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Abstract: We present a new approach based on Partial Differential Equations (PDEs) and shock filter theory for deblurring 2D 

Gaussian blurred images. The inherent problems of stability posed by the reverse heat equation and the discretization of shock 

filters are overcome by the use of only the initial conditions. This approach is not well suited for diffusion-oriented techniques since 

in this case the problem is ill-posed, but when dealing with multiple inputs (the case of fusion methods), it proves to provide sound 

results. The proposed deblurring model takes into account only the blur problem without having a noise removal component, this 

being a future step of our work.      
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I. INTRODUCTION 

The basic idea behind shock filters is the process of 

applying either erosion or dilation in a very localized 

manner, in order to create a “shock” between two influence 

zones, one belonging to a maximum and the other to a 

minimum of the signal. By iterating this process (modeled 

using a PDE framework) according to a small time 

increment dt we can ultimately obtain a piecewise constant 

segmentation of the input image, thus leading to a deblurred 

output.  

The use of shock filters as a mean of image 

enhancement is recommended by the advantages this 

particular method offers: they create strong discontinuities  

at image edges and furthermore, the filtered signal within a 

region delineated by those edges becomes flat. In other 

words, shock filters create segmentation. Due to their 

discrete mathematical definition they are inherently 

unstable, meaning that they require special discretization 

schemes in order to preserve the total variation of the signal. 

Another property of shock filters underlined in [4] is that 

they satisfy the maximum-minimum principle which states 

that the range of the filtered image remains within the range 

of the original image. Another advantage of shock filters 

over other image enhancement methods, such as Fourier or 

wavelet-based ones is that phenomena like the Gibbs 

phenomenon cannot appear.    

Another way of enhancing a blurred image is by a more 

straightforward approach that of reverse diffusion, more 

specifically the reverse heat equation. This approach was 

discussed in [1, 11] and although the results look promising, 

a few remarks need to be made concerning this method: the 

reverse diffusion by itself causes instabilities, which 

eventually lead to the image “blowing up”. Therefore the 

time evolution of this filter needs a predefined stopping 

criterion which is strongly correlated to the particularities of 

each image. For example, an image that presents a strongly 

oriented characteristic will require a smaller number of time 

iterations before “blowing up” than an image which is 

strongly homogeneous. This particular problem can be also 

found in shock filter models that do not explicitly implement 

the minmod numerical scheme described in [10], thus 

leading to breaking the previously stated maximum-

minimum principle.      

II. IMAGE ENHANCEMENT THROUGH 

SHOCK FILTERING 

The first definition of the shock filter can be traced back to 

1975 when Kramer and Bruckner have defined the first 

concepts regarding shock filter theory [3]. The Kramer and 

Bruckner definition can be expressed using the following 

PDE as demonstrated in [2]: 

ddd IIsign
t

I
)(−=

∂

∂
   (1) 

where I represents the image and Id and Idd represent the 

first, respectively the second directional derivatives of the 

image I. Eq. (1) represents a generic definition since the 

direction d is not properly defined. The first term of the 

equation represents the edge detector (in this case the Canny 

edge detector) used for shock filter steering. 

The actual term of shock filter was first introduced in 

1990 by Osher and Rudin [10] when they proposed this new 

class of filters based on PDEs and defined the minmod 

numerical scheme for successfully avoiding any instabilities 

of the algorithm, since the shock filter theory is defined only 

on a discrete domain. The PDE equation expressing the 

shock filter defined in [10] uses the zero-crossings of the 

Laplacian as edge detector: 
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Although the only difference between eq. (1) and eq. (2) is 

the edge detector used, it was proven in [5] that the Kramer-

Bruckner and Osher-Rudin filters share the same asymptotic 

behavior for a 1D regular signal.   

The evolution of shock filter theory is marked by several 

improvements over the original Osher-Rudin model. One 

such improvement refers to making the filters more robust to 

small scale details an was suggested in [7] by Alvarez and 

Mazora and consists in introducing a smoothed version of I, 

that is: IKI *σ
σ = , where σK  is a Gaussian kernel with 

standard deviation σ.  Another improvement that was first 

suggested in [10] is the use of the Canny edge detector 

instead of the zero-crossing of the Laplacian one, where the 

directional derivative is computed along the I∇η  direction. 

These improvements led to the following equation: 

  IIsign
t

I
∇−=

∂

∂
)( σ

ηη    (3) 

Another notable improvement was presented in [4] where 

the edge detector is once again redefined. The directional 

derivative is computed this time according to a normalized 

dominant eigenvector w of the structure tensor )( IJ ∇ρ : 

)(*)( TIIKIJ ∇⋅∇=∇ ρρ   (4) 

The new definition of the shock filter according to [4] is: 

IIsign
t

I
ww ∇−=

∂

∂
)( σ    (5) 

This particular model uses a different scale for each of the 

Gaussian kernels it employs: the structure scale σ that 

determines the size of the flow-like patterns and the 

integration scale ρ which has the role of averaging the 

orientation information in order to have a more robust 

orientation estimator.  

Another interesting improvement is the one defined in 

[9] where the proposed model performs image enhancement 

and denoising at the same time. The shock filter component 

of the model defined in [9] is the following: 

IIsignIh
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where 
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 Even if the original model has been improved over 

the years, being made more robust to small scale structures 

or flow-like patterns, it still presents a series of 

shortcomings like its susceptibility to noise or the fact that, 

as stated in [1] , the shock filter is a texture killer. Also [1] 

advocates the fact that the concept of sock filter cannot be 

truly regarded as a reverse heat equation since it is basically 

performing a very local and simple operation on a 

neighborhood, thus being no more than an enhancement 

operator. The PDE-based non-local filtering method 

described in [1] is not directly linked to the notion of shock 

filter to its strictest of senses since it uses the PDE 

formalism to describe a non-local time evolving reverse heat 

equation.       

 

III. NUMERICAL MODELS FOR SHOCK 

FILTER IMPLEMENTATION  

As already discussed in the previous paragraphs, all shock 

filter models have a specific discrete implementation in 

order to comply with the maximum-minimum principle.  

 
III.1. Existing stable numerical schemes  

The maximum-minimum principle allows the 

development of stable algorithms that do not require a 

specific stopping criterion or for that matter a stopping time. 

The evolution of these models is independent from this point 

of view since the solution tends to converge and stabilize 

itself after a sufficiently large number of iterations. The 

classical numerical scheme that complies with the previously 

stated principle is the minmod scheme which was also 

defined by Osher and Rudin in [10]:  
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Based on the minmod operator (eq. 7) the discretization of 

the gradient norm I∇  is performed as follows: 
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where 
−+−+
yyxx DandDDD ,,  represent the numerical 

approximations of the first order derivatives with respect to 

the x and y directions based on the forward and backward 

finite differences scheme.  

An alternative stable numerical scheme is the one 

proposed in [8] where in order to abide by the maximum-

minimum principle and avoid the divergence of the final 

solution, the input image is normalized between [0;1] before 

applying the shock filter. The filtered result is then set back 

to its initial dynamic range. This scheme proves to work 

slightly better than the one described by eq. (7) and (8) 

mainly in preserving small scale details around joints and 

corners belonging to different image structures.  

 

III.2. Our new naturally unstable numerical schemes 

Although it may sound a little odd, the use of such 

numerical schemes proves in some cases to yield more 

realistic results. Since the shock filters are not truly reverse 

heat equations we cannot assume that by evolving a stable 

numerical scheme of a shock filter onto a Gaussian blurred 

image we will be able to obtain the initial solution of that 

equation (that cannot be achieved even with an ideal reverse 

heat equation, since the blurring process is isotropic in 

nature). 
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        a)                b) 

  
        c)                d) 

Figure 1 a) Original synthetic image; b) Gaussian 

blurred image:σ=5 

c) Deblurred image - classic scheme; d) Deblurred image 

- proposed scheme eq. (9); 

 

Figure 1 illustrates the main advantages of using an unstable 

discretization scheme for implementing a shock filter (Fig.1 

d): better contour preservation, better contrast since the  

PDE’s evolution is not restricted by the minmod operator 

and, as it can be seen from the above example, better detail 

preservation (e.g. the thin white line in the bottom right 

corner of the black triangle which is almost invisible in Fig. 

1 c) is preserved reasonably well in Fig. 1 d)). For the above 

example the same evolution time was used t=5 with dt=0.1 

time increments. The filtering in Fig. 1 c) was done using 

eq. (3) with σ=3. The filtering in Fig. 1 d) was done using 

the first of our two proposed schemes: 

I
K

I
Isign

t

I

s

∇⋅
∇

−⋅−=
∂

∂
)exp()( 0

ηη    (9) 

Eq. (9) is implemented using a classical finite differences 

scheme for computing its second order directional derivative 

Iηη and its gradient norm. In order to avoid oscillations due 

to the classical implementation, we use only the initial 

second order directional derivative 
0

ηηI  extracted from the 

initial blurred image in computing the Canny edge detector. 

The shock filter’s speed is controlled by employing an 

exponential term, similar to the one used in the Perona and 

Malik anisotropic diffusion equation.     

Due to the promising results obtained using the shock 

filter described by eq. (9) our work led us to experimenting 

even further with the concept of unstable numerical schemes 

and the use of only the initial directional derivative in 

employing the edge detector. The well-posedness of the 

problem when using only the initial second order directional 

derivative was mathematically proven in [8], thus the use of 

only the initial directional derivative in the edge detecting 

process is mathematically sound and allows us to 

successfully implement unstable numerical schemes that, as 

long as they are properly parameterized, can yield better 

performances than classical minmod models.  

The edge detector envisioned using only the initial 

geometry retrieved through 
0

ηηI  would ideally capture the 

undistorted second order directional derivative identical to 

the one obtained by extracting it from the initial non-blurred 

image. Since this assumption would make our problem ill-

posed, the goal is to try to retrieve from the blurred image a 

second order directional derivative as similar as possible to 

the one from the initial non-blurred image.  Since the 

classical shock filter is a very localized edge enhancement 

operator, we propose to use it to enhance the second order 

directional derivative and with the resulting information as 

initial condition to determine the edge detector’s response: 
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τ∂ and t∂  are the time increment parameters that describe 

the time evolution concept used in the PDE formalism and 

can have distinct or identical values.  

Figure 2 illustrates the improvements brought by the model 

described by eq. (10) compared to the model described by 

eq. (9). The overall parameters are the same: t=5 with 

dt=0.1 and τ=100 with dτ=0.1. It can be seen that by using 

eq. (10) we can further improve the edge detection thus 

increasing the accuracy of the enhancement, making it 

almost close to the ideal concept of precisely localized edge 

enhancement. All the other benefits of the unstable scheme 

illustrated in fig. 1 d) are preserved in the filtered results of 

fig. 2 b).  

   
a)  b) 

Figure 2 a) Deblurred image – based on eq. (9) b) 

Deblurred image – based on eq. (10) 
 

So far we have analyzed the behavior of our shock filter 

models in an inverse-diffusion frame, showing that the 

proposed approach is well-posed. This assumption holds as 

long as a stopping criterion is defined and the use of only the 

initial geometry retrieved by the second order directional 

derivative is mathematically sound and feasible (as long as 

we do not assume ideal conditions for extracting Iηη). We 

will see in the next paragraph that in the case of image 

enhancement by means of image fusion we can make this 

assumption under specific conditions, thus making even the 

ideal case a well-posed problem.      
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IV. SHOCK FILTERS AND IMAGE FUSION 

Using as a starting point the model described by eq. (10) we 

can imagine the following fusion scenario: we have 2 inputs 

of the same scene, but each blurred in different regions by a 

Gaussian blur. In this case we can assume that it is possible 

to retrieve the ideal second order directional derivative from 

each region of the image that is not affected by blur, 

provided that the blurring was performed in a 

complementary manner. 

        
                         a)                b) 

        
                         c)                 d) 

Figure 3 a) Original Lena image; b) Gaussian blur (σ=5) 

left side; 

c) Gaussian blur (σ=5) right side; d) Fusion result 

(RMSE=14.06, PSNR=25.17 dB with respect to original 

image Lena); 

  

The concept of using the discretization schemes (eq. 9 and 

10) for shock filter modeling in a fusion-like framework is 

still in its emergent phase, since there are still certain details 

that need to be further studied and improved. 

  

V. CONCLUSIONS 

The alternative approach of defining and implementing 

shock filters proposed in this work has proven to reveal 

interesting new ways of looking and working with shock 

filters as image enhancement tools. Although using unstable 

numerical schemes is more complicated than using the stable 

ones, we have demonstrated that there are situations that 

could benefit from such approaches.  

We believe that there are still new ways of working with 

shock filters that have not yet been discovered, and this 

encourages us to continue our work in researching new 

possibilities of expanding the PDE-based image processing 

formalism.   
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