

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received September 4, 2010; revised November 3, 2010

67

DEVELOPMENT FRAMEWORK FOR CONGESTION AVOIDANCE

MECHANISMS

Vasile DADARLAT, Raluca JELER, Adrian PECULEA, Bogdan IANCU,

Emil CEBUC, Cosmin ARDELEAN
Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, Computer Science Department

26-28 G. Baritiu street, Cluj-Napoca, Romania, Tel: +40264202369,
{Vasile.Dadarlat, Adrian.Peculea, Bogdan.Iancu, Emil.Cebuc, Cosmin.Ardelean}@cs.utcluj.ro

Abstract: The paper is presenting a novel approach for the design and implementation of a development framework for congestion
avoidance mechanisms. A method for dynamically adjustment of the queues length function of their average queue size is also
proposed. The developed algorithm, called improved WRED, uses this method which allows for a better use of the bandwidth of
the link. Both the proposed algorithm and the traditional WRED were tested using the framework for the development of
congestion avoidance mechanisms. The experiments showed that the improved WRED has better performance than the traditional.

Keywords: framework, WRED, QoS, congestion avoidance, algorithm.

I. INTRODUCTION
QoS (Quality of Service) reserves resources and provides
different priority to different applications, users, or data
flows in order to ensure a certain level of performance to a
data flow. One mechanism used in QoS implementation is
congestion avoidance. WRED (Weighted Random Early
Detection) is an active queue management mechanism that
provides congestion avoidance [1].
 A framework can be defined as an abstraction which
delivers generic functionality that can be selectively
overridden or specialized by user code providing specific
functionality. The purpose of a framework is to offer the
user capability to extend the main functionality. A software
framework is a set of code or libraries which provide
functionality common to a whole class of applications.
While one library will usually provide one specific piece of
functionality, frameworks will offer a broader range, which
are all often used by one type of application. Rather than
rewriting commonly used logic, a programmer can leverage
a framework which provides often used functionality,
limiting the time required to build an application and
reducing the possibility of introducing new bugs [2].
 The current paper is focused on defining a framework for
the development of congestion avoidance mechanisms. The
framework allows for designing and testing different
algorithms for congestion avoidance in a physical test
network. Also, an improved form of WRED algorithm
which allows for a better use of the bandwidth of the link is
proposed. Using the designed framework, the improved
WRED algorithm is compared with the traditional WRED
algorithm. The test proved that the proposed algorithm has
better performances than the traditional one.
 The paper is organized as follows: Section II provides
background information related to congestion avoidance
algorithms and mechanisms. Section III presents the
proposed framework’s architecture and an improved WRED

algorithm. Section IV presents the experimental results by
means of comparing the proposed improved WRED
algorithm with the traditional WRED algorithm. Section V
concludes the paper.

II. THEORETICAL CONSIDERATIONS
Random early detection (RED), also known as random early
discard or random early drop is a proactive queue
management technique for congestion avoidance in which
the router discards packets before the buffer’s overflow
[3][4].
 An active queue management is an algorithm that
consists in a dropping strategy before the router’s buffer is
full. These algorithms contain a level of intelligence that
deals with queues when the congestion is detected.
 There are three possibilities for packet dropping:

1. Tail drop, which discards the last arrived packet;
2. Front drop, which removes the first packet in the
queue;
3. Random drop, which eliminates a randomly selected
packet within the queue.

 In a traditional tail drop algorithm, a router stores as
many packets as it can and removes those that cannot be
kept. If buffers are constantly full, the network is congested.
As a result of buffer overflow, TCP obtains congestion
feedback and grow its window to fill up the router buffer,
causing a loss. This tail drop loss is used as the congestion
indication. The method has major drawbacks. First, tail drop
distributes buffer space unfairly among traffic flows.
Second, loss synchronization - if several connections share
the same link, when the buffer fills up, many connections
incur loss at the same time. All these connections will back
off their window at the same time, resulting in an
underutilization of the link. Third, when one or several
connections monopolize the whole buffer and because

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 68

dropping algorithm is combined with the mechanism of
"slow start" of TCP, the tail drop will not allow other
connections to gain access to resources. Finally, fourth,
queues are occupied for longer periods of time and this leads
to network delays.
RED was designed with four objectives in mind:

1. minimize packet loss and delay:
2. avoid global synchronization of TCP sources:
3. maintain high link utilization;
4. remove bias against bursty sources.

 In addition, RED addresses the traditional tail drop’s
issues by using the last dropping strategy for eliminating a
randomly selected packet within the queue. It detects the
initial stage of congestion by computing the average queue
size. If the buffer is almost empty, all incoming packets are
accepted. As the queue grows, the probability for dropping
an incoming packet grows too. When the buffer is full, the
average queue size exceeds a threshold, all incoming
packets are dropped.
 The following three parameters influence when a newly
arriving packet is discarded: minimum threshold, maximum
threshold and Mark Probability Denominator (MaxP). The
minimum threshold specifies the number of packets in a
queue before the queue considers discarding packets. The
discard probability increases until the queue depth reaches
the maximum threshold. After a queue depth exceeds the
maximum threshold, all other packets that attempt to enter
the queue are discarded.
 RED computes the average queue size (avg). When the
average queue size is above the minimum threshold, RED
starts dropping packets. The rate of packet drop increases
linearly as the average queue size increases until the average
queue size reaches the maximum threshold. The mark
probability denominator is the fraction of packets dropped
when the average queue size is at the maximum threshold.
For example, if the denominator is 512, one out of every 512
packets is dropped when the average queue is at the
maximum threshold. When the average queue size is above
the maximum threshold, all packets are dropped. Fig. 1
summarizes the packet drop probability.

Figure 1. The packet dropping probability in RED

 RED algorithm has two distinct algorithms:
1. The algorithm for computing the average queue size
determines the degree of burstiness that will be allowed in
the gateway queue.
2. The algorithm for calculating the packet-marking
probability (when average queue size is between Min and
Max) determines how frequently the gateway marks packets,

given the current level of congestion.
 The algorithm for calculating the average queue size take
into account the period in which the queue is empty (the idle
period) by estimating the number m of small packets that
could have been transmitted by the gateway during the idle
period. After the idle period the gateway computes the
average queue size as if m packets had arrived to an empty
queue during that period.

 The average queue size is determined based on the

following (1):

qwavgwavg qq ⋅+⋅−=)1(

 (1)

where wq is queue weight and q is the queue size.
 If wq is too large, the previous average becomes more
important. The RED process will be slow to start dropping
packets and it may continue dropping packets for a time
after the actual queue size has fallen below the minimum
threshold. Thus RED will not react to congestion and
packets will be transmitted or dropped as if RED were not in
effect. In this case the averaging procedure will not filter out
transient congestion at the gateway.
 If wq is set too low, then avg responds too slowly to
changes in the actual queue size. In this case, the gateway is
unable to detect the initial stages of congestion [5].
 As avg varies from Min to Max, the packet-marking
probability pb varies linearly from 0 to Maxp (2):

)(

)(

MinMax

MinavgMax
p

p

b
−

−

=

 (2)

 The minimum threshold value should be set high enough
to maximize the link utilization. If the minimum threshold is
too low, packets may be dropped unnecessarily, and the
transmission link will not be fully used.
 The difference between the maximum threshold and the
minimum threshold should be large enough to avoid global
synchronization. If the difference is too small, many packets
may be dropped at once, resulting in global synchronization.
 Optimal values for Min and Max depend on the desired
average queue size. If the traffic is fairly bursty, then Min
must be correspondingly large to allow the link utilization to
be maintained at an acceptably high level. On the other side,
the optimal value for Max depends in part on the maximum
average delay then can be allowed by the gateway. The RED
gateway functions most effectively when (Max - Min) is
larger than the typical increase in the calculated average
queue size in one roundtrip time. A useful rule-of-thumb is
set Max to at least twice Min.
 The final packet-marking probability pa increases slowly
as the count increases since the last marked packet (3):

)1(b

b
a

pcount

p
p

⋅−

=

 (3)

 This ensures that the router does not wait too long before
marking a packet.
 WRED – Weighted Random Early Detection is an
extension of RED where the probability that packets will be

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 69

dropped is adjusted according to IP precedence levels.
Typically, packets are sorted into queues based on fields
such as IP precedence, either DIFFSERV code-points or
ToS values. Allowing queues to have different parameters is
a simple way to implement QoS policy based on classes of
traffic. Visually, we can picture WRED as supporting
multiple thresholds based on weights, as shown in Figure 2
below.

Figure 2. The packet dropping probability in WRED

 WRED avoids the globalization problems that occur
when tail drop is used as the congestion avoidance
mechanism on the router.
 WRED drops packets randomly prior to congestion and
tells the packet source to decrease the transmission rate. If
the packet source is TCP, it will decrease the transmission
rate until all packets reach their destination and the
congestion is cleared. As a result, WRED is useful only for
TCP. On other protocols, the packet source may not respond
or may transmit at the same transmission rate. Thus, the
packet dropping does not avoid the congestion.
 If WRED uses IP precedence as criterion for packet
dropping, the packets with a higher IP Precedence are less
likely to be dropped than packets with a lower precedence.
Thus, the higher the priority of a packet, the higher will be
the probability that the packet is delivered.
 If WRED is based on type of traffic, the packets from
some classes of traffic are more likely to be dropped than
packets from other classes.
 Even if RED is the most common active queue
management algorithm, there are more variation on this
topic. Here is a brief description for some other queue
management algorithms that have RED as a starting point.
 Dynamic Random Early Detection (DRED) introduces a
new parameter: warning line. The average queue size is
estimated and is dynamically adjusted. DRED scheme
responds early enough to the increased number of packets at
the gateway. Also, the maximum drop probability of packets
show improved performance over the original RED. This
scheme demonstrated superiority by avoiding global
synchronization and there is great reduction in the
fluctuations of the actual queue size. Also, its early response
avoids buffer overflow at the gateways when the queue is
near full [6].
 FRED – FRED or Fair Random Early Detection imposes
the same loss rate on all flows, regardless of their
bandwidths. FRED also uses per-flow active accounting, and
tracks the state of active flows.
 SRED – Stabilized RED attempts to estimate the number
of connections, and also identify potential misbehaving

flows [7].
 Several variations of the Random Early Detection QoS
tool implemented in Cisco equipments can be used for
congestion avoidance configuration [8]. Cisco IOS Software
supports only WRED, which is enabled by the random-
detect CLI command. The minimum threshold, maximum
threshold and Mark Probability Denominator are tunable
parameters so that the system engineer can choose the
appropriate values in order to improve the network
behavior. DSCP-based WRED uses the AF drop-precedence
values of a packet’s DSCP markings to influence its
discarding probability. DSCP-based WRED configuration is
enabled by the dscp-based keyword of the random-detect
command. RFC 3168 defines a method for the network to
inform the sender about the congestion. Explicit congestion
notification (ECN) uses the final two bits of the ToS field in
the IP header to communicate the congestion. The two bits
are ECT and CE. ECT (ECN-Capable Transport) indicates
weather the device supports ECN. CE (Congestion
Experienced) indicates weather congestion was experienced.
ECN marks the packets instead of dropping them, to
communicate the existence of congestion. WRED ECN
configuration is enabled by the ecn keyword of the random-
detect command.

III. DEVELOPMENT FRAMEWORK FOR
CONGESTION AVOIDANCE MECHANISMS

The current work is concentrated in designing and
implementing a framework for the development of
congestion avoidance mechanisms, in a physical test
network. The use of the physical test network includes the
adopted approach in the experimental methodologies
category, methodologies that have proven accuracy close to
that of real cases [9]. Also, the current work is focused in
researching new techniques that will overcome the main
drawbacks of WRED algorithm. The paper proposes a
method for dynamically adjustment of the queues length
function of their average queue size. The algorithm
developed uses this method which allows for a better use of
the bandwidth of the link.

.NET
2.0

SharpPcap
Module

Network
Interface

Module

Capturing
Packet

Module

Sending
Packet

Module

Congestion
Avoidance

Module

User
Interface

User

Figure 3. Framework architecture

 The framework for the development of congestion
avoidance mechanisms (Fig. 3) uses a component based
architecture, consisting of the following main modules:

1. User;
2. User interface;
3. SharpPcap module;
4. .NET 2.0 module;
5. Module for capturing packets on the interfaces
previous detected;
6. Congestion avoidance module;

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 70

7. Sending packets module.
 The user interface module interacts with the user through
a console window in which all the information about the
network devices and specific information for the queue
management algorithms are displayed.
 The .NET and the SharpPcap module modules are based
on the famous WinPcap component. The purpose of these
modules is to provide an API for capturing, injecting,
analyzing and building packets using any .NET language
such as C#.
 The modules for capturing and sending the packets are
part of the network interface module. The capturing module
also has additional functions for the detection and handling
of the network devices, and also for packets’ control - using
a WinpCap wrapper [10] for C# .NET [11]. The sending
module uses the FIFO algorithm to send the packets stored
in the management queues.
 The routing and congestion avoidance module is the core
of the application and has the following tasks:

1. Creation and maintaining of the routing tables,
2. Marking traffic packets according to the predefined
rules,
3. Placing the packets into their corresponding queues,
4. Determining the output interface,
5. Applying congestion avoidance algorithms,
6. Traffic forwarding.

 The framework functionality is focused on the modules
described above. Here are the main functions of the system:

1. Detection of the available network devices,
2. Creation and management of the routing tables,
3. Packet capturing and classification,
4. Congestion avoidance using WRED-type algorithms
5. Packet transmission.

 At the framework start, all available network interfaces
are detected and a list with all available network devices is
built. This list contains complete information about an
attached adapter: the name and a human readable
description of the corresponding device. For each device in
the list we retrieve similar information with the 'ipconfig'
command available in Windows NT: IP information (IP
address, subnet mask and default gateway), the MAC
address (physical address) of the adapter, DHCP and WINS
information.
 Then, after the adapters’ list is obtained, the packets that
flow through the network are captured, analyzed and, based
on the collected information (protocol and port) the packets
are classified into their corresponding class of traffic. In our
packet handler we first do a check to verify that the packet
received from the network device is of a specific type
(TCPPacket, UDPPacket, ICMPPacket etc.) and past a
specific port, and only then try add it to a specific class
(queue).
 The congestion avoidance algorithms, based on WRED,
are applied on these classes and the packets are either added
to the queues or marked to be dropped.
 The packets that are stored in the queues are send to the
destination device based on the FIFO algorithm.
 The framework, through its modular software solution,
allows for adapting the developed system to run various
congestion avoidance algorithms, just by changing or
modification of some components. Also, the system allows
for saving and analyzing tests information, such as the
number of packets discarded by the congestion avoidance
mechanism. Thus, the framework allows in-depth analysis of

the congestion avoidance algorithms’ behavior.

Packet arrives on the
device’s interface

Compute average
queue size

Avg<Min th

Min th<Avg<Max th

Avg≥Max th?

Compute
probability for
dropping the

packet

High
probability?

Check memory
buffer

There is
available memory

in the buffer?

NO

NO

Add packet in
the queue

YES

Drop
packet

NO

NO

YES

YES

YES

YES

Figure 4. Improved WRED algorithm

 As the traditional WRED, the improved algorithm has
two major components. First component, the algorithm for
computing the average queue size, determines the degree of
burstiness that will be allowed in the gateway queue. This
part is similar in both algorithms. The second component,
the algorithm for calculating the packet-marking probability
(when average queue size is between Min and Max),
determines how frequently the gateway marks packets, given
the current level of congestion.
 For each queue, a minimum amount of memory is

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 71

guaranteed. The remaining memory, memory buffer, is
dynamically allocated to queues function of their average
queue size. Also, the allocated memory is dynamically
released when the average queue size decreases. Thus, the
memory buffer is dynamically used by any queue function of
the current traffic profile and level. This ensures a better use
of memory and therefore a better use of the bandwidth of the
link. The algorithm for calculating the packet-marking
probability uses this memory organization and dynamically
allocates and releases memory to and from queues function
of their current average queue size. Thus, classes without
intense traffic will not occupy unjustified amounts of
memory and classes with more intense traffic will benefit
from additional amounts of memory, allocated from the
memory buffer.
 Here is how the improved WRED algorithm works on
each queue (Figure 4):

1. For each packet arrival, calculate the average queue
size based on (1) described above.
2. If the average queue size is between the two thresholds
(min and max), calculate probability pa, for dropping the
packet. If the packets need to be dropped, check the
memory buffer. If the memory buffer is empty, drop the
packet, else add the packet to the current queue and
decrement the length for the current memory buffer. The
values for the min and max thresholds will be
incremented.
3. If the average queue size is grater than max threshold,
verify the memory buffer. If memory buffer is empty,
drop the packet, else add the packet to the current queue.
If the packet is added in the current queue, decrement the
length for the current memory buffer. The values for the
min and max thresholds will be incremented.

 At packet sending, check values for the min and max
thresholds. When the limit of the min and max thresholds
are grater than theirs initial values, the memory buffer will
be incremented and the values for the min and max
thresholds will be decreased.

IV. EXPERIMENTAL RESULTS
The algorithm was tested on the network presented in Fig. 5.
The framework for the development of congestion
avoidance mechanisms was installed on the router. The
improved WRED algorithm was compared with the
traditional one by generating similar traffic patterns for each
algorithm and comparing the data transfer performances.
The following two parameters were followed: throughput
and number of packets dropped. Five different traffic
patterns were generated for each algorithm. The results were
more than satisfactory and proved that the improved WRED
algorithm has better performance.

` `

20.0.0.1/8 10.0.0.1/8

20.0.0.2/8

Gw:20.0.0.1
10.0.0.2/8

Gw:10.0.0.1

Host A Host B

Framework for the
development of

congestion avoidance
mechanisms

Figure 5. Testing Network

Experiment 1
In the first experiment, the traffic pattern consisted of two
traffic classes (Fig. 6). The first class generated 64Kbps
ICMP traffic both from Host A to Host B and from Host B
to Host A. The second class was represented by a 10 MB
FTP transfer, from Host A to Host B.

` `

ICMP 64Kbps

FTP

Host A Host B

Figure 6. First experiment - traffic pattern with
two traffic classes

Using the improved WRED algorithm the 10 MB file was
transferred through the FTP protocol in 11.16 seconds with
939.92 Kbytes/sec and there were dropped 4 packets (0
packets were dropped randomly and 4 were dropped
because the average queue size exceeded the max
threshold). Using the traditional algorithm, the file was
transferred in 18.92 seconds with 554.16 Kbytes/sec and
there were dropped 13 packets (10 packets were dropped
randomly and 3 were dropped because the average queue
size exceeded the max threshold). The results are
synthesized in Table 1 and Fig. 7 illustrates the FTP
throughput difference between the two WRED
implementations.

 Throughput
(KBps)

Number of
packets dropped

Improved WRED 939.92 4
WRED 554.16 13

Table 1. Results for the first experiment

FTP throughput (Kbytes/sec)

0

100

200

300

400

500

600

700

800

900

1000

Improved WRED WRED

Figure 7. FTP throughput for Experiment 1

Experiment 2
In the second experiment, we have added a third traffic class
consisting of 640 Kbps UDP traffic, from Host A to Host B,
using a custom benchmarking system for generating traffic
test [12] (Fig. 8). The benchmarking allows the possibility to
define and store complex traffic patterns that can be

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 72

recharged for making further measurements, to test various
QoS techniques based on the same traffic characteristics.

` `

ICMP 64Kbps

FTP

UDP 640Kbps

Host A Host B

Figure 8. Second experiment - traffic pattern with

three traffic classes

 Using the improved WRED algorithm the 10 MB file
was transferred through the FTP protocol in 11.38 seconds
with 921.83 Kbytes/sec and there were dropped 5 packets (3
packets were dropped randomly and 2 were dropped
because the average queue size exceeded the max
threshold). Using the traditional algorithm, the file was
transferred in 18.59 seconds with 563.96 Kbytes/sec and
there were dropped 9 packets (5 packets were dropped
randomly and 4 were dropped because the average queue
size exceeded the max threshold). The results are
synthesized in Table 2 and Fig. 9 illustrates the FTP
throughput difference between the two WRED
implementations.

 Throughput
(KBps)

Number of
packets dropped

Improved WRED 921.83 5
WRED 563.96 9

Table 2. Results for the second experiment

FTP throughput (Kbytes/sec)

0

100

200

300

400

500

600

700

800

900

1000

Improved WRED WRED

Figure 9. FTP throughput for Experiment 2

Experiment 3
In the third experiment, we have added the fourth traffic
class consisting of 640 Kbps UDP traffic, from Host A to
Host B (Fig. 10).

` `

ICMP 64Kbps

FTP

Host A Host B

UDP 640Kbps

Figure 10. Third experiment - traffic pattern with

four traffic classes

 Using the improved WRED algorithm the 10 MB file
was transferred through the FTP protocol in 12.25 seconds
with 855.98 Kbytes/sec and there were dropped 2 packets (0
packets were dropped randomly and 2 were dropped
because the average queue size exceeded the max
threshold). Using the traditional algorithm, the file was
transferred in 21.86 seconds with 479.70 Kbytes/sec and
there were dropped 14 packets (12 packets were dropped
randomly and 2 were dropped because the average queue
size exceeded the max threshold). The results are
synthesized in Table 3 and Fig. 11 illustrates the FTP
throughput difference between the two WRED
implementations.

 Throughput
(KBps)

Number of
packets dropped

Improved WRED 855.98 2
WRED 479.70 14

Table 3. Results for the third experiment

FTP throughput (Kbytes/sec)

0

100

200

300

400

500

600

700

800

900

1000

Improved WRED WRED

Figure 11. FTP throughput for Experiment 3

Experiment 4
In the fourth experiment, we have added the fifth traffic
class consisting of 640 Kbps UDP traffic, from Host A to
Host B (Fig. 12).

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 73

` `

ICMP 64Kbps

FTP

Host A Host B

UDP 640Kbps

Figure 12. Fourth experiment - traffic pattern with
 five traffic classes

 Using the improved WRED algorithm the 10 MB file
was transferred through the FTP protocol in 15.75 seconds
with 665.76 Kbytes/sec and there were no dropped packets.
Using the traditional algorithm, the file was transferred in
17.39 seconds with 662.98 Kbytes/sec and there were
dropped 19 packets (15 packets were dropped randomly and
4 were dropped because the average queue size exceeded
the max threshold). The results are synthesized in Table 4
and Fig. 13 illustrates the FTP throughput difference
between the two WRED implementations.

 Throughput
(KBps)

Number of
packets dropped

Improved WRED 665.76 0
WRED 662.98 19

Table 4. Results for the fourth experiment

FTP throughput (Kbytes/sec)

0

100

200

300

400

500

600

700

800

900

1000

Improved WRED WRED

Figure 13. FTP throughput for Experiment 4

Experiment 5
Finally, in the fifth experiment, we have added the sixth
traffic class consisting of 640 Kbps UDP traffic, from Host
A to Host B (Fig. 14).

` `

ICMP 64Kbps

FTP

Host A Host B

UDP 640Kbps

Figure 14. Fifth experiment - traffic pattern with
six traffic classes

 Using the improved WRED algorithm the 10 MB file
was transferred through the FTP protocol in 19.70 seconds
with 532.19 Kbytes/sec and there were no dropped packets.
Using the traditional algorithm, the file was transferred in
17.55 seconds with 597.58 Kbytes/sec and there were
dropped 16 packets (14 packets were dropped randomly and
2 were dropped because the average queue size exceeded
the max threshold). The results are synthesized in Table 5
and Fig. 15 illustrates the FTP throughput difference
between the two WRED implementations.

 Throughput
(KBps)

Number of
packets dropped

Improved WRED 532.19 0
WRED 597.58 16

Table 5. Results for the fifth experiment

FTP throughput (Kbytes/sec)

0

100

200

300

400

500

600

700

800

900

1000

Improved WRED WRED

Figure 15. FTP throughput for Experiment 5

 In Fig. 16 it can be observed the FTP throughput
difference between the two WRED implementations for all
the experiments.

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 74

0

100

200

300

400

500

600

700

800

900

1000

2 traffic

classes

3 traffic

classes

4 traffic

classes

5 traffic

classes

6 traffic

classes

Improved WRED WRED

Figure 16. FTP throughput for the two WRED

implementations

 As it was expected, when the network is loaded with a
small number of traffic classes the improved WRED has
better performance than the traditional one. The improved
WRED dynamically allocates and releases memory to and
from queues function of their current average queue size.
Classes without intense or any traffic will not occupy
unjustified amounts of memory and classes with more
intense traffic will benefit from additional amounts of
memory, allocated from the memory buffer.
 When the network is loaded with a large number of
traffic classes the two WRED implementations present
similar performance.
 Using WRED the average FTP throughput obtained is
571.67 Kbytes/sec while using the improved WRED the
average FTP throughput obtained is 783.13, which
represents an increase of 36.98 percents.
 In Fig. 17 it can be observed the number of packets
dropped during the experiments. The improved WRED
dropped fewer packets than WRED, the number of packets
dropped by the improved WRED representing 15.49
percents from the number of packets dropped by WRED.

0

2

4

6

8

10

12

14

16

18

20

2 traffic

classes

3 traffic

classes

4 traffic

classes

5 traffic

classes

6 traffic

classes

Improved WRED WRED

Figure 17. Packets dropped during the experiments

 The parameters considered for the algorithms
comparison prove that the improved WRED algorithm has
better performance than the traditional one.

V. CONCLUSIONS
The framework for the development of congestion
avoidance mechanisms allows for the assessment of the
performance and functionalities of different congestion
avoidance algorithms using an experimental methodology.
The main advantages of this system are the accuracy close to
that of real cases and the possibility to run various

congestion avoidance algorithms and perform in-depth
algorithms’ behavior analysis.
 The memory organization proposed guarantees for each
queue a minimum amount of memory and the remaining
memory, memory buffer, is dynamically used by any queue
function of the current traffic profile and level. The
improved algorithm for calculating the packet-marking
probability uses this memory organization and dynamically
allocates and releases memory to and from queues function
of their current average queue size. This ensures a better use
of memory and therefore a better use of the bandwidth of the
link.
 The framework for the development of congestion
avoidance mechanisms was used in order to compare the
behavior and performance of the improved WRED
algorithm with the traditional one. The experiments revealed
that the improved WRED algorithm has superior
performance in comparison with the traditional WRED
algorithm.

ACKNOWLEDGMENTS

This work was supported by the PNII-IDEI 328/2007 QAF -
Quality of Service Aware Frameworks for Networks and
Middleware research project within the framework National
Research, Development and Innovation Programme initiated
by The National University Research Council Romania
(CNCSIS - UEFISCSU)

REFERENCES

[1] Z. Wang, Internet QoS: architectures and mechanisms for
Quality of Service, Morgan Kaufmann, San Francisco, 2001.
[2] “Framework”, DocForge. http://docforge.com/wiki/
Framework, Retrieved 17 February 2010.
[3] “RED”, http://www.icir.org/floyd/red.html, Retrieved 23
November 2009.
[4] L. Peterson, B. Davie, Computer Networks, A systems
approach 4th Edition, Morgan Kaufmann Publishers, 2007.
[5] S. Floyd, V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance”, IEEE/ACM Transactions on Networking,
vol. 1, pp. 397 – 413, 1993.
[6] A. A. Akintola, G. A. Aderounmu, L. A. Akanbi, M. O.
Adigun, “Modeling and Performance Analysis of Dynamic
Random Early Detection DRED Gateway for Congestion
Avoidance”, Proceeding of InSITE (Informing Science + IT
Education) Conference, pp. 623 – 636, 2009.
[7] “TCP and Queue Management, White Paper”, Agilent
Technologies http://cp.literature.agilent.com/litweb/pdf/5989-
7873EN.pdf, Retrieved 23 November 2009.
[8] T. Szigeti, C. Hattigh, End-to-End QoS Network Design, Cisco
Press, 2005.
[9] A. Hughes, W. Emmerich, “Using programmable network
management techniques to establish experimental networking
testbeds”, BT Technology Journal, vol. 21, 2003.
[10] “SharpPcap, Packet capture framework for the .NET
environment”,
http://www.tamirgal.com/blog/page/SharpPcap.aspx, Retrieved 28
November 2009.
[11] J. Sharp, Microsoft® Visual C#® 2005 Step by Step,
Microsoft, 2005.
[12] B. Iancu, A. Peculea, V. Dadarlat, I. Ignat, E. Cebuc, Z.
Baruch, „QoS parameters' benchmarking system with complex
traffic pattern definition”, Proceeding of RoEduNet 6th
International Conference, pp. 44 – 49, 2007.

