

Volume 54, Number 3, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received April 25, 2013; revised September 14, 2013

1

A NEURAL NETWORK IMPLEMENTATION ON FPGA FOR

ECOLOGICAL MONITORING

Diaf YOUSSOUF Kaddeche MOHAMED

Laboratory of Study and Research on Instrumentation and Communication Annaba (LERICA), University
Badji Mokhtar Annaba, P.O. BOX 12, 23000 Annaba Algeria.

youcef.diaf@univ-annaba.org, mohamed.kaddeche@univ-annaba.org.

Abstract: In this paper, we present an implementation of an artificial neural network (ANN) for predicting blooms (coloured
waters) of a species of toxic phytoplankton called Dinophysis acumunata that prevalent in coastal of Havre (France). A Multi-layer
Perceptron (MLP) neural network is designed to predict the rate of algal cells concentration in a short time series. The processed
data are extracted from analysis of average numerical values of physical and chemical parameters. The implementation of the
designed neural network on FPGA (FPGA: Field Programmable Gate Array), a programmable circuit, help us to set up an
automatic monitoring lagoon system.

Keywords: Automated monitoring, Toxic algae, Eutrophication, Phytoplankton, Neural network, FPGA.

I. INTRODUCTION
The phytoplankton’s or algae’s are microscopic organisms
of few microns size. They have a great importance in the
chain food and environmental water balance. The presence
of some species of toxic algae (Dinophysis Alexendriuem) is
the origin of blooms called also coloured waters.

The bloom or the eutrophication is the increase and
acceleration of the organic algae production at a rate where
they colonize their environment. We speak here of the
biological pollution of coastal waters by phytoplankton. This
type of pollution makes water unsuitable and the
consumption of shellfish very dangerous. In other terms it’s
a danger for human health and can cause negative effects on
the environment. Therefore, it is necessary to ensure
monitoring of the quality of water in these areas and
promote all efforts to alert the population and the authorities
in case of pollution rate exceeds tolerable threshold.

However, difficulties persist in the accuracy of the
classification and detection procedures. The process of
appearance and development of these microorganisms
remains unclear, but it seems that certain environmental
conditions influence the process of appearance of these
organisms. The main objective to design a monitoring
system is primarily to overcome the old methods that
include a taxonomic analysis that take several days before to
achieve a definitive conclusion and to reduce the cost for
operators and tools.

The Multi-layer Perceptron (MLP) neural network type
has proven its power for the approximation and the
prediction of nonlinear and random process by exploiting
the physical and chemical environmental data [1;2;3;8;9].

The goal of this paper is to implement the MLP neural
network model on FPGA to be installed permanently in a
site. The steps of data acquisition and conversion from
sensors are made out of FPGA and are not addressed in this
work. The back propagation algorithm used for training the

MLP neural network is performed off line with a personal
computer.

 II. METHODS
II.1. Phytoplankton eutrophication model
Eutrophication is defined as the enrichment of water with
nutrient elements useful for plants or other primary
producer’s growth. The eutrophication of lakes and rivers is
a growing problem across the world. It affects more and
more communities. Models of phytoplankton cell growth are
limited and reduced. This is due to a large number of
biological and physiological parameters that no database can
reaches; or because of the detailed description of the cell
processes that require variables which cannot be obtained
experimentally [4], [5], [6].

Our database consists of 37 samples of coastal seawater
from “Le Havre France”; for an average of three months:
July, August and September of the year 1985. These data
show the concentration of cells evolution of the toxic algae
Dinophysis ACUMINATA, depending on physical and
chemical parameters. The considered parameters are shown
in Table 1.

Among these environment variables, some affects
directly the Algae cells growth like temperature, pigments
solar, nutrients, organic carbon; others are the results of cells
photosynthetic process such the chlorophyll and the oxygen.

II.2. Optimization of the neural network inputs
The neural network has the ability to determine critical
inputs, but the use of too many inputs can affect the speed of
the model; increase the size of the model implementation
and cause redundancy problems between different variables
[9]. The physical and chemical parameters that affect the
blooms remain poorly unknown [10]. Principal component
analysis (PCA) is used to select the pertinent inputs of the
neural network. To reduce the number of attributes, we
divided these variables into several groups based on PCA

Volume 54, Number 3, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 2

result and works already done on the species Dinophysis
acuminata. The retained groups G1, G2 and G3 giving good
results in the neural network training are shown in Table 2.

Table1. The considered environmental parameters

Variables variable description Measurement unit
T Temperature °C

O2 Oxygen mg/l
COD Carbon Organic

Dissolved
ppcm

COT Carbon Organic Total ppcm
PO4 Phosphate µatg/l
NH4 Ammonium µatg/l
NO2 Nitrite µatg/l
NO3 Nitrate µatg/l

SI Silica µatg/l
CHLOR Chlorophyll mg/m3
Pigment Pigments mg/m3

Table 2.The top three inputs combination groups G1, G2

and G3.
G1 G2 G3
T

O2
NO3
NO2
NH4
COT
COD

T
O2

NO3
NO2
NH4
PIgm

CHLOR

T
O2

NO3
NO2
NH4
PO4
SI

II.3. MLP artificial neuronal network model
background.
A neural network model with MLP architecture is performed
to predict the evolution of Dinophysis acuminata cells
concentration. We have tested different network
architectures to find a good compromise between size and
error rate. MLP architecture models have proven their
power when the process of the cell proliferation is
theoretically unknown or has a high nonlinearity. A MLP
network can approximate any function that is linear or
nonlinear. This property is very helpful for decision and
prediction applications.

The MLP network allows only the direct connection
from lower layer to upper layer of neuron as shown in figure
1. The optimum MLP network i.e. the optimum number of
inputs; the number of hidden layers and the number of
neurons in each hidden layer, is obtained with the test and
error approach [2] [3]; so several MLP network
architectures were tested to determine which network has
good compromise between size and reduced error.
All data were normalized in the range 0 to 1 according to the
following formula:

minmax

min

KK

KK
K n

−

−
= (1)

Where K represents any data that is either an input or

output; and K_n is the normalized data.
Any layer contains bias entries equal to 1. Each neuron

performs the function given by the following formula.

∑
=

⋅=
n

i

iijj KWx
1

, (2)

Where Wj presents the weight vector of the j th neuron; and
xj is the sum of multiplication between inputs of neuron and
the corresponding weights.

Figure1. MLP network architecture

Hidden layers contain sigmoid function calculated by the
following formula:

jxjj
e

xfy
+

==
1

1
)((3)

Where yj is the output of neuron j.

A linear transfer function is used in the output layer.
The purpose of learning step is to adjust the weight of the
network to obtain the desired output. The back-propagation
algorithm adjusts the weights of intersection and bias by
minimizing a criterion that is the sum of square errors e
which is given by the following formula.

()∑
=

−=
N

i

idi yye
1

2

,5.0
)

 (4)

Where ŷ is the output generated by the network and y_d is
the desired output of samples used for the learning step. The
network is trained with the back-propagation Levenberg
Marquardt algorithm [3]. This type of algorithm is a
nonlinear second order least square optimization method
based on the Newton method. In this algorithm, the weights
of network are modified as follows.

)()())()((1 wewJIwJwJw TT ⋅⋅+⋅−=∆ −η (5)

Where J is the Jacobean matrix, containing the first
derivative of the network error, w are the weights of the
network, e is the error vector calculated as (4) and η is the
constant learning rate.

Volume 54, Number 3, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 3

The learning is good if at each time the value of the
error e is less or equal to its previous value. The value of
the parameter η is increased each time the error e is higher
and decreased each time the error e is lower. The learning
algorithm and the validation of the network are performed
in the following order:
1. Starting with randomly weights,
2. Training the network with the learning database,
3. Check if the error e ≤ T1: if yes continue, otherwise
return to step 1,
4. Simulate the network with the test database,
5. Check if the error e ≤ T2: if yes continue, otherwise
return to step 2,
6. Save the network and simulate the validation database.

In these learning steps T1 and T2 are the learning and the
testing maximum errors respectively; those values are set in
order to have the best simulation results. This method
produces successful prediction because of the constraint
imposed by T2 in the test phase.

II.4. Design and physical implementation of neural
model on FPGA
The FPGA (Field Programmable Gate Array) is a logical
programmable circuit. It presents a flexible structure by
means of its programmable interconnection blocks (see
Figure 2). Moreover, the fact that parameter adjustment and
changes can be done easily on FPGA ensures reduced
production time and cost.

We have used Xilinx ISE tool for the design of the MLP
neuronal model on FPGA type Virtex5 XC5VL110T

system. This type of FPGA contains 31 million
programmable logic gates which are placed on ML501
platform. Figure 3 shows the flow calculation and the
various components of the programmable circuits on FPGA.

Figure 2.FPGA’s basic building structures

II.4.1. Numbers representation
Only fixed point representation is used in the current
implementation of the architecture since floating point
representations are not attractive for ANN designs [13]. We
opted this type of number representation because of the
measurements from the sensors have the same order of
magnitude after normalization. The number representation is
limited to a maximum precision of 16 bits that seems to be
sufficient, especially for representation of network weights,
and it achieved a good compromise between time and area
for arithmetic operator implementation.

K1 K2 Kn

���,� ∙ ��
�

�	�

W1,1

W1,2

W1,n

W2,1

W2,2

W2,n

MAC

MAC

MAC

W n,1

W n,2

W p,n

��
,� ∙ ��
�

�	�

X1 X2 Xp

Y estimated

Second hidden layer

Output layer

Neuron 1
Neuron 2 Neuron p

Inputs

Figure 3.Flow calculation and different circuit components.

Volume 54, Number 3, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 4

An optimal fixed point representation is one of 16 bits
total width with a balance between integer and fractional
resolution. A 1-4-11 representation is used throughout this
work, with a range of ±16. The values are also saturated if
they exceed the dynamic field of the process.

II.4.2. Neuron architecture
The number of inputs determines the width of the weighted
sum module implementing Eq. (1), as well as the size and
width of the memory that holds associated neural weights
and the transfer function module implementing the Eq. (2).

The sum product calculation performed by the neuron is
provided with a systolic architecture. It is a structure
composed of several units or arithmetic element processors
(EP) connected locally to increase the calculation flow. The
creation of an EP allows generation of the complete circuit;
we grown only the systolic array while keeping the same
topology. The matrix vector product is often performed from
a linear systolic architecture as proposed in [7] and as shown
in Figure 3. In the gray area, each EP is composed of several
MAC (Multiplier accumulator) which must perform the
following operation:

vwCC t ⋅+= −1 (6)

Where Ct-1 is the value sent by the previous MAC, so, the
value of C must be reset to zero when a new matrix-vector
product should be done.

II.4.2. Sigmoid activation function
The most difficult component in the implementation of our
neural network is the sigmoid activation function. Several
possibilities exist to approximate the sigmoid function [11],
[12]. In our case, we have used a piecewise linear
approximation proposed by [11], where the sigmoid function
is divided into eight segments with X comprised in the
interval [-15, 15] and Y in the interval [0, 1].

The sigmoid function and its approximation are
symmetrical in [Y = 0.5, X = 0], which means that the
calculation is performed only for the positive values of X in
order to determine the corresponding value output Y. We
give in (7) the approximation of the sigmoid function:














<−=′=

≥==

<≤+==

<≤+==

<≤+==

01

51

5375.284375.003125.0

375.21625.0125.0

105.025.0

4

3

2

1

XYYY

XYY

XXYY

XXYY

XXYY

 (7)

Figure 4 shows the obtained function with MATLAB7.6

and the function obtained after synthesis in VHDL with
ISE9.2.

III. Results and comments
The database is divided into three time series. First 20
samples collected in July are used for training the designed
neural network; the 7 other samples collected in the month
of August represent the test database and the last 10 samples
collected in September are used to validate the short term
prediction behavior of the network. Several values in the test
and validation steps are not present in the learning database.
The simulation of the neural model is performed with
MATLAB R2008a 7.6 and the synthesis of the
implementation is realized with XILINX ISE12.2.

Figure 4. Activation function in MATLAB7.6 and VHDL.

III.1. Search for the optimal model
We executed simulations with several neural models: with
one hidden layer and two hidden layers. We tested those
models with several variants of neurons in the hidden layer
(10, 9, 8, 7, 6). The mean square error e given by the
formula (4) between the target and the output of the
networks for the different combinations of inputs groups G1,
G2 and G3 in function of the variation of neuron numbers in
the hidden layer (represented as 6n,7n…10n. for 6,7…10
neurons and 6-10n for 6 neurons in the first layer and 10
neurons in the second layer). The obtained results are
represented in Figure 5.a, Figure 5.b and Figure 5.c for the
case of learning, the test case and the validation case
respectively.

The group G1 (T, O2, NO3, NO2, NH4, TOC, COD) is
the best group in the simulation results for the three phases;
the error e vary for learning phase between 0.0016 and
0.0084 for the test between 0.0123 and 0.0181.

The best results in prediction phase are obtained with
two-layer architecture with 10 neurons in the first layer and
6 neurons in the second layer. This architecture has allowed
us to achieve very good results in the three phases; the error
e is 0.0032 for learning, 0.0169 for the test and 0.0458 for
prediction. Figure 6 shows the real number of cells and the
two-layer architecture estimated.

The use of this network to monitor and predict blooms
caused by Dinophysis Acuminata is very promising.

6n 7n 8n 9n 10n 10-6n
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

number of neurons in the hidden layer

L
e
a
rn

in
g
 e

rr
o
r

G1

G2

G3

Figure 5.a.Learning error for group G1, G2 and G3.

Volume 54, Number 3, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 5

6n 7n 8n 9n 10n 10-6n
0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

number of neurons in the hidden layer

T
e
s
t

e
rr

o
r

G1

G2

G3

Figure 5.b.Test error for groups G1, G2 and G3.

6n 7n 8n 9n 10n 10-6n
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

number of neurons in the hidden layer

V
a
lid

a
ti
o
n
 e

rr
o
r

G1

G2

G3

Figure 5.c.Validation error for groups G1, G2 and G3.

Figure 6. Result obtained with MATLAB7.6 for the
architecture 10-6 neurons in hidden layers

III.2. Implementation results
Once the simulation and the network selection are made
with MATLAB7.6; we generate the complete architecture
i.e. the creation of all different network components in
VHDL language. The back-propagation algorithm is not
included in the FPGA circuit and performed off line.

The implementation was performed with XILINX
ISE12.2 and its report with Virtex-5 XC5VL110T is
presented in Table 3. The minimum period is 30.700ns
(Maximum Frequency: 32.574MHz) and the maximum time
for output generation after th e first clock cycle is 3.259ns.
These results are obtained with a neural network containing
7 entries and architecture of 10 neurons in the first hidden
layer and 6 neurons in the second hidden layer, and by using
the component configuration and the arithmetic
representation presented in Part II . The simulation was
performed with XILINX ISESIM12.2. We set the clock
period to100 nanosecond; the output is generated by the
circuit in 2.3 µs for each input vector. The network
initialization is 1 µs; the propagation time in the first layer is
0.4 µs and 0.9 µs for the second layer. The error between
the estimated output obtained with the synthesis of
architecture with ISESIM12.2 and the MATLAB7.6
software is 0.351 for the 37 studied samples.

Table 3. The XILINX ISE12.2 implementation report with

Virtex-5 XC5VL110T circuit.
Slice

LogicUtilization
Used Available Utilization

Number of Slice
Registers

4,968 69,120 7%

Number of Slice
LUTs

28,102 69,120 40%

Number of
occupied

Slices

8,893 17,280 51%

Number of
bondedIOBs

130 640 20%

Number of
DSP48Es

64 64 100%

VI. CONCLUSIONS
In this work we have simulated a bloom model of toxic algal
species, Dinophysis acumunata, from measurable data.

The difficulty in this type of modeling is the strong
nonlinearity and the a priori knowledge of those processes.
We have used for modeling the process variables that are
easy to measure with specific probe sensors. With those
variables we have built several architectures of MLP neural
networks. The architecture of two hidden layers gives good
results in short term prediction. The implementation of this
MLP network is done with the VHDL language. The systolic
architecture of the network helps in the realization of
complete network by building a few elementary blocks. The
simulation has shown that the response of the model
implemented on FPGA was almost identical to that given by
the MATLAB7.6 software and it’s much recommended to
install it in a site.

REFERENCES
 [1] C.Chabbi, M. Taibi and B. Khier, "Neural And Hybrid Neural
Modeling of a Yeast Fermentation Process", International Journal
of Computational Cognition, Vol. 6 (3), September 2008.

Volume 54, Number 3, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 6

[2] M. N. Karim and S. L. Rivera. "ANN in bioprocess state
estimation", Advances in Biochemical Engineering Biotechnology,
Vol.46:1–33, 1992.
[3] F. B. Marand. "Modélisation et Identification des Systèmes
Non-Linéaires par Réseaux de Neurones a Temps Continu", PhD
Thesis, Université de Poitiers, France, 2007.
[4] Geider R.J., MacIntyre H.L., Kana T.M., "A dynamic
regulatory model of phytoplanktonic acclimatation to light,
nutrients and temperature", Limnol. Oceanogr., Vol.43 (4): 679-
694. 1998.
[5] Dunaliellatertiolecta, "limited simultaneously by light and
nitrate", Limnol. Oceanogr., Vol.42(6): 1325-1339.
[6] Shuter, B., "A model of physiological adaptation in unicellular
algae", J. Theor.Biol., 78: 519-552. 1979.
[7] P. Quinton et Y. Robert, "Algorithmes et architectures
systoliques", Masson, Paris,1989.
[8] Julian D. Olden "An artificial neural network approach for
studying phytoplankton succession", Hydrobiologia 436: 131-143,
2000
[9] Maier, H. G., and G. C. Dandy. "Neural networks for the
prediction and forecasting of water resources variables", a review
of modelling issues and applications. Environmental Modelling
and Software 15:101–124. 2000.
[10] Maier, H. G., and G. C. Dandy. "Neural network based
modelling of environmental variables", a systematic approach.
Mathematical and Computer Modelling 33:669–682. 2001.
[11] PJC. Clare & al., "Design and tuning of FPGA
implementations of neural networks", SPIE Proc., Vol. 3069:129-
136, 1997.
[12] H. Amin & al., "Piecewise linear approximation applied to
nonlinear function of neural network", IEE Proc- Circuits Devices
Syst., Vol. 144(6), pp 313-317. 1997.
[13] Mousa M, Areibi S, Nichols K, "On the arithmetic precision
for implementing back-propagation networks on FPGA: a case
study", In: Omondi AR, Rajapakse JC (eds) FPGA
implementations of neural networks”, Springer, US, pp 37–6. 2006

