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Abstract: The multiresolution theory of orthogonal wavelets proves that any conjugate mirror filter characterizes a wavelet that 
generates an orthonormal basis of L2R. This paper presents a method to obtain a discrete wavelet function, through FIR filter 
synthesis starting from a random discrete sequence. This sequence is used as a FIR filter which generates the four conjugate mirror 
filters necessary to implement the Discrete Wavelet Transform. The refinement of this sequence is carried out by a learning 
structure which follows to minimize the error between the signal and its reconstructed form from first order decomposition.   
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I. INTRODUCTION 
The main idea in any signal decomposition is to represent 
the signal well, by a small number of basic functions. These 
can be sinusoids (Fourier analysis) or can be other functions 
(wavelets). The wavelet analysis is a new tool in signal 
processing and if the signal is represented as a function of 
time, wavelets provide efficient localization in both time and 
frequency domains. Important information often appears 
through a simultaneous analysis of the signal’s time and 
frequency properties. This idea leads to decompositions over 
elementary atoms that are well concentrated in time and 
frequency. This is the main goal of the wavelet analysis, but 
the flexibility of time and frequency transforms is limited by 
the uncertainty principle, which states that the energy spread 
of a function and its Fourier transform cannot be 
simultaneously arbitrarily small.  
 For discrete-time signals, the Discrete Wavelet 
Transform (DWT) is equivalent to an octave filter bank, and 
can be implemented as a cascade of low-pass and high-pass 
finite impulse response (FIR) filters. The purpose of this 
paper is to find a filter bank for DWT implementation in 
order to have a signal-adapted decomposition. 
  

II. WAVELETS AND FILTER BANKS 
In signal analysis we want to represent a signal (a function) 
well, by a small number of basic signals. These functions are 
never periodic and we might hope that they can be 
represented as series expansion like [1]: 
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The goal of wavelet analysis is to expand functions in terms 

of function of the type kj ,ψ  with nf  in (2) replaced by 

kj ,ψ , where Zkjkj ∈,,,ψ is a family associated to 

functionψ defined by  
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The functions kj ,ψ  are scaled and translated versions of ψ  

(named the mother wavelet) and form the wavelet system 

associated to the functionψ . Wavelets are localized waves, 

instead of oscillating they converge fast to zero, they come 

from the iteration of rescaled filters [5]. Since we have two 

parameters in kj ,ψ  the expansion will be in terms of double 

sum. The purpose is to generate a set of expansion functions 

so that any discrete signal can be represented by the series  
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where the two-dimensional set of coefficients kja ,  is called 

the discrete wavelet transform (DWT) of ( )tf [2]. A more 

exact form indicating how the kja ,  coefficients are 

calculated can be written using inner products as 
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 if the ( )tkj ,ψ  form an orthonormal basis for the space of 

signals of interest. This expansion can only be possible 
under certain mathematical conditions on the function ψ . 

This wavelet series expansion is in terms of two indices, the 

time translation k  and the scaling index j . This wavelet 

expansion provides a multiresolution analysis [1], which is 
connected in the signal processing domain with subband 
coding (or pyramidal) algorithm. This algorithm allows the 
implementation of discrete wavelet transform. The 
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multiresolution theory of orthogonal wavelets proves that 
any conjugate mirror filter characterizes a wavelet that 
generates an orthonormal basis of square integrable 
functions [5], [6], [7]. A time-scale representation of a 
discrete signal is obtained using digital filtering techniques. 
For discrete time signals the wavelet sequence is used to 
construct two finite impulse response (FIR) filters to 
decompose the signal into low and high frequency 
components as represented in figure 1. 
 

 
 

Figure 1. Filters for dyadic scale decomposition and 
reconstruction 

 
The analysis bank is on the top and is composed from a low-
pass filter HD, a high-pass filter GD and decimation which 
removes the odd numbered components after filtering. By 
analysis the input is separated into frequency bands.  
 

 
 

Figure 2. The obtained frequency bands 
 
The resolution of the signal, which is a measure of the 
amount of detail information in the signal, is changed by the 
filtering operations and the scale is changed by upsampling 
and downsampling (subsampling) operations. Subsampling a 
signal corresponds to reducing the sampling rate, or 
removing some of the samples of the signal. The analysis 
structure yields two half-length outputs ak and dk. The 
operators HD and GD correspond to one stage in the wavelet 
decomposition, the spectrum of the signal is split in two 
equal parts, a low-pass (smoothed) and the high-pass part. 
The low-pass part can be split again and again until the 
number of bands created satisfy the computational demands. 
Thus, the discrete wavelet transformation can be 
summarised (after j stages) as  
 

( )1121 ,,..., adddx jj −−→   (5) 

 

where jd are details and ja average components. The 

synthesis bank (down on figure 1) begins with upsampling 
(which inserts zeros in odd components) and reassemble the 
signal. Upsampling a signal corresponds to increasing the 
sampling rate of a signal by adding new samples to the 
signal. The filters HD, GD, HR, GR are linear and time-
invariant but the down- and upsampler operators are not 
time-invariant. These multirate operation can create 
extraneous signals which the filters must cancel. Generally, 
in filter banks there are two conditions for perfect 
reconstruction [6]. One condition removes distortion the 
other removes aliasing. The anti-distortion condition applies 
to the products HRHD and GRGD along the channels of the 
filter bank. The anti-aliasing condition controls how this 
products can be separated into four filters. The structure of 
an orthogonal filter bank (the length of the filter is 4 in this 
example and we suppose that the coefficients of the 
decomposition filter are; a, b, c, d) is very special, figure 3 
shows how the filters (coefficients) are related. 
 

 
 

Figure 3. Orthogonal filter bank with four coefficients 

 
A filter bank also gives perfect reconstruction if it is 
biorthogonal, in which case the design of the filter bank is 
less restrictive. One can say that the link between discrete-
time filters and continuous-time wavelets is in the limit of 
the presented filter tree. Iteration of lowpass filters leads to 
the nscaling function [5]. 
 

III. THE PROPOSED METHOD 
 To obtain a well adapted wavelet function, a global error 
minimizing wavelet synthesizer method is proposed, the 
procedure to obtain the four FIR filters from the discrete 
wavelet sequence W is presented on figure 4.  
 

 
 

Figure 4. Obtaining decomposition and reconstruction 
filters from sequence W. 

 
  Starting from an arbitrary, discretized sequence, from 
which the reconstruction and decomposition filters can be 
obtained (figure 4), in each step a first order DWT is 
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performed, the approximation signal is compared with the 
original one, the reconstruction error is computed, as 
illustrated in figure 4. According to the wavelet theory [5], 
[6] the filters must be low-pass FIR of 2N length, the sum of 

elements to be 1, with norm 2 . The global error includes 
the errors from reconstruction and norm. The proposed 
algorithm to obtain a new wavelet sequence is presented in 
figure 5. We start with a random W sequence, the four filters 
are generated (according to figure 4) and the DWT of the 
test signal is performed with the starting sequence. In every 
step the error is calculated and the wavelet sequence is 
modified in order to reduce the error. 
 

 
 

Figure 5. The proposed method to synthesize a discrete 
wavelet sequence 

 
The error is defined as a sum of two errors, 
 

nw εεε +=    (6) 

 

 where wε  is a reconstruction (performed by Inverse 

Discrete Wavelet Transform) error (to measure the 
similarity between the signal and the obtained wavelet), and 

nε  which shows how close the norm of the created wavelet 

is to the theoretical value. These are defined as: 
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The criterion-function to adjust the wavelet sequence was 
defined as: 
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where µ  is the learning rate and 

iwδ

δε
 is the variation of 

global error. The iteration stops when the error decreases 
under a certain, pre-fixed value or become constant. 
 

IV. RESULTS 
The used test signal is represented in figure 6. This is an 
artificially created signal which contains clean and noisy 
parts in the same structure, and it has a shape which is very 
close to an ECG signal. The length of the starting sequence 
was set to 8 (meaning fourth order filter), the resulting 

decomposition and reconstruction filters will have the same 
length. It is important to mention that when we start the 
decomposition, the used sequence is not a wavelet  yet, but 
it is redefined after every step until it satisfy the 
mathematical conditions. 
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Figure 6. The test signal 

 
The input signal, the reconstructed signal (only from 
approximation coefficients) and the difference between them 
are represented on figure 7. The wavelet sequence was 
modified in order to reduce this difference and to have 
certain mathematical conditions (as norm) satisfied. In this 
case the number of iteration was set to 2000, the learning 
rate was set to 0.004, the error’s variation is represented in 
figure 8,  the resulted norm for the new wavelet is 0.7076 
(instead 0.7071, which is the theoretical value). 
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Figure 7. The input, reconstructed signals and the 

difference between them 

The main task of the proposed algorithm is to minimize the 
reconstruction error. In this work is assumed that this error 
is the most important criterion to obtain a perfect 
reconstruction. For a number of 2000 iterations the 
evolution of the reconstruction error can be seen on figure 8. 
Increasing the number of iterations this error can be 
reduced. 
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Figure 8. The evolution of the error (2000 iterations) 

 
 
 
 
After a pre-fixed number of iterations the obtained wavelet 
sequence is presented on figure 8. 
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Figure 9. The resulted wavelet sequence 

As we can see, its structure (shape) is very similar to other 
(already known and used in Matlab environment) wavelet 
functions. The four digital (decomposition and 
reconstruction low-pass and high-pass) filters obtained from 
the wavelet sequence are represented by coefficients in 
figure 10. One can see that the conditions for coeffiecients 
presented on figure 3 are totally satisfied, then the obtained 
sequence is a valid wavelet sequence. 
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Figure 10. The obtained four  
 

V. CONCLUSIONS 
This papers shows that it is possible to obtain a discrete 
wavelet transform of a sequence that by using filter banks 
without specifying any function. The main advantage of the 
presented method is that the analyzing discrete wavelet is 
adapted to the signal. Every analyzed signal has its own 
discrete wavelet structure which perform the best 
reconstruction from first order approximation coefficients. 
The obtained functions gave almost the same results in 
decomposition, reconstruction as the existing functions. The 
original idea was to start from an arbitrary sequence, not to 
perform mathematical operations to obtain the wavelet 
sequence. One of disadvantages of the presented method is 
that the obtained sequence do not satisfy totally the 
mathematical conditions (the global error is non-zero), so 
for applications which require accurate information 
preservation (as compression) is not recommended. As 
further work the order of DWT can be increased, extra 
conditions for errors can be set and the length of the filters 
can be modified, depending on specified requirements. It is 
possible to obtain more adaptive sequences if only parts (of 
major interest) of signal are entered in the synthesizer.  
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