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Abstract: This paper presents a modified Dijkstra’s algorithm that calculates the distance between multiple sources and a single 

destination. It corrects the deficiencies of the classical approach by taking into account the dynamicity of the QoS parameters at 

the Physical Layer and MAC Sub-layer. The proposed composite metric is based on the available transfer rate, one-way delay and 

bit error rate, all of them measured or calculated in real time due to a Cross-Layer QoS software module. The proof-of-concept 

was obtained by simulations in OMNET++.  
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I. INTRODUCTION 

The routing protocols are an important factor that influences 

the quality of the services perceived by a user [1],[2]. 

Unfortunately majority of them are using static information 

to choose the best path between multiple sources and a given 

destination node. The legacy routing protocols are aware 

about the theoretical capacity of the communication channel, 

given by the technology used at hardware level. On the other 

hand, to take optimal routing decisions, more than one 

parameter at the lowest level possible should be considered. 

Besides the available transfer rate (ATR) of the 

communication link, we are proposing in this paper, 

whenever choosing the best path, to consider also the one-

way delay (OWD) and the bit error rate (BER). 

 Furthermore, another issue addressed herein is related to 

real-time measurements of previously mentioned QoS 

parameters. Thus, if the values are not updates, a link with a 

transfer rate theoretically higher than of the others, but 

encountering congestion, could have actually worse 

performances. Therefore, we are proposing a set of key 

performance indicators monitored through real-time passive 

or active measurements on top of MAC Sub-Layer. Based on 

these parameters the spanning tree of the considered network 

will be constantly updated, adapting it to any changes that 

may appear. Due to cross-layer techniques involving a local 

database, information from lower layers is offered to 

Network Layer routing processes (e.g. OSPF – Open 

Shortest Path First). 

For optimal decisions with respect to the shortest path to 

a given destination within modified Dijkstra’s algorithm, 

each node should be aware of the actual performance of all 

communication links in the network. Furthermore, in order to 

achieve a certain level of situation awareness in each device, 

the measurements performed by other peer nodes are 

published within that routing domain.  

 

The paper is structured as follows: Section II describes 

briefly the classical Dijkstra’s algorithm with its drawbacks 

mentioned above. The third section presents in details how to 

modify the existing algorithm to make it CLQ (Cross-Layer 

QoS)-aware. The Section IV evaluates the performances of 

the modified Dijkstra’s algorithm, through simulations 

performed in OMNET++ [3], [4]. The last section concludes 

and suggests issues for future work.  

 

II. OVERVIEW OF THE DIJKSTRA’S 

ALGORITHM 

Suppose the multiple sources and a single destination version 

of Dijkstra’s algorithm. The main goal is to find the spanning 

tree that includes the shortest path (with respect to the 

minimum cost) from each node in the topology to a given 

destination. We used the following notations: iD is the cost 

of the path from the source node i to the destination node d; 

ijd represents the distance of the link between nodes i and j. 

To simplify the testing, we calculate a fixed minimum cost 

function 0≥= ijij dD , as within OSPF protocol. The formula 

for the single metric is the following: 

 

 jD
bpsijC

bps
jDijDiD +=+=

][

][
9

10
   (1) 

 

where: 0≥ijC  is the theoretical link capacity at Network 

Layer between node i and node j. Suppose P is the set of 

nodes for which the shortest path was detected, whilst Q is 

the set of nodes for which the shortest path has not been 

detected yet. Observe that in this protocol both the distances 

and costs are non-negative numbers. The steps of the 

Dijkstra’s algorithm, described in [6], are the following: 
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 Initially, the only one node included within the set P is the 

destination, while the rest of them are still in the set Q. 

Moreover, the cost of the path from the destination node to 

itself is always equal to zero. All the others have the initial 

values equal to the distance of the link between nodes i and 

destination node d:   

 

 djjddjDdDjQdP ≠∀==== ,,0},,..2,1{},{       (2) 

 

Step 1:: The next closest node to the destination is detected, 

then it is included within the set P. Note that the verification 

is applied exclusively to the nodes that are within the set Q. 
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If all the nodes are contained by the set P, the algorithm will 

stop, otherwise it will continue with the next step. 

Step 2: The costs of the routes to the destination from all the 

nodes within the set Q will be updated. The algorithm 

chooses the path characterized by the minimum value of the 

cost from all available alternatives.   
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After the updating of all distances, the algorithm returns 

to Step 1. As a major drawback, Dijkstra’s cost refers to 

Network Layer only, without seizing for instance the 

congestion that may occur. Thus the latency, i.e. one-way 

delay for the link between i and j, could be significantly 

higher than the distance ijd , if the average waiting time 

within the queue (service time not included) 
ijWT is not 

negligible. 

 

ijWTijdijOWD +=          (5) 

 
III. MODIFIED DIJKSTRA’S ALGORITHM WITH 

CROSS-LAYER QOS  

In this section we will present in details how Dijkstra’s 

algorithm has been modified in order to use the services 

offered by the cross-layer QoS module.  

When choosing the best path available, from multiple 

sources to a single destination, a set of key performance 

indicators KPIs have to be monitored in real-time. They 

characterize objectively the performances of the 

communication channel (i.e. total available transfer rate, total 

one-way delay and total bit-error rate). The indicators were 

aggregated into a composite metric (CM) [7] 

 

TBERK
K

TOWD

TATR

K
CM ×++= 2

1

0    (6) 

where 12102],[5101],[9100 =
−

== KsKbpsK . Note that 

index T refers to the total value of the parameter for the 

complete path. The K constants were chosen to allow the 

composite metric CM to have a minimum value of 3 for a 

link with the capacity 1 Gbps, one way delay 10 µs and a bit 

error rate equal to 10
-12

. The second modification brought to 

the Dijkstra’s algorithm is related to the way that the 

composite metric is computed for an entire path. In the 

classical approach, equation (3) is used to calculate the cost 

of a route. Thus, the sum of all the distances characterising 

the links of the analysed route is considered. Note that in our 

proposal the cost from i to d, i.e. PiiD ∈∀, , is actually the 

composite metric CM of that path.  

The TATR , TOWD  and TBER parameters are calculated 

globally for all the concatenated links of a specific path. 

However their composability is different. Thus the total 

available transfer rate of a path is equal to the minimum ATR 

of all the links that are composing it. 

 

 )(
,

min ijATR
ji

TATR =                        (7) 

where ijATR represents the available transfer rate of the link 

between nodes i and j. On the other hand the total one-way 

delay of a path is equal to the sum of the OWDs of all the 

links that are composing it. 

  

 ∑=
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             (8) 

where ijOWD  is the one-way delay of a link between nodes i 

and j. Finally the total bit-error rate of the path is considering 

the BERs of each link that is composing it. 

 

 TPTBER −=1                                                               (9) 
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where ijBER represents the bit-error rate of a link between 

nodes i and j, whilst TP is the probability of not having 

erronated bits on the whole path. 

Note that there are several changes in the modified 

routing scheme proposed herein, besides the replacement of 

the simple metric given in equation (1) by the composite 

metric from equation (6). Thus the classical Dijkstra’s 

algorithm stops when the spanning-tree of the shortest path is 

obtained (i.e. all the nodes are included into the set P). 

Unless major changes in the link occur (failures, new links 

available or new technologies at Data Link Layer) the 

algorithm is not restarted. However the modified Dijkstra’s 

algorithm is running continuously, because at least the 

monitoring part of ATR, OWD and BER is always activated 

due to Cross-Layer QoS. This paper offers a proof-of-

concept only and it is beyond its scope to evaluate the 

optimization issues like control overhead, route oscillation 
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and others. The classical algorithm is treated as a particular 

case of modified Dijkstra’s if the following conditions are 

fulfilled: a) 0, 21 =∞→ KK ; b) ATR is always equal to the 

link capacity; c) Cross-Layer QoS is not activated.           

 

IV. TESTING THE MODIFIED DIJKSTRA’S 

ALGORITHM WITH CROSS-LAYER QOS 

For demonstrating the benefits of adding the Cross-Layer 

QoS mechanism, a testbed was simulated in OMNET++ as in 

Figure 1.  

A number of 13 routers were included into the tested 

topology to ensure that enough multiple paths are available 

between multiple sources and a destination node. The 

network is abstracted by a graph with oriented edges, thus a 

full-duplex connection is represented by two oriented links. 

The traffic transmitted through the network will travel from 

the source node H0 to the sink node H12.  

 

A. Varying the Available Transfer Rate 

The main purpose of this test is to verify how the Dijkstra’s 

algorithm together with the CLQ seizes the dynamic changes 

of the available transfer rate on different links in the network. 

The results will be compared with the ones obtained 

when employing the classical Dijkstra’s, on the same 

topology and in the same conditions. To be able to make a 

comparison between the two solutions, the end-to-end delay 

parameter of a video flow will be monitored.  

Based on the spanning-tree computed with both 

algorithms, the routing protocol (i.e. OSPF) can detect the 

shortest path from any source node to a destination. 

Moreover the routes are being added into the routing table of 

each node in the network. The testing scenario includes two 

simulations (one for each algorithm). In both of them, the 

performances of the two links were changed and then the 

results were analyzed. 

 

• Step 1: ATRs of all links were set to a default value ≥ 1 

Mbps 

• Step 2: ATR of the link R0-R4 changes from 5 Mbps to 

500 kbps 

• Step 3: ATR of the link R4-R7 changes from 3 Mbps to 

300 kbps 

 

The influence on the routing protocol will be presented in 

the following figures. The continuous line marks the path 

taken by the packets when simulating the modified Dijkstra, 

while the dotted one shows the path between H0 and H12 

within the classical algorithm.  

 
Figure 1. Testbed used to simulate Dijkstra with Cross-Layer QoS 

 

 
Figure 2. Path between H0 and H12 in Step 1 
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Figure3. Path between H0 and H12 in Step 2 

 
Figure 4. Path between H0 and H12 in Step 3 

 

If comparing the Figures 3 and 4, one can observe that 

the variation of the network performance is transparent to the 

classical algorithm. This is due to the fact that the forwarding 

path between the source node H0 and the destination one 

H12 does not change at all during the three steps simulated.  

When activating the modified Dijkstra’s algorithm, the 

spanning-tree and the path between H0 and H12 are 

changing, every time when a link parameter is modified. 

Thus the best available routing solution could be used and 

the video stream transmitted experienced a better quality 

with respect to the end-to-end delay (EED), comparing it to 

the classical approach (see Figure 5).  

 

 
 

Figure 5. End-to-end delay comparison when ATR is 

variable 

 

Numerically, the average value of the EED was equal to 

0.0025 [s] for classical algorithm and 0.00145 [s] for the 

modified version.  

 

B. Varying the One-Way Delay Parameter 

To measure the performances of the proposed approach, a 

video flow was sent again from the source H0 to the 

destination H12. Similar with the previous case, the 

simulated scenario included three steps: 

 

• Step 1: OWDs of all links were set to a default value < 

10
-3 

[s] 

• Step 2: OWD of the link R0-R4 changes from 2*10
-4

 [s] 

to 2*10
-2

 [s] 

• Step 3: OWD of the link R4-R7 changes from 2*10
-4

 [s] 

to 2*10
-2

 [s] 

 

The first set of simulations used the classical Dijkstra’s 

algorithm while the second one employed the QoS-aware 

modified version. The video flow stream uses first the path 

H0-R0-R4-R7-R9-R12-H12.  

Within the second step, the quality of the link R0-R4 

drops down influencing the composite metric accordingly 

(i.e. the value will increase). Thus when the spanning tree of 

the topology is recomputed, the link R0-R4 from the initial 

route is changed automatically with the section R0-R1-R2-

R3-R4 because of its better performance. When simulating 

the third step, due to the fact that the OWD of the link R4-R7 

increased, another change is made with respect to the route 



 

Volume 51, Number 3, 2010                                                        ACTA TECHNICA NAPOCENSIS                 

                                                                                                     Electronics and Telecommunications 

________________________________________________________________________________ 

79 

between H0 and H12. This consists of changing the section 

R0-R4-R7 with R0-R2-R3-R8-R7. Thus the EED parameter 

of the video flow is kept to a lower value. Comparing the 

averyage value of EED in both simulations, one can observe 

that the classical version of Dijkstra’s algorithm performed 

worse (i.e. 0.0021 [s]) than the modified one (i.e. 0.0005 

[s]). The evolution of the instant values of EED parameter 

can be seen in Figure 6. 

 

 
 

Figure 6. End-to-end delay comparison when OWD is 

variable 

C. Varying the Bit Error Rate Parameter 

In this case, the topology remained the same as in the 

previous ones, with the following three steps: 

 

• Step 1: BER parameter of all links is set to a default 

value of around 10
-11

 

• Step 2: BER of the link R0-R4 changes from 6*10
-11

 to 

6*10
-5

  

• Step 3: additionally the BER of the link R4-R7 changes 

from 10
-11

 to 10
-5

 

 

For the classical Dijkstra’s, the path between H0 and H12 

remained the same (i.e. H0-R0-R4-R7-R9-R12-H12) during 

the three steps of the test. When the modified Dijkstra’s 

algorithm was employed, the link R0-R4 was changed with 

the section R0-R1-R2-R3-R4 in the second step. During 

simulations within the third step, the section R0-R4-R7-R9 

was changed with R0-R1-R2-R3-R8-R9. When simulating 

the classical Dijkstra, because the BER parameter varies and 

the paths with higher error probability cannot be avoided, 

from the total of 320 packets sent, only 242 were received at 

the destination node. With the modified algorithm simulated, 

all the packets sent were received but because the path was 

changed to one characterised by a higher value of OWD, the 

EED parameter increased accordingly (see Figure 7). The 

average value of the EED parameter measured on the video 

stream was 0.0007 [s] for the classical Dijkstra and 0.0014 

[s] for the modified version of the algorithm. We consider 

that the increased value of the EED parameter is an 

acceptable trade-off for keeping the percentage of video 

packets lost as low as possible. If a certain application would 

prefer the path with the minimum delay, even if there is a 

higher value of the BER, the coefficient K2 from equation (6) 

can be tuned so that the error probability will have less 

influence on the composite metric.  

 

 
 

Figure 7. End-to-end delay comparison when BER is 

variable 

 

D. Varying ATR, OWD and BER Parameters  

In the last set of experiments, all three parameters (ATR, 

OWD and BER) were modified simultaneously in three steps 

to the same values as in the previous scenarios. The results of 

the simulations can be observed in Figure 8. 

 

 
 

Figure 8. . End-to-end delay comparison when ATR, OWD 

and BER are variables 

 

During the first step the route followed by the video stream 

from H0 to H12 was the same (i.e. H0-R0-R4-R7-R9-R12-

H12), no matter the algorithm employed.  

Within the second step, the parameters of the link R0-R4 

were degraded, so the route between H0 and H12 used the 

section R0-R1-R2-R3-R4 instead. The path changed because 

the spanning tree of the topology was modified when the 

composite metric of all the routes were recomputed (using 

the values gathered in real-time from the cross-layer QoS). 

 The third step decreased in addition the performance of 

the link R4-R7 (with respect to the ATR, OWD and BER 

parameters) resulting another change of the path between H0 

and H12. Thus, the section R0-R4-R7-R9 changed to R0-R1-

R2-R3-R8-R9. 

In Figure 8, the advantages of using the modified 

Dijkstra’s algorithm with cross-layer QoS are obvious. One 

can see that the classical algorithm does not react to 

performance changes in the network even if the path’s 

quality decreases. Besides the fact that in the classical 

approach the EED parameter is higher than in the quality of 

service-aware one, the video flow is affected additionally by 

lost packets. 
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V. CONCLUSIONS 

In this paper a modified Dijkstra’s algorithm that uses real-

time QoS information from the lower layers is proposed. The 

information is offered to the Network Layer where the 

routing algorithm is running, using a cross-layer bottom-up 

signalling. The second contribution presented herein is the 

composite metric formula used to calculate the cost of a path 

from multiple source nodes to a destination. The cost is 

recalculated periodically and similar for the spanning tree. 

Thus, if the quality of a route decreases, the section with 

problems will be avoided (if an alternative exists).  

The results obtained during simulations are encouraging 

us to continue this preliminary research. The modified 

Dijkstra’s algorithm provides an end-to-end delay (EED) 

about 10 times lower in the conditions of a link state 

deterioration (100 times OWD increases, ATR decreases of 

10 times and a six orders of magnitude BER increases) on 

two network segments of the route. In the future, a lot more 

tests are envisaged in which a correlation between the 

parameters variations corresponding to real practical 

situations will be considered. We plan also to study the link 

oscillation phenomenon and ways of aggregating the QoS 

information in order to make the proposal completely 

scalable. 
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