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Abstract: In this paper, we present an implementation of an artificial neural network (ANN) for predicting blooms (coloured 
waters) of a species of toxic phytoplankton called Dinophysis acumunata that prevalent in coastal of Havre (France). A Multi-layer 
Perceptron (MLP) neural network is designed to predict the rate of algal cells concentration in a short time series. The processed 
data are extracted from analysis of average numerical values of physical and chemical parameters. The implementation of the 
designed neural network on FPGA (FPGA: Field Programmable Gate Array), a programmable circuit, help us to set up an 
automatic monitoring lagoon system.  
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I. INTRODUCTION 
The phytoplankton’s or algae’s are microscopic organisms 
of few microns size. They have a great importance in the 
chain food and environmental water balance. The presence 
of some species of toxic algae (Dinophysis Alexendriuem) is 
the origin of blooms called also coloured waters. 

The bloom or the eutrophication is the increase and 
acceleration of the organic algae production at a rate where 
they colonize their environment. We speak here of the 
biological pollution of coastal waters by phytoplankton. This 
type of pollution makes water unsuitable and the 
consumption of shellfish very dangerous. In other terms it’s 
a danger for human health and can cause negative effects on 
the environment. Therefore, it is necessary to ensure 
monitoring of the quality of water in these areas and 
promote all efforts to alert the population and the authorities 
in case of pollution rate exceeds tolerable threshold. 

However, difficulties persist in the accuracy of the 
classification and detection procedures. The process of 
appearance and development of these microorganisms 
remains unclear, but it seems that certain environmental 
conditions influence the process of appearance of these 
organisms. The main objective to design a monitoring 
system is primarily to overcome the old methods that 
include a taxonomic analysis that take several days before to 
achieve a definitive conclusion and to reduce the cost for 
operators and tools. 

The Multi-layer Perceptron (MLP) neural network type 
has proven its power for the approximation and the 
prediction of nonlinear and random process by exploiting 
the physical and chemical environmental data [1;2;3;8;9]. 

The goal of this paper is to implement the MLP neural 
network model on FPGA to be installed permanently in a 
site. The steps of data acquisition and conversion from 
sensors are made out of FPGA and are not addressed in this 
work. The back propagation algorithm used for training the 

MLP neural network is performed off line with a personal 
computer.  

 II. METHODS 
II.1. Phytoplankton eutrophication model 
Eutrophication is defined as the enrichment of water with 
nutrient elements useful for plants or other primary 
producer’s growth. The eutrophication of lakes and rivers is 
a growing problem across the world. It affects more and 
more communities. Models of phytoplankton cell growth are 
limited and reduced. This is due to a large number of 
biological and physiological parameters that no database can 
reaches; or because of the detailed description of the cell 
processes that require variables which cannot be obtained 
experimentally [4], [5], [6].  

Our database consists of 37 samples of coastal seawater 
from “Le Havre France”; for an average of three months: 
July, August and September of the year 1985. These data 
show the concentration of cells evolution of the toxic algae 
Dinophysis ACUMINATA, depending on physical and 
chemical parameters. The considered parameters are shown 
in Table 1. 

Among these environment variables, some affects 
directly the Algae cells growth like temperature, pigments 
solar, nutrients, organic carbon; others are the results of cells 
photosynthetic process such the chlorophyll and the oxygen. 
 
II.2. Optimization of the neural network inputs 
The neural network has the ability to determine critical 
inputs, but the use of too many inputs can affect the speed of 
the model; increase the size of the model implementation 
and cause redundancy problems between different variables 
[9]. The physical and chemical parameters that affect the 
blooms remain poorly unknown [10]. Principal component 
analysis (PCA) is used to select the pertinent inputs of the 
neural network. To reduce the number of attributes, we 
divided these variables into several groups based on PCA 
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result and works already done on the species Dinophysis 
acuminata. The retained groups G1, G2 and G3 giving good 
results in the neural network training are shown in Table 2. 

 
Table1. The considered environmental parameters 

Variables variable description Measurement unit 
T Temperature °C 

O2 Oxygen mg/l 
COD Carbon Organic 

Dissolved 
ppcm 

COT Carbon Organic Total ppcm 
PO4 Phosphate µatg/l 
NH4 Ammonium µatg/l 
NO2 Nitrite µatg/l 
NO3 Nitrate µatg/l 

SI Silica µatg/l 
CHLOR Chlorophyll mg/m3 
Pigment Pigments mg/m3 

 
Table 2.The top three inputs combination groups G1, G2 

and G3. 
G1 G2 G3 
T 

O2 
NO3 
NO2 
NH4 
COT 
COD 

T 
O2 

NO3 
NO2 
NH4 
PIgm 

CHLOR 

T 
O2 

NO3 
NO2 
NH4 
PO4 
SI 

 
II.3. MLP artificial neuronal network model 
background. 
A neural network model with MLP architecture is performed 
to predict the evolution of Dinophysis acuminata cells 
concentration. We have tested different network 
architectures to find a good compromise between size and 
error rate. MLP architecture models have proven their 
power when the process of the cell proliferation is 
theoretically unknown or has a high nonlinearity. A MLP 
network can approximate any function that is linear or 
nonlinear. This property is very helpful for decision and 
prediction applications.  

The MLP network allows only the direct connection 
from lower layer to upper layer of neuron as shown in figure 
1. The optimum MLP network i.e. the optimum  number of 
inputs; the number of hidden layers and the number of 
neurons in each hidden layer, is obtained with the test and 
error approach [2] [3]; so several MLP network 
architectures were tested to determine which network has 
good compromise between size and reduced error. 
All data were normalized in the range 0 to 1 according to the 
following formula: 
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Where K represents any data that is either an input or 

output; and K_n is the normalized data. 
Any layer contains bias entries equal to 1. Each neuron 

performs the function given by the following formula. 
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Where Wj presents the weight vector of the j th neuron; and 
xj is the sum of multiplication between inputs of neuron and 
the corresponding weights. 
 

 
 

Figure1.   MLP network architecture 
 

Hidden layers contain sigmoid function calculated by the 
following formula: 
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Where yj is the output of neuron j. 

A linear transfer function is used in the output layer.  
The purpose of learning step is to adjust the weight of the 
network to obtain the desired output. The back-propagation 
algorithm adjusts the weights of intersection and bias by 
minimizing a criterion that is the sum of square errors e 
which is given by the following formula. 
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Where ŷ is the output generated by the network and y_d is 
the desired output of samples used for the learning step. The 
network is trained with the back-propagation Levenberg 
Marquardt algorithm [3]. This type of algorithm is a 
nonlinear second order least square optimization method 
based on the Newton method. In this algorithm, the weights 
of network are modified as follows. 
 

)()())()(( 1 wewJIwJwJw TT ⋅⋅+⋅−=∆ −η     (5) 

 
Where J is the Jacobean matrix, containing the first 
derivative of the network error, w are the weights of the 
network, e is the error vector calculated as (4) and η is the 
constant learning rate.  
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The learning is good if at each time the value of the 
error e is less or equal to its previous value. The value of 
the parameter η is increased each time the error e is higher 
and decreased each time the error e is lower. The learning 
algorithm and the validation of the network are performed 
in the following order:  
1. Starting with randomly weights,  
2. Training the network with the learning database, 
3. Check if the error e ≤ T1: if yes continue, otherwise 
return to step 1, 
4. Simulate the network with the test database, 
5. Check if the error e ≤ T2: if yes continue, otherwise 
return to step 2, 
6. Save the network and simulate the validation database.  

In these learning steps T1 and T2 are the learning and the 
testing maximum errors respectively; those values are set in 
order to have the best simulation results. This method 
produces successful prediction because of the constraint 
imposed by T2 in the test phase. 
 
II.4. Design and physical implementation of neural 
model on FPGA 
The FPGA (Field Programmable Gate Array) is a logical 
programmable circuit. It presents a flexible structure by 
means of its programmable interconnection blocks (see 
Figure 2). Moreover, the fact that parameter adjustment and 
changes can be done easily on FPGA ensures reduced 
production time and cost. 

We have used Xilinx ISE tool for the design of the MLP 
neuronal model on FPGA type Virtex5 XC5VL110T 

system. This type of FPGA contains 31 million 
programmable logic gates which are placed on ML501 
platform. Figure 3 shows the flow calculation and the 
various components of the programmable circuits on FPGA. 

 
 

Figure 2.FPGA’s basic building structures 
 
II.4.1. Numbers representation 
Only fixed point representation is used in the current 
implementation of the architecture since floating point 
representations are not attractive for ANN designs [13]. We 
opted this type of number representation because of the 
measurements from the sensors have the same order of 
magnitude after normalization. The number representation is 
limited to a maximum precision of 16 bits that seems to be 
sufficient, especially for representation of network weights, 
and it achieved a good compromise between time and area 
for arithmetic operator implementation.  
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Figure 3.Flow calculation and different circuit components. 
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An optimal fixed point representation is one of 16 bits 
total width with a balance between integer and fractional 
resolution. A 1-4-11 representation is used throughout this 
work, with a range of ±16. The values are also saturated if 
they exceed the dynamic field of the process. 
 
II.4.2. Neuron architecture 
The number of inputs determines the width of the weighted 
sum module implementing Eq. (1), as well as the size and 
width of the memory that holds associated neural weights 
and the transfer function module implementing the Eq. (2). 

The sum product calculation performed by the neuron is 
provided with a systolic architecture. It is a structure 
composed of several units or arithmetic element processors 
(EP) connected locally to increase the calculation flow. The 
creation of an EP allows generation of the complete circuit; 
we grown only the systolic array while keeping the same 
topology. The matrix vector product is often performed from 
a linear systolic architecture as proposed in [7] and as shown 
in Figure 3. In the gray area, each EP is composed of several 
MAC (Multiplier accumulator) which must perform the 
following operation: 

vwCC t ⋅+= −1         (6) 

Where  Ct-1 is the value sent by the previous MAC, so, the 
value of C must be reset to zero when a new matrix-vector 
product should be done. 
 
II.4.2. Sigmoid activation function 
The most difficult component in the implementation of our 
neural network is the sigmoid activation function. Several 
possibilities exist to approximate the sigmoid function [11], 
[12]. In our case, we have used a piecewise linear 
approximation proposed by [11], where the sigmoid function 
is divided into eight segments with X comprised in the 
interval [-15, 15] and Y in the interval [0, 1]. 

The sigmoid function and its approximation are 
symmetrical in  [Y = 0.5, X = 0], which means that the 
calculation is performed only for the positive values of X in 
order to determine the corresponding value output Y. We 
give in (7) the approximation of the sigmoid function: 
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    (7) 

 
Figure 4 shows the obtained function with MATLAB7.6 

and the function obtained after synthesis in VHDL with 
ISE9.2. 
 

III. Results and comments  
The database is divided into three time series. First 20 
samples collected in July are used for training the designed 
neural network; the 7 other samples collected in the month 
of August represent the test database and the last 10 samples 
collected in September are used to validate the short term 
prediction behavior of the network. Several values in the test 
and validation steps are not present in the learning database. 
The simulation of the neural model is performed with 
MATLAB R2008a 7.6 and the synthesis of the 
implementation is realized with XILINX ISE12.2. 

 

Figure 4. Activation function in MATLAB7.6 and VHDL. 

III.1. Search for the optimal model  
We executed simulations with several neural models: with 
one hidden layer and two hidden layers. We tested those 
models with several variants of neurons in the hidden layer 
(10, 9, 8, 7, 6). The mean square error e given by the 
formula (4) between the target and the output of the 
networks for the different combinations of inputs groups G1, 
G2 and G3 in function of the variation of neuron numbers in 
the hidden layer (represented as 6n,7n…10n. for 6,7…10 
neurons and 6-10n for 6 neurons in the first layer and 10 
neurons in the second layer). The obtained results are 
represented in Figure 5.a, Figure 5.b and Figure 5.c for the 
case of learning, the test case and the validation case 
respectively. 

The group G1 (T, O2, NO3, NO2, NH4, TOC, COD) is 
the best group in the simulation results for the three phases; 
the error e vary for learning phase between 0.0016 and 
0.0084 for the test between 0.0123 and 0.0181. 

The best results in prediction phase are obtained with 
two-layer architecture with 10 neurons in the first layer and 
6 neurons in the second layer. This architecture has allowed 
us to achieve very good results in the three phases; the error 
e is 0.0032 for learning, 0.0169 for the test and 0.0458 for 
prediction. Figure 6 shows the real number of cells and the 
two-layer architecture estimated. 

The use of this network to monitor and predict blooms 
caused by Dinophysis Acuminata is very promising. 
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Figure 5.a.Learning error for group G1, G2 and G3. 
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Figure 5.b.Test error for groups G1, G2 and G3. 
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Figure 5.c.Validation error for groups G1, G2 and G3. 
 

 

Figure 6.  Result obtained with MATLAB7.6 for the 
architecture 10-6 neurons in hidden layers 

III.2. Implementation results 
Once the simulation and the network selection are made 
with MATLAB7.6; we generate the complete architecture 
i.e. the creation of all different network components in 
VHDL language. The back-propagation algorithm is not 
included in the FPGA circuit and performed off line.  

The implementation was performed with XILINX 
ISE12.2 and its report with Virtex-5 XC5VL110T is 
presented in Table 3. The minimum period is 30.700ns 
(Maximum Frequency: 32.574MHz) and the maximum time 
for output generation after th e first clock cycle is 3.259ns.  
These results are obtained with a neural network containing 
7 entries and architecture of 10 neurons in the first hidden 
layer and 6 neurons in the second hidden layer, and by using 
the component configuration and the arithmetic 
representation presented in Part II . The simulation was 
performed with XILINX ISESIM12.2. We set the clock 
period to100 nanosecond; the output is generated by the 
circuit in 2.3 µs for each input vector. The network 
initialization is 1 µs; the propagation time in the first layer is 
0.4 µs and 0.9 µs for the second layer. The error between 
the estimated output obtained with the synthesis of 
architecture with ISESIM12.2 and the MATLAB7.6 
software is 0.351 for the 37 studied samples. 
 
Table 3. The XILINX ISE12.2 implementation report with 

Virtex-5 XC5VL110T circuit. 
Slice  

LogicUtilization 
Used Available Utilization 

Number of Slice  
Registers 

4,968 69,120 7% 

Number of Slice  
LUTs 

28,102 69,120 40% 

Number of 
occupied  

Slices 

8,893 17,280 51% 

Number of  
bondedIOBs 

130 640 20% 

Number of 
DSP48Es 

64 64 100% 

 
 

VI. CONCLUSIONS  
In this work we have simulated a bloom model of toxic algal 
species, Dinophysis acumunata, from measurable data.  

The difficulty in this type of modeling is the strong 
nonlinearity and the a priori knowledge of those processes. 
We have used for modeling the process variables that are 
easy to measure with specific probe sensors. With those 
variables we have built several architectures of MLP neural 
networks. The architecture of two hidden layers gives good 
results in short term prediction. The implementation of this 
MLP network is done with the VHDL language. The systolic 
architecture of the network helps in the realization of 
complete network by building a few elementary blocks. The 
simulation has shown that the response of the model 
implemented on FPGA was almost identical to that given by 
the MATLAB7.6 software and it’s much recommended to 
install it in a site. 
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