managing Kubernetes resources. You can create and

manage deployments, services, ConfigMaps, and volumes

easily through this interface.</p>

<div class="button-container">

<button onclick="toggleForm('deployment-

form')">Create Deployment</button>

<button onclick="toggleForm('service-

form')">Create

Service</button>

 </div>

Figure 10. index.html file

 Each form corresponded to a different Kubernetes
resource, such as deployments or services. When a user
filled out a form and submitted it, the submitForm() function
(see Figure 11), handled the asynchronous request, by
forwarding data to the backend without reloading the page.

async function submitForm(event, messageId) {

event.preventDefault();

const form = event.target;

const formData = new FormData(form);

const response = await fetch(form.action, {

method: form.method,

body: formData

});

const message = await response.text();

document.getElementById(messageId).innerHTML = message;

document.getElementById(messageId).style.display =

'block';}

Figure 11. submitForm() function

 The template in resources.html (Figure 12) was used to
dynamically display lists of Kubernetes resources along
with their IP and options to delete the resource. To display
resources dynamically based on the resource type,
placeholders from jinja2 were needed. This template
passed a list of resources names from index.html and a
jinja2 for loop iterates over this list rendering each
resource in the list. After rendering the resources, the IP
and an option to delete them were added in the form of a
button.

{% for resource, detail in resources %}

{{ resource }} – {{ detail }}

<form action="/delete-resource" method="post"

style="display:inline;"

onsubmit="deleteResource(event, '{{ resource }}', '{{

resource_type }}')">

<input type="hidden" name="resource_type" value="{{

resource_type }}">

<input type="hidden" name="resource_name" value="{{

resource }}">

<button type="submit">Delete</button>

</form>

Figure 12. Dynamically populated results

IV. EXPERIMENTAL RESULTS

The application started locally on loopback address
127.0.0.1 and listened on port 5000. When a user accessed
the home page via HTTP GET, the application responded

with the appropriate template.

A. Deployment Creation
The interface enabled resource creation through forms,
beginning with Kubernetes Deployments. For instance,
when a user completed a Deployment Form (name: test,
label: myapp, image: nginx), the deployment was
processed by Kubernetes, as shown in Figure 13.

Figure 13. Deployment Form

 This setup allowed the user to create and to validate
deployments in the cluster through both the web interface
and command-line tools. If invalid input was provided, the
system responded with appropriate error messages, such as
when an out-of-range port number has been entered.

B. Service and ConfigMaps Creation
Similarly, the Service form collected details like the
service name, label, port, and service type, validating the
input before sending it to Kubernetes. Once deployed, the
service could be accessed and verified by checking its IP
address. Figure 14 illustrates the output of a nginx service
after deployment. The next stage involved creating and
injecting ConfigMaps into pods. ConfigMaps allowed the
application’s configurations to be updated without
rebuilding the container.

Figure 14. Deployed service

C. Persistent Storage with PVs and PVCs
To manage persistent data, the application supported the
creation of PersistentVolumes (PVs) and
PersistentVolumeClaims (PVCs). PVs ensured that data
persisted beyond the lifecycle of individual pods. For
example, a PV was created with a storage capacity of 2Gi,
as shown in Figure 15, and it was then claimed by a PVC,
which allowed multiple pods to access shared storage. This
storage flexibility is essential for maintaining persistent

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 20

application states, even as pods are restarted or
rescheduled.

Figure 15. PersistentVolume Form

 To enhance user experience, the application included
buttons for visualizing each Kubernetes resource, such as
deployments, services, ConfigMaps, PVs, and PVCs. As in
Figure 16, these could also be deleted directly from the
interface, improving resource management and
transparency for the user.

Figure 16. Interface resource retrieval options

D. Performance Testing: Locust and Prometheus
The performance of the system was evaluated using Locust
for load testing and Prometheus for monitoring. Locust
tests simulated increasing user loads, ranging from 1 to 20
concurrent users, tracking metrics like response time and
requests per second (RPS). Figure 17 summarizes the
results, showing that the application efficiently handled
traffic, maintaining acceptable response times and zero
failed requests up to 20 users.

Run
Num-
ber

Number of
concurrent
users

Ramp
up
rate

Average
RPS

Average
failures/
s

Average
response
time (ms)

no. 1 1 1 0.6 0 285

no. 2 2 2 1.1 0 364

no. 3 5 5 2.3 0 732.2

no. 3 10 10 2.6 0 2323.9

no. 4 20 20 2.7 0 6733.63

Figure 17. Performance testing results

 The graphs representing these results can be seen in
Figure 18. Prometheus was used to monitor request latency
and the total number of requests. As shown in Figure 19,
latency increased predictably as traffic scaled up, with
notable increments during higher user loads, such as run 3,
where 10 concurrent users resulted in a latency of
approximately 507 ms. Despite this, the system
demonstrated robustness and scalability, remaining
responsive under heavy traffic.

The proposed management interface offers basic
troubleshooting feedback directly through the user
interface.

Figure 18. Graphs for performance testing

 Users are informed about common deployment issues,
such as invalid Docker images, duplicate resources, or
syntax errors in configuration files, ensuring that typical
errors can be corrected quickly. However, the system does
not currently provide in-depth troubleshooting tools, such
as detailed logs or advanced diagnostics, which are planned
for future development.

Figure 19. Prometheus charts

V. CONCLUSIONS AND FUTURE WORK

This paper presented a way to develop a Kubernetes
management web interface using Python Quart, with
thorough testing and monitoring to ensure functionality,
performance, and reliability.
 This application distinguishes itself from its modern
asynchronous architecture powered by Python Quart.
Unlike frameworks that rely on the Web Server Gateway
Interface (WSGI), Python Quart is built on the
Asynchronous Server Gateway Interface (ASGI). ASGI
enables asynchronous request handling, allowing the
application to manage multiple simultaneous HTTP
requests, WebSocket connections, and background tasks
with minimal latency. In terms of performance the
application stands out from similar technologies, as using
Python Quart is particularly advantageous, especially in
high-concurrency scenarios, as it prevents blocking
operations that are common in WSGI-based frameworks.
 Testing the core features of the interface confirmed that

Volume 64, Number 2, 2024 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 21

it could effectively create, manage, and retrieve
deployments, services, PersistentVolumes,
PersistentVolumeClaims, and ConfigMaps within
Kubernetes. These tests demonstrated the application’s
ability to handle both valid and invalid inputs, providing
appropriate responses without being disrupted by
erroneous configurations or duplicate entries. The utility
functions interacting with Kubernetes were validated,
ensuring accurate command execution across different
configuration states. This confirmed the system’s ability to
deploy configurations consistently, even when faced with
incomplete or incorrect data, contributing to operational
stability. Performance testing with Locust revealed how
the application handles concurrent user loads,
demonstrating scalability as user numbers increased. While
response times grew under heavier loads, the system
maintained its request-handling capacity proportionally.
Prometheus monitoring offered real-time insights into
request latency and count, highlighting that increased user
traffic led to greater latency. This provided a clear view of
the system’s behavior under stress and identified potential
areas for improvement. Despite the growing latency, the
application consistently handled higher traffic levels,
proving its capability to manage multiple requests over
extended periods.
 Unlike other similar technologies such as Rancher,
which adds abstraction layers that can increase overhead,
the proposed solution directly interacts with Kubernetes,
making it ideal for single-cluster deployments. It also
addresses the deployment constraints of Kubernetes
Dashboard by operating independently of the cluster,
allowing for more flexible hosting options also, compared
to Cyclops, which simplifies configurations through pre-
filled forms, this solution provides a modular architecture
that combines configuration management with
performance monitoring, offering greater control and
scalability.
 The future improvements could focus on enhancing
scalability and reliability, extending the system’s use to
larger projects and enterprises.

ACKNOWLEDGMENT

An initial expanded version was presented by I.A. Dumitre

as B.Sc. thesis in Telecommunications Technologies and

Systems in 19 July 2024.

REFERENCES
[1] M. Levan, “50 Kubernetes Concepts Every DevOps Engineer
Should Know: Your Go-To Guide for Making Production-Level
Decisions on How to and Why to implement Kubernetes”, Packt
Publishing, 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/10163034 .
[2] M. Mattox, “Rancher Deep Dive: Manage enterprise
Kubernetes seamlessly with Rancher”, Packt Publishing, 2022.
[Online]. Available:
https://ieeexplore.ieee.org/document/10162992 .
[4] “6 Common Issues and How to Tackle Them with Kubernetes
Monitoring Tools”, ManageEngine, 2023. [Online]. Available:
https://blogs.manageengine.com/application-performance-
2/appmanager/2023/02/24/6-issues-kubernetes-monitoring-
tools.html .
[5] “What is Kubernetes Dashboard?”, Devtron, 2023. [Online].
Available: https://devtron.ai/what-is-kubernetes-dashboard .
[6] S. Rajhi, “Turning Kubernetes into a developer friendly
platform with Cyclops”, 2023. [Online]. Available:
https://medium.com/@seifeddinerajhi/turning-kubernetes-into-
a-developer-friendly-platform-with-cyclops-%EF%B8%8F-
e5a81128030f .
[7] B.B. Rad, H.J. Bhatti, M. Ahmadi, “An Introduction to
Docker and Analysis of its Performance”, Int. Journal of
Computer Science and Network Security (IJCSNS), 17(3), 228,
2017.
[8] J. Schmitt, “Test-Driven Development (TDD) explained”,
2024. [Online]. Available https://circleci.com/blog/test-driven-
development-tdd/.
[9] J. Schmitt, “What is Helm?”, 2023. [Online]. Available:
https://circleci.com/blog/what-is-helm/.
[11] S. Reddy, “Kustomize Kubernetes native configuration

management”, 2023. [Online]. Available:

https://subbaramireddyk.medium.com/kustomizekubernetes-

native-configuration-management-f51630d29ac0.
[12] I.A. Dumitre, “Creation of Kubernetes Configuration Files
with a Python Quart Web Interface Developed Using TDD for
Presenting Real Life Scenarios of Kubernetes Deployments”,
B.Sc. Thesis, Technical University of Cluj-Napoca, Romania,
19 July 2024.

https://ieeexplore.ieee.org/document/10163034
https://ieeexplore.ieee.org/document/10162992
https://blogs.manageengine.com/application-performance-2/appmanager/2023/02/24/6-issues-kubernetes-monitoring-tools.html
https://blogs.manageengine.com/application-performance-2/appmanager/2023/02/24/6-issues-kubernetes-monitoring-tools.html
https://blogs.manageengine.com/application-performance-2/appmanager/2023/02/24/6-issues-kubernetes-monitoring-tools.html
https://devtron.ai/what-is-kubernetes-dashboard
https://medium.com/@seifeddinerajhi/turning-kubernetes-into-a-developer-friendly-platform-with-cyclops-%EF%B8%8F-e5a81128030f
https://medium.com/@seifeddinerajhi/turning-kubernetes-into-a-developer-friendly-platform-with-cyclops-%EF%B8%8F-e5a81128030f
https://medium.com/@seifeddinerajhi/turning-kubernetes-into-a-developer-friendly-platform-with-cyclops-%EF%B8%8F-e5a81128030f
https://circleci.com/blog/test-driven-development-tdd/
https://circleci.com/blog/test-driven-development-tdd/
https://circleci.com/blog/what-is-helm/
https://subbaramireddyk.medium.com/kustomizekubernetes-native-configuration-management-f51630d29ac0
https://subbaramireddyk.medium.com/kustomizekubernetes-native-configuration-management-f51630d29ac0

