

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received September 9, 2010; Revised November 3, 2010

75

MODIFIED DIJKSTRA'S ALGORITHM WITH CROSS-LAYER QOS

Andrei B. RUS Virgil DOBROTA Adrian VEDINAS Georgeta BOANEA Melinda BARABAS
Technical University of Cluj-Napoca, Communications Department, 26-28 George Baritiu Street,

400027 Cluj-Napoca, Romania, Tel: +40-264-401226, E-mails: {bogdan.rus, virgil.dobrota, georgeta.boanea,

melinda.barabas}@com.utcluj.ro, adrian_vedinas@yahoo.com}

Abstract: This paper presents a modified Dijkstra’s algorithm that calculates the distance between multiple sources and a single

destination. It corrects the deficiencies of the classical approach by taking into account the dynamicity of the QoS parameters at

the Physical Layer and MAC Sub-layer. The proposed composite metric is based on the available transfer rate, one-way delay and

bit error rate, all of them measured or calculated in real time due to a Cross-Layer QoS software module. The proof-of-concept

was obtained by simulations in OMNET++.

Keywords: Cross-layer, modified Dijkstra, QoS parameters

I. INTRODUCTION

The routing protocols are an important factor that influences

the quality of the services perceived by a user [1],[2].

Unfortunately majority of them are using static information

to choose the best path between multiple sources and a given

destination node. The legacy routing protocols are aware

about the theoretical capacity of the communication channel,

given by the technology used at hardware level. On the other

hand, to take optimal routing decisions, more than one

parameter at the lowest level possible should be considered.

Besides the available transfer rate (ATR) of the

communication link, we are proposing in this paper,

whenever choosing the best path, to consider also the one-

way delay (OWD) and the bit error rate (BER).

 Furthermore, another issue addressed herein is related to

real-time measurements of previously mentioned QoS

parameters. Thus, if the values are not updates, a link with a

transfer rate theoretically higher than of the others, but

encountering congestion, could have actually worse

performances. Therefore, we are proposing a set of key

performance indicators monitored through real-time passive

or active measurements on top of MAC Sub-Layer. Based on

these parameters the spanning tree of the considered network

will be constantly updated, adapting it to any changes that

may appear. Due to cross-layer techniques involving a local

database, information from lower layers is offered to

Network Layer routing processes (e.g. OSPF – Open

Shortest Path First).

For optimal decisions with respect to the shortest path to

a given destination within modified Dijkstra’s algorithm,

each node should be aware of the actual performance of all

communication links in the network. Furthermore, in order to

achieve a certain level of situation awareness in each device,

the measurements performed by other peer nodes are

published within that routing domain.

The paper is structured as follows: Section II describes

briefly the classical Dijkstra’s algorithm with its drawbacks

mentioned above. The third section presents in details how to

modify the existing algorithm to make it CLQ (Cross-Layer

QoS)-aware. The Section IV evaluates the performances of

the modified Dijkstra’s algorithm, through simulations

performed in OMNET++ [3], [4]. The last section concludes

and suggests issues for future work.

II. OVERVIEW OF THE DIJKSTRA’S

ALGORITHM

Suppose the multiple sources and a single destination version

of Dijkstra’s algorithm. The main goal is to find the spanning

tree that includes the shortest path (with respect to the

minimum cost) from each node in the topology to a given

destination. We used the following notations: iD is the cost

of the path from the source node i to the destination node d;

ijd represents the distance of the link between nodes i and j.

To simplify the testing, we calculate a fixed minimum cost

function 0≥= ijij dD , as within OSPF protocol. The formula

for the single metric is the following:

 jD
bpsijC

bps
jDijDiD +=+=

][

][
9

10
 (1)

where: 0≥ijC is the theoretical link capacity at Network

Layer between node i and node j. Suppose P is the set of

nodes for which the shortest path was detected, whilst Q is

the set of nodes for which the shortest path has not been

detected yet. Observe that in this protocol both the distances

and costs are non-negative numbers. The steps of the

Dijkstra’s algorithm, described in [6], are the following:

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

76

 Initially, the only one node included within the set P is the

destination, while the rest of them are still in the set Q.

Moreover, the cost of the path from the destination node to

itself is always equal to zero. All the others have the initial

values equal to the distance of the link between nodes i and

destination node d:

 djjddjDdDjQdP ≠∀==== ,,0},,..2,1{},{ (2)

Step 1:: The next closest node to the destination is detected,

then it is included within the set P. Note that the verification

is applied exclusively to the nodes that are within the set Q.

PijD
Pj

iD ∉∀
∉

= ,min

 }{iPP ∪= (3)

If all the nodes are contained by the set P, the algorithm will

stop, otherwise it will continue with the next step.

Step 2: The costs of the routes to the destination from all the

nodes within the set Q will be updated. The algorithm

chooses the path characterized by the minimum value of the

cost from all available alternatives.

],[
,

min iDjidjD
PjPi

jD +
∉∈

= (4)

After the updating of all distances, the algorithm returns

to Step 1. As a major drawback, Dijkstra’s cost refers to

Network Layer only, without seizing for instance the

congestion that may occur. Thus the latency, i.e. one-way

delay for the link between i and j, could be significantly

higher than the distance ijd , if the average waiting time

within the queue (service time not included)
ijWT is not

negligible.

ijWTijdijOWD += (5)

III. MODIFIED DIJKSTRA’S ALGORITHM WITH

CROSS-LAYER QOS

In this section we will present in details how Dijkstra’s

algorithm has been modified in order to use the services

offered by the cross-layer QoS module.

When choosing the best path available, from multiple

sources to a single destination, a set of key performance

indicators KPIs have to be monitored in real-time. They

characterize objectively the performances of the

communication channel (i.e. total available transfer rate, total

one-way delay and total bit-error rate). The indicators were

aggregated into a composite metric (CM) [7]

TBERK
K

TOWD

TATR

K
CM ×++= 2

1

0 (6)

where 12102],[5101],[9100 =
−

== KsKbpsK . Note that

index T refers to the total value of the parameter for the

complete path. The K constants were chosen to allow the

composite metric CM to have a minimum value of 3 for a

link with the capacity 1 Gbps, one way delay 10 µs and a bit

error rate equal to 10
-12

. The second modification brought to

the Dijkstra’s algorithm is related to the way that the

composite metric is computed for an entire path. In the

classical approach, equation (3) is used to calculate the cost

of a route. Thus, the sum of all the distances characterising

the links of the analysed route is considered. Note that in our

proposal the cost from i to d, i.e. PiiD ∈∀, , is actually the

composite metric CM of that path.

The TATR , TOWD and TBER parameters are calculated

globally for all the concatenated links of a specific path.

However their composability is different. Thus the total

available transfer rate of a path is equal to the minimum ATR

of all the links that are composing it.

)(
,

min ijATR
ji

TATR = (7)

where ijATR represents the available transfer rate of the link

between nodes i and j. On the other hand the total one-way

delay of a path is equal to the sum of the OWDs of all the

links that are composing it.

 ∑=

ji
ijOWDTOWD

,

 (8)

where ijOWD is the one-way delay of a link between nodes i

and j. Finally the total bit-error rate of the path is considering

the BERs of each link that is composing it.

 TPTBER −=1 (9)

 ∏ −=

ji
ijBERTP

,

)1((10)

where ijBER represents the bit-error rate of a link between

nodes i and j, whilst TP is the probability of not having

erronated bits on the whole path.

Note that there are several changes in the modified

routing scheme proposed herein, besides the replacement of

the simple metric given in equation (1) by the composite

metric from equation (6). Thus the classical Dijkstra’s

algorithm stops when the spanning-tree of the shortest path is

obtained (i.e. all the nodes are included into the set P).

Unless major changes in the link occur (failures, new links

available or new technologies at Data Link Layer) the

algorithm is not restarted. However the modified Dijkstra’s

algorithm is running continuously, because at least the

monitoring part of ATR, OWD and BER is always activated

due to Cross-Layer QoS. This paper offers a proof-of-

concept only and it is beyond its scope to evaluate the

optimization issues like control overhead, route oscillation

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

77

and others. The classical algorithm is treated as a particular

case of modified Dijkstra’s if the following conditions are

fulfilled: a) 0, 21 =∞→ KK ; b) ATR is always equal to the

link capacity; c) Cross-Layer QoS is not activated.

IV. TESTING THE MODIFIED DIJKSTRA’S

ALGORITHM WITH CROSS-LAYER QOS

For demonstrating the benefits of adding the Cross-Layer

QoS mechanism, a testbed was simulated in OMNET++ as in

Figure 1.

A number of 13 routers were included into the tested

topology to ensure that enough multiple paths are available

between multiple sources and a destination node. The

network is abstracted by a graph with oriented edges, thus a

full-duplex connection is represented by two oriented links.

The traffic transmitted through the network will travel from

the source node H0 to the sink node H12.

A. Varying the Available Transfer Rate

The main purpose of this test is to verify how the Dijkstra’s

algorithm together with the CLQ seizes the dynamic changes

of the available transfer rate on different links in the network.

The results will be compared with the ones obtained

when employing the classical Dijkstra’s, on the same

topology and in the same conditions. To be able to make a

comparison between the two solutions, the end-to-end delay

parameter of a video flow will be monitored.

Based on the spanning-tree computed with both

algorithms, the routing protocol (i.e. OSPF) can detect the

shortest path from any source node to a destination.

Moreover the routes are being added into the routing table of

each node in the network. The testing scenario includes two

simulations (one for each algorithm). In both of them, the

performances of the two links were changed and then the

results were analyzed.

• Step 1: ATRs of all links were set to a default value ≥ 1

Mbps

• Step 2: ATR of the link R0-R4 changes from 5 Mbps to

500 kbps

• Step 3: ATR of the link R4-R7 changes from 3 Mbps to

300 kbps

The influence on the routing protocol will be presented in

the following figures. The continuous line marks the path

taken by the packets when simulating the modified Dijkstra,

while the dotted one shows the path between H0 and H12

within the classical algorithm.

Figure 1. Testbed used to simulate Dijkstra with Cross-Layer QoS

Figure 2. Path between H0 and H12 in Step 1

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

78

Figure3. Path between H0 and H12 in Step 2

Figure 4. Path between H0 and H12 in Step 3

If comparing the Figures 3 and 4, one can observe that

the variation of the network performance is transparent to the

classical algorithm. This is due to the fact that the forwarding

path between the source node H0 and the destination one

H12 does not change at all during the three steps simulated.

When activating the modified Dijkstra’s algorithm, the

spanning-tree and the path between H0 and H12 are

changing, every time when a link parameter is modified.

Thus the best available routing solution could be used and

the video stream transmitted experienced a better quality

with respect to the end-to-end delay (EED), comparing it to

the classical approach (see Figure 5).

Figure 5. End-to-end delay comparison when ATR is

variable

Numerically, the average value of the EED was equal to

0.0025 [s] for classical algorithm and 0.00145 [s] for the

modified version.

B. Varying the One-Way Delay Parameter

To measure the performances of the proposed approach, a

video flow was sent again from the source H0 to the

destination H12. Similar with the previous case, the

simulated scenario included three steps:

• Step 1: OWDs of all links were set to a default value <

10
-3

[s]

• Step 2: OWD of the link R0-R4 changes from 2*10
-4

 [s]

to 2*10
-2

 [s]

• Step 3: OWD of the link R4-R7 changes from 2*10
-4

 [s]

to 2*10
-2

 [s]

The first set of simulations used the classical Dijkstra’s

algorithm while the second one employed the QoS-aware

modified version. The video flow stream uses first the path

H0-R0-R4-R7-R9-R12-H12.

Within the second step, the quality of the link R0-R4

drops down influencing the composite metric accordingly

(i.e. the value will increase). Thus when the spanning tree of

the topology is recomputed, the link R0-R4 from the initial

route is changed automatically with the section R0-R1-R2-

R3-R4 because of its better performance. When simulating

the third step, due to the fact that the OWD of the link R4-R7

increased, another change is made with respect to the route

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

79

between H0 and H12. This consists of changing the section

R0-R4-R7 with R0-R2-R3-R8-R7. Thus the EED parameter

of the video flow is kept to a lower value. Comparing the

averyage value of EED in both simulations, one can observe

that the classical version of Dijkstra’s algorithm performed

worse (i.e. 0.0021 [s]) than the modified one (i.e. 0.0005

[s]). The evolution of the instant values of EED parameter

can be seen in Figure 6.

Figure 6. End-to-end delay comparison when OWD is

variable

C. Varying the Bit Error Rate Parameter

In this case, the topology remained the same as in the

previous ones, with the following three steps:

• Step 1: BER parameter of all links is set to a default

value of around 10
-11

• Step 2: BER of the link R0-R4 changes from 6*10
-11

 to

6*10
-5

• Step 3: additionally the BER of the link R4-R7 changes

from 10
-11

 to 10
-5

For the classical Dijkstra’s, the path between H0 and H12

remained the same (i.e. H0-R0-R4-R7-R9-R12-H12) during

the three steps of the test. When the modified Dijkstra’s

algorithm was employed, the link R0-R4 was changed with

the section R0-R1-R2-R3-R4 in the second step. During

simulations within the third step, the section R0-R4-R7-R9

was changed with R0-R1-R2-R3-R8-R9. When simulating

the classical Dijkstra, because the BER parameter varies and

the paths with higher error probability cannot be avoided,

from the total of 320 packets sent, only 242 were received at

the destination node. With the modified algorithm simulated,

all the packets sent were received but because the path was

changed to one characterised by a higher value of OWD, the

EED parameter increased accordingly (see Figure 7). The

average value of the EED parameter measured on the video

stream was 0.0007 [s] for the classical Dijkstra and 0.0014

[s] for the modified version of the algorithm. We consider

that the increased value of the EED parameter is an

acceptable trade-off for keeping the percentage of video

packets lost as low as possible. If a certain application would

prefer the path with the minimum delay, even if there is a

higher value of the BER, the coefficient K2 from equation (6)

can be tuned so that the error probability will have less

influence on the composite metric.

Figure 7. End-to-end delay comparison when BER is

variable

D. Varying ATR, OWD and BER Parameters

In the last set of experiments, all three parameters (ATR,

OWD and BER) were modified simultaneously in three steps

to the same values as in the previous scenarios. The results of

the simulations can be observed in Figure 8.

Figure 8. . End-to-end delay comparison when ATR, OWD

and BER are variables

During the first step the route followed by the video stream

from H0 to H12 was the same (i.e. H0-R0-R4-R7-R9-R12-

H12), no matter the algorithm employed.

Within the second step, the parameters of the link R0-R4

were degraded, so the route between H0 and H12 used the

section R0-R1-R2-R3-R4 instead. The path changed because

the spanning tree of the topology was modified when the

composite metric of all the routes were recomputed (using

the values gathered in real-time from the cross-layer QoS).

 The third step decreased in addition the performance of

the link R4-R7 (with respect to the ATR, OWD and BER

parameters) resulting another change of the path between H0

and H12. Thus, the section R0-R4-R7-R9 changed to R0-R1-

R2-R3-R8-R9.

In Figure 8, the advantages of using the modified

Dijkstra’s algorithm with cross-layer QoS are obvious. One

can see that the classical algorithm does not react to

performance changes in the network even if the path’s

quality decreases. Besides the fact that in the classical

approach the EED parameter is higher than in the quality of

service-aware one, the video flow is affected additionally by

lost packets.

Volume 51, Number 3, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

80

V. CONCLUSIONS

In this paper a modified Dijkstra’s algorithm that uses real-

time QoS information from the lower layers is proposed. The

information is offered to the Network Layer where the

routing algorithm is running, using a cross-layer bottom-up

signalling. The second contribution presented herein is the

composite metric formula used to calculate the cost of a path

from multiple source nodes to a destination. The cost is

recalculated periodically and similar for the spanning tree.

Thus, if the quality of a route decreases, the section with

problems will be avoided (if an alternative exists).

The results obtained during simulations are encouraging

us to continue this preliminary research. The modified

Dijkstra’s algorithm provides an end-to-end delay (EED)

about 10 times lower in the conditions of a link state

deterioration (100 times OWD increases, ATR decreases of

10 times and a six orders of magnitude BER increases) on

two network segments of the route. In the future, a lot more

tests are envisaged in which a correlation between the

parameters variations corresponding to real practical

situations will be considered. We plan also to study the link

oscillation phenomenon and ways of aggregating the QoS

information in order to make the proposal completely

scalable.

REFERENCES
[1] J.Macfarlane, “Understanding IP Routing in Cisco Systems”,

Wiley Publishing, 2006

[2] D.Medhi, K.Ramasamy, “Network Routing Algorithms,

Protocols, and Architectures”, Morgan Kauffman Publishers, 2007

[3] A.Varga, “OMNeT++ 4.0 User Manual”, 2009,

http://omnetpp.org/doc/omnetpp40/manual/usman.html

[4] A.Varga, INET Framework for OMNeT++/OMNEST, 2010

http://inet.omnetpp.org/doc/INET/neddoc/index.html

[5] ***, “OSPF Design Guide”, Cisco Systems, August 2005,

http://www.cisco.com/en/US/tech/tk365/technologies_white_paper

09186a0080094e9e.shtml

[6] V.Dobrota, "Switching and Routing Systems", Technical

University of Cluj-Napoca, 2010, http://el.el.obs.utcluj.ro/scr/.

[7] A.B.Rus, M.Barabas, G.Boanea, Zs.Kiss, Zs.Polgar, V.Dobrota,

“Cross-Layer QoS and Its Application in Congestion Control”, 17th

IEEE Workshop on Local and Metropolitan Area Networks,

LANMAN 2010, Long Branch, NJ, USA, May 5-7, 2010

