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Abstract: This paper discusses theoretical properties, shows the performance and presents some extensions of techniques 
used for simulation of stochastic differential equation applied on the financial data modeling. There are realized comparisons 
of different approaches for discretization schemes and their performances from the simulation convergence point of view. 
This study shows that, depending on the applicability of stochastic modeling to various financial data, the evolution of asset 
price over the time can be characterized by different processes accordingly with their dynamics.   
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I. INTRODUCTION 
Stochastic processes are one of the mathematical tools 
which are frequently used for modeling different 
phenomena in many fields as physics, biology, 
telecommunications, economics and financial 
mathematics [12]. One of the reasons of using stochastic 
processes as a mathematical tool for modeling the signals 
from these domains is related to the high degree of 
uncertainty in almost all phenomena. Since the 
deterministic component of a signal can be found by 
techniques like estimating the signal trend, filtering or 
Fourier analysis, the random components can be only 
estimated by modeling them a priori with stochastic 
processes. 
 Estimating the signals components involves an 
important amount of data, which in many fields, including   
the financial area, is difficult to obtain. In determining 
good estimators, the first step is to mathematically model 
and (then) to simulate the data [7]. The field of finance 
has been chosen to motivate the presented simulation 
methods. In this general framework, we focus our 
research for modeling the risk in finance [1], insurance 
and other economic areas. Thus, the simulations can 
conduct experiments under controlled conditions and they 
enable to determine what the effect of changing one factor 
or aspect of a problem will be, while leaving all others 
unchanged [11]. Often, the simulations models will 
express in mathematical equations a behavior of a 
dynamic system. Thus, simulations are particularly useful 
when models are very complex or the sample data sizes 
are small. 
 In practice is rather difficult to have very accurate 
estimations of the time series parameters and of inter-
relationships between them. For example, there are some 
of the financial time series characteristics which can make 
the process of parameter estimation and inference less 
reliable. Some of these characteristics are the existence of 
fat tails, the structural breaks and bi-directional causality 

between dependent and independent variables. The fact 
that real data is unstructured can increase the degree of 
uncertainty of all of these features that lurk inside 
financial market data [2]. Clearly, it is important to have 
an idea of what the effects of such phenomena will be for 
inference and model estimation. 
 An important property of stochastic processes used in 
finance is that they can be modeled analytically with the 
stochastic differential equation (SDE) having the 
following expression [9]:  
 
      dWtXdttXfdX ),(),( σ+=   (1) 

 
 The main terms of equation are the drift function f(X,t)  
and the diffusion (volatility) function σ(X,t). The random 
component is given by the fundamental stochastic 

process, the Wiener process, dtZdW = and Z is a 

normal variable: Z~N(0,1). Depending on the application 
and on the numerical methods used in simulation, the drift 
and the diffusion functions may have various analytical 
forms.   
 Although stochastic differential equations are quite 
popular in finance and other domains, there is a lot of 
mathematics behind them. This fact involves different 
implementation approaches in software applications 
regardless to continuous and discrete form of the financial 
stochastic differential equation. 
 

II. NUMERICAL METHODS IN STOCHASTIC 
PROCESES SIMULATION  

In order to simulate and to make inference regarding the 
form of drift and diffusion function, different approaches 
and assumptions could be made, since there are more 
numerical schemes used for simulating stochastic 
differential equations. These methods are known as 
numerical solution of the stochastic differential equations. 
 Simulation methods are usually based on discrete 
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approximations of the continuous solution of SDEs. The 
methods of approximation are classified according to their 
different properties [8]. Mainly two criteria of optimality 
are used in the literature: the strong and the weak (orders 
of) convergence. 
 The strong order of convergence criterion is similar to 
the one used in the approximation of the trajectories of 
nonstochastic dynamical systems. A time-discretized 
approximation 

δY  of a continuous-time process Y, with 

δ  the maximum time increment of the discretization [9], 

is said to be of general strong order of convergence γ  if 

for any fixed time horizon T, it holds true that: 
 

 ( ) ( ) γ
δ δCTYTYE ≤− }{ , 

0δδ <∀   (2) 

 

with 00 >δ  and C a constant not depending on δ . E{} 

signifies the statistical average operator. 
 Along with the strong convergence, the weak order of 

convergence can be defined in a similar way. 
δY  is said to 

converge weakly of order β  to Y if for any fixed horizon 

T and any  ( )12 +β  continuous differentiable function g 

of polynomial growth, it holds true that [9]: 
 

( ) ( ) β
δ δCTYgETYgE ≤− ]}[{]}[{ ,

0δδ <∀ , 00 >δ  (3) 

 
 Schemes of approximation of some order that strongly 
converge usually have a higher order of weak 
convergence. 
Based on the order of convergence, there are two main 
approaches to numerical solutions of SDEs. The first one 
is based on numerical methods for ordinary differential 
equations [10]. The second one uses more information 
about the Wiener process [11]. From both categories, the 
most used approaches are the Euler-Maruyama (i.e. Euler) 
and the Milstein methods. 
 The most practical approximation scheme (method) is 
Euler's method. It has been widely used to generate 
solutions to deterministic differential equations by 
splitting up a time period into many small increments [8]. 
The number of increments will be sufficient when the 
model produces the same output for decision purposes as 
any greater number of increments. 
 Many of the current approaches [10] achieve a good 
approximation within a time interval by a Taylor series 
expansion which can be linear, or of higher order. As a 
consequence, the estimators of the model parameters will 
be affected by this discretization, so higher-order 
discretizations can be used as well to derive more precise 
results. Nevertheless, convergences issues could occur in 
regards with discretizations methods. 
 We are considering a one dimensional stochastic 
process { }TtX t ≤≤0,  which is the solution of the 

stochastic differential equation (1). Therefore, the 
expression (1) can be written as: 
 

 ( ) ( ) tttt dWtXdttXfdX ,, σ+=    (4) 

 

with initial deterministic value 
00

XX t = . Suppose that 

the stochastic process takes place in the time interval 

[ ]T,0 . For two subsequent instants of time t and r, with 

(r>t), in a continuous time domain, the solution of the 
equation (4) in its stochastic integral form is:  

 ( ) ( )dWXdXfXX

t

r

t

r

rt ∫∫ ++= τσττ ,,  (5)   

 
 In a discrete time the differential terms are 
transformed in difference terms: ∆t = (r − t) and ∆W = 
(Wr − Wt). Applying only a first-order (linear) 
approximation in a discrete time framework, the equation 
(5) can be written as follows: 
 

 ( ) ( ) WtXttXfXX tttr ∆+∆+≅ ,, σ  (6) 

 

 where ( ) ( )tXtXf tt , ,, σ  are the drift and the diffusion 

functions.  
 Generally speaking, the integration using Ito’s 
calculus provides an estimate of the solution for the SDE 
based on a discretized scheme. Accordingly, this has the 
effect of introducing an uncertainty process which is not 
normal, thereby leading to stochastic volatility [8]. Thus, 
the Euler approximation of continuous stochastic process 
X is the Y discrete process satisfying the iterative scheme:  
 

 ( ) ( )( ) NiWWtYdttYfYY iiiiiiii ,1;,, 11 =−++= ++ σ    (7) 

 
 The notation is simplified by setting Y(ti) = Yi , W(ti) = 
Wi and Y0 = X0. N is the number of points used for 

discretization. Usually the time increment 
ii ttt −=∆ +1
 is 

taken to be constant: 
 

 
ii tt

N

tT
h −=

−
= +1

0     (8) 

 
 Between any two time points ti and ti+1, the process 
can be defined in various ways. One natural approach is 
to consider linear interpolation as the one from the first 
order Taylor expansion. In a similar way with the 
equation (6) the process Y(t) is defined as:  
 

 ( ) ( )ii

ii

i
i YY

tt

tt
YtY −

−

−
+= +

+

1

1

   (9) 

 
 In order to implement numerically the last equation 
and implicitly the equation (6), first we have to generate 
the random increments of the Wiener processes as 

independent normal random variables with 0}{ =∆ tWE  

and ( ) hWE t =∆ }{
2

. In a computer program, this can be 

easily obtained with the help of random number 
generators. 
 When a (Taylor) second-order approximation is taken, 
an additional source of uncertainty is added. In order to 
see how this occurs, it can be considered a more refined 
approximation based on a Taylor series expansion of the 
first two terms for the functions f() and  σ(). This is used 
in the second discretization approach, the Milstein 
scheme. It makes use of Ito’s lemma to increase the 
accuracy of the approximation by adding the second-order 
term only for the diffusion function [10]. Denoting by 
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Xσ  the partial derivative of ( )tX ,σ with respect to X, 

the Milstein approximation in an iterative form looks like: 
 

( )( ) ( )( )
( ) ( ) ( ) ( )}{ iiiiitXit

iiiiiiitii

ttWWtXtX

WWtXtttXfXX

−−−+

−+−+=

++

+++

1

2

1

111

,,5.0

,,

σσ
σ

(10) 

 
or, in more symbolic form: 
 

 ( ) }{ tWWtfXX tXtii ∆−∆+∆+∆⋅+=+

2

1
2

1
σσσ  (11) 

 
Concerning the order of convergence, the Euler method is 
strongly convergent of order 5.0=γ  and weakly 

convergent of order 1=β  (under some smoothness 

conditions on the coefficients of the stochastic differential 
equation). The Milstein scheme converges with strong 
and weak order 1=γ , as stated in [14]. 

 There can be also used an equivalence relationship 
between those two schemes. Given the generic stochastic 
differential equation (1), the Milstein scheme for it looks 
like: 
 

( ) ( ) ( )( )
( ) ( ) ( ) 2

1

,,5.0,          

,,5.0,          

tZtXtXZttX

ttXtXtXf
XXX

iixiiii

iixiiii

ii

∆+∆+

+∆−
=−=∆ +

σσσ
σσ  (12) 

 

 with ( )1,0~ NZ . We are considering the transformation 

U = F(X) and its inverse X = G(U). Then, according with 
Ito’s lemma [6] the last expression can be written:   
   

  ( ) ( ) ( ) ( )

( ) ( )
ttt

ttttt

dWtXXF

dttXXFtXfXFdU

,         

,
2

1
,

/

2///

σ

σ

+

+







+=   (13) 

 

with ( )tt XFU = . If F is chosen as the Lamperti 

transform [11] so that ( )
( )Xt

XF
,

1/

σ
=  and 

( )
( )
( )Xt

Xt
XF X

,

,
2

//

σ

σ
−= , then the final relation between the 

discretization schemes, as stated also in [10], becomes: 
 

 

( ) ( )
( ) ( ) ( )( )

( )

( ) ( ) ( )2

3
2

,,5.0         

,         

,,5.0,        

tOtZtXtX

ZttX

ttXtXtXf
UGUUG

iiXii

ii

iixiiii

ii

∆+∆+

+∆+

+∆−
=−∆+

σσ

σ
σσ

   (14) 

  
 The last term O( t∆ )  in the equation (14) is the 
remaining part from the Taylor expansion (higher than 
second order). Hence, the Milstein scheme on the original 
process and the Euler scheme on the transformed process 
are equal up to and including the order O( t∆ ). In general, 
if F eliminates the interactions between the state of the 
process and the increments of the Wiener process, then 
this transformation method is probably always welcome 
because it reduces instability in the simulation process.  
 

III. STOCHASTIC PROCESSES USED IN 

FINANCIAL MARKETS 
In the real financial world the SDE are used to model 
different financial instruments prices or return evolutions 
across time. Depending on the analytical form of the drift 
and diffusion functions, there are several models used in 
practice.  
 If a price for an asset is considered to follow a random 
walk process [5] then the future price can be defined as:  
 

 ),(1 σµNXX tt +=+
    (15) 

 
 The process change value in one unit of time is a 
quantity (a random number) that is normally distributed 

with mean µ  and variance
2σ . Since in practice the 

assumption that the processes follow a normal distribution 
is not always true, it can be, at least for the beginning, a 
good choice from the computational point of view, to 
simulate processes having normal distribution. This 
assumption is valid especially when there are several 
samples for a process, whose distribution will converge to 
a normal one (according with Central Limit Theorem). In 
order to have a recurrence expression at different time 
intervals, the last equation can be iterated to obtain the 

relationship between 
tX  and

TtX +
 as: 

 

),( TTNXX tTt σµ+=+
  (16) 

 
 Thus, the last equation by dealing with discrete units 
of time has the advantage of being easy to implement in 
various computer programs. On the other hand, it can be 
written in a continuous time form considering any small 

time interval t∆ :  
 

 )),(( ttNX ∆∆=∆ σµ    (17) 

 
 Its equivalent SDE is: 
 

 dWdtdX σµ +=     (18) 

  
The generalized Wiener process dW is sometimes 

called “perturbation”, “innovation” or “error” because is a 
gaussian (normal) white noise having the N(0,1) 
distribution.  
 The equation (15) allows the variable X to take any 
real value, including negative values. Since a lot of 
financial series like stock prices or interest rates do not 
take negative values, it won’t be a good choice for 
modeling these kinds of time series. However, in order to 
make a prediction for some X  value over a time interval T  
from now, only the value of X has to be known and 
nothing about the path how to get to the future value. The 
equation (18) is called the Arithmetic Brownian Motion 
(ABM) and it is used in other economics areas rather then 
in the real financial markets modeling.  
 Therefore, the return of a stock can be modeled as 
following expression, which has also its equivalent 
differential equation [2]:  

 SdWSdtdSdWdt
S

dS
r σµσµ +=⇔+==  (19) 
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 The last equation is the Geometric Brownian Motion 
(GBM) process and is the simplest and frequently used 
stochastic process for modeling financial time series. 
Integrating the equation (19) involves the discretization 
schemes already presented. Considering that the general 
GBM’s model equation is: 
 

 
tttt dWXdtXdX σµ +=    (20) 

 
then the Euler discretization for this process looks like: 
 

  ( ) t

E

i

E

i

E

i WXtXX ∆+∆⋅+=+ σµ11
  (21) 

 
and the Milstein scheme: 
 

( ) }{
2

1 22

1 tWXWXtXXX t

M

it

M

i

M

i

M

i

M

i ∆−∆+∆+∆+=+ σσµ  (22) 

 
Thus 
 

 ( )ZttXX
E

i

E

i ∆+∆⋅+=+ σµ11
  (23) 

 
and 
 

 









∆+





∆−++=+ tZtZXX M

i

M

i σσµ )1(
2

1
1 22

1
   (24) 

 
 Therefore, its associated Milstein scheme can be 
implemented by a Taylor expansion, which leads to:  
 

 





∆+∆+




∆







−+=

=








∆+∆







−= +∆+

22
2

1

2

2

1

2
1          

2

1
exp

tZZttX

YZttXX

t

M

ittt

σσ
σ

µ

σσµ
   (25)  

 
 This process can be easily transformed into another 
process in order to have equivalence between Milstein 
and Euler schemes. The Itô's lemma [6] applied to a 
function F of a variable X, which can be an asset price, is 
applied then to the return value of a stock. The Ito’s 
stochastic calculus formula is:  
 

 dt
dX

Fd
dX

dX

dF
dF

2

2

2

1
+=    (26) 

 
 Since the stock’s return can be defined with the 
relation: dX/X = d(log[X]), the return for an asset(stock 
price) can be rewritten, using F(X) = log[X] and the Euler 
scheme on the transformed process as: 
   

 zttX ∆+∆







−=∆ σσµ 2

2

1
log   (27) 

 
 Now, using the Taylor expansion on the inverse 

transform ( ) yeyG = , one can get the Milstein scheme. 

 The mean reversion process which will be presented 
in more details as follows is a modification to GBM that 

progressively encourages the series to move back towards 
a mean as the time horizon is increasing. Jump Diffusion, 
discussed after that, acknowledges that there may be 
shocks to the variable resulting in large discrete jumps. 
 Geometric Brownian motion with mean reversion is 
the stochastic process having as drift function the 
(complete) linear function. The long-run time-series 
properties of equity prices (amongst other variables) are, 
of particular interest to processing techniques applied on 
financial data. There is a strong interest in determining 
whether stock prices can be characterized as random walk 
or mean reverting processes because this could have an 
important effect on an asset's value. A stock price follows 
a mean reverting process if it has a tendency to return to 
some average value over time, which means that investors 
may be able to forecast future returns better by using 
information on past returns to determine the level of 
reversion to the long-term trend path. A random walk has 
no memory, which means that any large move in a stock 
price following a random walk process is permanent and 
there is no tendency for the price level to return to a trend 
path over time [5]. Increased volatility lowers a stock's 
value, so a reduction in volatility due to mean reversion 
would increase a stock's value. 
 For mean reversion process the ABM equation (18) 
can be modified as follows:  
 
 dWdtXdX σµα +−= )(    (28) 

 
where 0>α  is the speed of reversion. By being a mean 
reversion process, it tends to oscillate around some 
equilibrium state. Another interesting property of this 
process is that, contrary to the Brownian motion, it is a 
process with finite variance for all 0>t  
 The effect of the dt coefficient is to produce an 
expectation of moving downwards if X is currently above 
µ and vice versa. Mean reversion models are produced in 
terms of S(prices) or r(returns). Thus, the underlying 
stochastic process Xt can describe either time series S or r.  
 The equation (28) is known as the Ornstein-
Uhlenbeck process (or the Vasicek model) and it was one 
of the first models used to describe short term interest 
rates [16].  
 The Cox-Ingersoll-Ross process is a slight modifi-
cation to the Ornstein-Uhlenbeck process. This process, 
also called CIR model [4], is used for modeling the 
interest rate on the short time horizon and also on the 
evolution of stock prices. It has the property of not taking 
negative values (so it can be used to model the variable X 
– the price of stocks) because the volatility goes to zero as 
X approaches zero: 
 

 dWXdtXdX σµα +−= )(   (29) 

 
 Thus, this process can be simulated by using both 
already discussed discretization schemes. The associated 
Milstein scheme looks like:  
 

( ) 222

4

1

4

1
tZZtXtXX ii ∆+∆+∆








−−=∆ σσσααµ  (30) 

 Now, using the transformation xy = , the Euler 

scheme associated to the transformed SDE is: 
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( ) ZttY
Y

Y i

i

∆+∆







−−=∆ σσααµ

2

1

4

1

2

1 22       (31) 

 

 Since ( ) 2
yyG = , the following transformation is 

obtained regardless to Milstein scheme:  
 

( ) ( ) ( ) ( ) =∆+∆=−∆+=−∆+ itiii YYYYYYYGYYG 2
222

( ) ( ) ZtYtYtOtZ ii ∆+∆







−−+∆+∆ σαααµσ 22222

4

1

4

1
 (32) 

 
As a consequence, the Euler method can also be used as a 
simulation scheme for this process.  
 The stochastic process with jump diffusion is another 
way of modeling the stock prices with geometric 
Brownian motion which provide the most flexible, 
numerically accessible, mathematical framework that is 
allowing modeling the evolution of financial and other 
random quantities over time [12]. In particular, feedback 
effects can be easily included and jumps are enabling the 
events modeling. 
 Jump diffusion refers to rare and sudden shocks in the 
prices that may occur randomly in time. The idea is to 
recognize that beyond the usual background randomness 
of a financial time series there will be events that have a 
much larger impact on the variable. Some rare events are 
considered to be the important changes in a company 
management, the announcement of last period inflation 
rate, change of government, etc. The frequency of these 
events and respectively the frequency of the jumps can be 
modeled as a Poisson process with intensity λ so that in a 
time frame T there will be Poisson(λT) jumps. By adding 
jump diffusion to the discrete GBM equation for one time 
period, its general expression becomes [3]: 
 
 dPtXqdWtXdttXfdX ),(),(),( ++= σ  (33) 

 
 In this equation the function q(X,t) is the associated 

Poisson function to the stochastic process X and 
tP  is a 

simple Poisson process characterized by the λ parameter 

whose increments 
tttt PPP −=∆ ∆+
 are given by: 

 

 





∆−

∆
=∆

typrobabilitwith

typrobabilitwith
Pt

λ

λ

1     ,0

       ,1
  (34) 

 
 Geometrical Brownian motion with jump diffusion and 
mean reversion is a complex stochastic process which can 
be very well fitted for stock prices. In the case if the 
return r (for a stock price) has just received a large shock 
there might be a “correction” over time which brings the 
return evolution back to the expected return µ of the 
series. Combining mean reversion with jump diffusion 
will allow us to model these characteristics quite well and 
with few parameters. However, the GBM with jump 
diffusion model already presented, no longer applies for 
mean and variance, particularly when the reversion speed 
is large because one needs to model within the period the 
jump took place. 
 

IV. SIMULATION RESULTS 
This part of the paper is presenting some results regarding 
different stochastic processes and simulation schemes. 
 The most important and at the same time the most 
used process in the financial area from those presented is 

the GBM. In order to obtain the value 
ttX ∆+
starting from 

initial value
tX , one has to simply integrate over the time 

∆t the equation (19). The GBM model can be simulated 
also in terms of returns. By applying the Milstein scheme 
(24) which has a higher accuracy, we simulated more 
sample path of this process.  
 The spread of possible values in a GBM increases 
rapidly with time. For example, the following plot shows 
20 possible forecasts with X0 = 1, µ = 0.001 and σ = 0.02: 
 

  

Figure 1: Plot of 20 possible paths with a GBM model 
described by (21).Its parameters are: µ = 0.01, σ = 0.2 

and the starting value is 1. 
 
 In Figure 1 are plotted paths of GBM process which is 
simulated with Euler method, using a time increment of 
0.01 and a number of observations in each dataset N = 
1000. 
 These paths represent usually the model of stock 
market price evolution. On the other hand, the return r of 
a stock price denoted by X=S is considered to be the 
logarithm of the fractional change in the stock's value as 
defined in equation (19).  From the definition of a 
lognormal random variable, if log[X] is normally 
distributed, then X is lognormally distributed. The 
equation for Xt+∆t is modeling the stock prices as a 
lognormal random variable. Hence, the mean for Xt+T  can 
be expressed as:  
 

 T

tTt eXXE
µ=+ }{     (35) 

 
 The drift µ is the exponential growth rate. The 
variance is given by: 
 

 )1(}{
22 −=+
TT

Tt eeXV
σµ      (36) 

 Hence, using this model and its associated properties, 
it is possible to make prediction about future price of a 
share also at timestamps with unequal time increments. 
 The size of time increment t∆  and at the same time 
the number of observations has a strong impact on the 
quality of simulations as can been seen in the following 
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experiments. 
 

 
  
Figure 2: Influence on the simulation quality of number of 

observations (N). 
 
 If the time increment in the simulation is constant 
( t∆ =0.1) and at the same time if we increase the number 
of observation for an SDE, the simulation in a discrete 
form is converging to the corresponding continuous form. 
In order to have a good approximation of a continuous 
stochastic process (in our case the GBM stochastic 
process from equation (19)) a number of observations N 
higher than 250 is sufficient. The form of the process is 
the same in all figures, due to the fact that the same 
random number generator was used with the same starting 
sequence.  
 One interesting experiment regarding the convergence 
of the presented schemes is to simulate the speed of 
convergence in respect to the number of observation in a 
sample path. As an example, we simulated the GBM 
process for different number of observations (e.g. N=256, 
N=204, etc.) 
 

 
 

Figure 3: Speed of convergence for Euler and Milstein 
schemes. 

 
 Figure 3 shows the speed of convergence of both 
schemes (Euler with solid and Milstein with dashed line) 

to the true value (dot line at 2.4) as a function of t∆ = 
1/N. It can be seen that Euler scheme has a slower 
convergence speed, regardless with Milstein scheme but 
for a number of observations higher than 500, the results 
for both simulation schemes are almost the same. 
 There are differences in the simulations results when 
using the two described schemes (Euler and Milstein) 
especially in case when the diffusion function is 
nonlinear. The next plots are showing the simulation 
results for the Cox-Ingersoll process for both schemes (in 
the first figure is implemented the Euler scheme and in 
the second the Milstein simulation scheme).  

 

 
 

Figure 4: Euler method used for simulating the CIR 
process (in the left ∆t=0.1 and in the right ∆t = 0.5). 

 

 
 

Figure 5: Milstein method used for simulating the CIR 
process (in the left ∆t=0.1 and in the right ∆t = 0.5). 

 
 From the previous figures it can be stated that in the 
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case of CIR process, the Euler scheme has similar 
performance for a small increment of ∆t <0.25 with the 
Milstein scheme. In case of higher values for ∆t the Euler 
scheme does not converge. 
 The equation (28) which represents the Ornstein-
Uhlenbeck process, without any constraints can give 
negative values if it is used for modeling stock prices. 
Using it in terms of returns, it will keep positive the 
values of X for any value of returns.  
 Since the solution of this equation has always 
positives values it can be used also for stock prices. 
Integrating over time the equation (28) in terms of 
returns, it gives the solution [14]: 
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 In the next plot is shown some typical behavior for 
returns of assets modeled with Ornstein-Uhlenbeck 
process. From practice, as stated also in [13], typical 
values of α could be in the range of 0.1 to 0.3.  
 

 
 
Figure 6. Samples of evolution of a stock returns modeled 
with Ornstein-Uhlenbeck process with parameters: µ = 0, 

σ = 0.001, α = 0.1 
 
 From the simulation point of view, the Ornstein-

Uhlenbeck process (28) having ( ) 0, =tXXσ . 

Therefore, this is one case for which, the both 
discretization schemes (i.e. Euler and Milstein), have the 
strong order of convergence 1=γ . 

 In the equation which is defining the stochastic 
processes with jump diffusions (33), the terms of type 
q(X,t)dP are defined as “jumps in the process”. For the 
returns (r) of a stock price, the jump size is usually 
modeled as N(µJ, σJ) for mathematical and computational 
convenience.  
          The following two plots show a typical jump 
diffusion model giving both X(t) = r(t) (return series) and 
X(t) = S(t) (prices series). 
 

 
 

Figure 7. Samples of evolution of an asset return 
(stochastic process with Jump Diffusion) having the 

parameters: µ = 0, σ = 0.01, µJ = 0.04, σJ = 0.2 and λ = 
0.02. 

 

 
 

Figure 8. Samples of evolution of an asset price 
(stochastic process with Jump Diffusion) having the 

parameters: µ = 0, σ = 0.01, µJ = 0.04, σJ = 0.2 and λ = 
0.02 

 
 The “jumps” terms from equation (33) are simulated 
as counting process as can be shown in the following 
expression [15]:  
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 For the simplicity k is defined as Poisson(λt) and at 
time t  the equation (33) can be written as: 
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 In the last equation the term k is generated with a 
Poisson random number generator.  
 The last two plots are presenting the simulations 
results for one of the most complex stochastic process 
used in financial modeling. Its complexity is due to the 
difficulty of parameters estimations. Both, simulations 
and estimation of the equation (33) can be performed also 
with Monte Carlo techniques [9]. 
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V. CONCLUSIONS AND FUTURE WORK 
Our results are showing several approaches and aspects 
related to simulation of stochastic processes used in 
financial modeling. 
 The attractive characteristics of these simulation are 
related to the fact that volatility updating structure permits 
analytical solutions to be generated for standard asset 
prices and thus the model allows a fast calibration to 
given market data. Also when using the Ito’s lemma and 
the transformation relationship between Milstein and 
Euler scheme, the form of the stochastic process used to 
model the price dynamics allows the usage of non-
lognormal probability distributions. 
 On the other hand, related to the accuracy of using 
simulations in order to model financial data, there are 
some drawbacks and possible questions. It might be 
computationally expensive to perform very accurate 
simulations, because the number of replications required 
to generate precise solutions may be very large. Even if 
the number of replications is very large, the simulations 
will not give a precise answer to the problem if some 
unrealistic assumptions have been made regardless to the 
data generating process. For example, in the context of 
option pricing, when using the GBM model, the option 
valuations obtained from a simulation will not be accurate 
if the simulation process has the assumption of normally 
distributed errors, while the actual underlying returns 
series is fat-tailed. 
 Depending on the (pseudo)random number generator 
or on the computing software, the simulation results are 
often hard to replicate, unless the experiment has been set 
up so that the sequence of random draws is known and it 
can be reconstructed. Since this is rarely done in practice, 
the results of a simulation study will be somewhat 
specific to the given investigation. In that case, a repeat of 
the experiment would involve different sets of random 
draws and therefore would be likely to yield different 
results, particularly if the number of replications is small.  
 Hence, the presented stochastic models are specific to 
different types of financial data and the associated 
simulations results are experiment-specific. In order to 
perform well across a large time interval of maturities 
(like in case of financial derivatives), further extensions 
of the models are necessary (such as time-dependent 
parameters). 
 Therefore, it is possible to use different simulation 
schemes according with the model assumption.  
Whenever possible, Euler scheme on the transformed 
process is recommended to be used. When using a 
Milstein scheme, one prerequisite is to have the   
derivatives of the drift and the diffusion functions. If 
these functions are simple functions of the process itself 
X(t) their expression can be entered analytically in the 
simulation method. Otherwise, when these functions are 
given in an empirical form, another differentiating 
approach could be considered. Depending on the desired 
order of convergence, for some special applications other 
time discretization schemes having a higher order should 
be used. Nevertheless, the Milstein scheme has a strong 
order convergence value and it seems to have enough 
performance for various type of financial application [8].   
 As a conclusion, simulations are an extremely useful 
tool that can be applied to an enormous variety of 
problems. However, like all tools, it is not so easy to find 

if their results can be exploited with success especially on 
the real financial market where the future prices are hard 
to be predicted with a high accuracy.  
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