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Abstract: Real life electronic systems must perform within tight limits even if affected by uncertainties such as temperature and 
supply variations. Design of Experiments (DoE) plays an important role in improving the quality of a system. The present paper 
focuses on a robust design method based on one of the main principles governing DoE: blocking.  The method is automated with 
the help of MATLAB and involves the following steps: classify the factors, design the experiment, measure, analyze and optimize 
the response. The method is illustrated on a low-pass filter. The experiment uses a saturated D-optimal design. The metamodel is 
obtained considering two noise factors, a blocking factor, a small number of runs and replications.   
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I. INTRODUCTION 
In the industry of electronics, the verification of a product is 
becoming time-consuming because of the fast growing 
complexity of the systems. Due to the expense of electronic 
systems’ fabrication, only a limited amount of experiments 
can be performed. The difficulty lies in finding a solution to 
lower product cost and shorten product design and 
development time. To improve the quality of a product, 
among the known factors, one should take into consideration 
several sources of variation that are present in the 
environment. To estimate this variation noise measurements 
are necessary. The challenge for engineers is to improve the 
system by reducing the influence of these sources.  
 We believe that experiments done on the product have a 
major role in improving the quality. Using a proper design 
can increase the efficiency of an experiment and strengthen 
the obtained conclusions. Also, an optimum design can 
decrease the number of experimental runs, therefore, costs 
are reduced. 
 Design of experiment (DoE) is a concept that can be used 
to build the design. Using DoE a set of experiments are 
planned and performed in order to obtain statistical 
information about the impact of the factors (and their 
interactions) on the output response [1]. Design of 
experiments has been successfully applied in many domains 
as chemistry, industry, agriculture, medicine. In the industry 
of electronics, computer experiment has been applied later 
[2]. Nowadays, DoE is applied on real measurements of 
electronic systems and principles like blocking, 
randomization and noise treatments are issues which come 
up in these real-life experiments. 
 The work presented in this paper focuses on treating 
variations differently depending on how they occur during 
product testing and during product use. Experiments were 
optimally planned and analyzed to get, from a reduced 
number of tests, estimates for how robust the system is with 
respect to undesired variations, and how they can be 

compensated. 
 The paper is organized as follows: section II depicts the 
state of the art, section III presents some general concepts 
and strategies related to DoE and section IV describes the 
implementation. The results are discussed in section V and 
in section VI conclusions are drawn.  
  

II. STATE OF THE ART 
Sir Ronald A. Fisher, Roger E. Kirk and Douglas C. 
Montgomery had seminal ideas for experimental design and 
have popularized their principles in some pioneering works.  
Sir Ronald A. Fisher has studied the experimental design in 
the early ’20. He stated that experiments should be 
“carefully planned in advance and designed to form a secure 
basis of new knowledge” [3]. Fisher introduced statistical 
principles into experimental investigations, including the 
factorial design concept. He defined three basic principles 
for a good experimental design i.e. randomization, 
replication and blocking. He referred to randomization as 
the allocation of the experimental factors, in a random way, 
to ensure that the error effects are statistically independent. 
Replication was used as an independent repeat of each factor 
combination and that allowed the experimenter to obtain 
estimation of measurements error. Blocking isolated the 
variation that appeared. 
 Douglas C. Montgomery highlighted in his work [1] the 
importance of the experimental design in the engineering. 
He emphasized that the experimental design should be used 
at the beginning of each product cycle. He also believed that 
this approach would lead to a good performance of the 
processes and products, because of the reduction in the 
development time and cost. As [3], he advised that 
principles like replication, randomization and blocking are 
to be used in every experiment. He undelined the fact that 
replication is not repeated measurements. He stated that 
randomization was the allocation of the individual 
experimental runs in a random order and underlined the fact 
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that complete randomization of factors was almost 
impossible. Regarding blocking, he affirmed that it can be 
used to reduce and eliminate the variability that was 
transmitted by the nuisance factors. 
 According to Roger E. Kirk [4], the experimental design 
was a plan in which the experimental units are assigned to 
treatment levels. The design of experiment involved a 
number of inter-related activities and indicated the way in 
which the randomization and statistical aspects of an 
experiment are to be performed. He also claimed that the 
main goal of an experimental design was to determine a 
causal connection between the dependent and independent 
variables. 
 

III. CONCEPTS 
An experiment is a test, or a series of tests, in which the 
input variables of a process are varied in order to observe 
and identify the changes of the output response. A classical 
experiment may be summarized in some main steps: 
determine the experiment’s objective, select the process 
factors and define the response, plan experiments and 
execute them, analyze results and draw conclusions. 
Experiments lead to a design. Literature defines different 
strategies to design, including best-guess-approach, one-
factor-at-a-time or factorial experiments approach. The main 
types of designs used in an experiment are: central 
composite design (CCD), Latin hypercube sampling (LHS), 
full factorial (FF), D-optimal. Table 1 illustrates some basic 
characteristics of these designs. 

 

 
Table 1: Designs for planning experiments 

 
Experimental designs can be improved using principles 

like replication, randomization and blocking.  
• Replication refers to repeating a study using the 

same methods but with different subjects and experimenters. 
It offers a more precise estimate of the treatment effects and 
obtains an estimate of the error effect. The purpose of 
replication is to assure that the results are reliable and valid. 
As an example: consider an experiment to study the effect of 
hardening of oil and saltwater quenching on an aluminum 
alloy [1]. The objective is to determine which quenching 
solution produces the maximum hardness for this particular 
alloy. The replication in this case would consist of treating 
an alloy specimen by oil quenching and a specimen by 
saltwater quenching and measure the hardness of the 
specimens after quenching. Thus, the treatment of five 
specimens in each quenching medium would represent five 

replications. 
• Randomization implies the random allocation of 

factors and/or the order of experiments.  
• Blocking is a design technique which refers to 

arranging similar factors in groups. Other definitions are 
available in literature. We used blocking to isolate the 
variability appeared due to the nuisance factors and to find 
which factors may influence the experimental response, but 
are of little interest for the experimenter. Blocking improves 
the precision with which comparisons among the factors of 
interest are made. It also isolates the systematic effect and 
prevents obscuring the main effect. For example, let us take 
a wafer resistivity measurement in which we test the effect 
on resistivity after the diffusion process, considering three 
wafers and four material dosages. If the nuisance factor is 
the furnace run, this could be completely eliminated if we 
ran twelve wafers in the same furnace run, but unfortunately 
this is not allowed. A solution using the blocking principle 
would be to put four wafers with different dosages in each of 
the three furnace runs [5]. The randomization of this process 
would consist in the order in which the three sets are 
assigned to the furnace runs. 

Two types of factors are involved in experiments: design 
factors, i.e. factors selected for study and nuisance factors, 
i.e. factors which do not present interest in the present 
experiment. Nuisance factors may be controllable, i.e. we 
may control their variation, or uncontrollable, i.e. 
parameters which cannot be controlled during product use, 
e.g. environment conditions.  Table 2 contains their 
classification and how to deal with them when designing the 
experiment. 
 

Table 2: Nuisance factors classification. Ways to treat 
factors in experimental design 

 
The resulted data is used to develop an approximation 

model which links the outputs and the inputs. This form of 
approximation is usually found in literature under the name 
metamodel. A metamodel can be described in terms of 
regression analysis, from a mathematical point of view. 
Based on some simulation samples, a matching metamodel 
can be constructed and can be used later to predict response 
values at new factor settings. The construction of the 
metamodel is called fitting or learning. Let us consider a 
factorial experiment with two treatment factors and a 
blocking factor [1]; the linear statistical model for this 
design is described in (1). We also consider that a single 
replicate of a complete factorial experiment is run for each 
block. 
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1,  2,  ...,  

ijk i j ij k ijk

i a

y j b

k n

=


= + + + + + =
 =

µ τ β τβ δ ε    (1) 

Design Advantages Disadvantages 

FF 
Contains all combinations 

of factors level 
Increase of the design 

space 

CCD 

Builds a quadratic model 
of the response, without 
needing to use a three-

level factorial experiment 

Unfeasible Design. 
Regions of interest at 

particular points cannot 
be represented. 

D-
optimal 

A computer algorithm 
chooses the optimal set of 

design runs 

Significant data might 
be lost, but validation is 

performed 

LHS 
For an N point design, 

projects onto N different 
levels in each factor 

Set of points generated 
randomly. The one that 
best satisfies the criteria

is chosen. 

Characteristics Examples How to treat 
Unknown, 

uncontrollable 
Experimenter 

bias 
Randomization 

Known, 
uncontrollable but 

measurable 

Weight, 
previous 
learning 

Other concepts 

Known, 
controllable 

Temperature, 
batch, time, 

gender 
Blocking 
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where µ is the overall mean effect, τi is the effect of the i
th

 
level of the first treatment factor, βj is the effect of the j

th 

level of the second treatment factor, (τβ)ij represents the 
interaction, while δk is the effect of the k

th
 block and εijk is a 

random error component. The order in which the treatment 
combinations are run is completely randomized within a 
block.  

The metamodel assumes that the blocking factors do not 
interact with the treatments. The error term includes the 
fitting residuals and the effects of the noise factors. The 
fitting residuals are caused by the terms not included in the 
interactions mentioned above. The effects of the noise 
factors are unknown and therefore not included in the 
metamodel. For a further use of the metamodel, to predict 
new values and optimize the system, a proper error analysis 
must be performed. After this check, the metamodel can be 
used to predict extreme values of the response, with respect 
to design and noise factors. 
 

IV. IMPLEMENTATION 
The concepts presented above must be refined considering 
the constraints in testing electronic control units for smart 
power automotive applications: medium to high voltages 
and currents, complex loads with feedback effects. Another 
important aspect is that different steps of such real-life 
experiments are sometimes separated by long time periods 
depending on the resources and on the project planning (it 
can take weeks, even months since a wafer lot is planned 
until it is really produced, and it can take similar time for 
hardware tests to be performed). These steps are sometimes 
performed by different teams in different locations. Last but 
not least, the solution must be automated and work properly 
no matter which is the device under test and the 
number/types of factors. For this reason MATLAB was 
chosen as the environment to design and analyze the 
experiment [2]. 

The following steps must be performed sequentially: 
1. Factors classification: this is not always an easy task 

and must be performed using the system and domain 
knowledge. Experience shows the following: 

- Blocking factors are known and controllable factors 
only for the sake of the experiment and are allowed to vary 
during product use. Most of the times they are operating 
conditions: supply voltage, ambient temperature, etc. These 
factors are not directly of interest, but have a big impact on 
the system, so experiments must account them and divide 
the measurements in blocks, in which they are held fixed. 
Temperature has another specific characteristic: it cannot be 
varied so easily from one level to another so batches of 
measurements with the same temperature must be performed 
together. 

- Noise factors are factors which are known and 
uncontrollable, but measurable, such as tolerances of 
components. Their impact on the response is expected to be 
small and can sometimes be compensated by a specific 
setting of control design factors, which cancel their 
cumulated effect, by making use of the interaction with the 
noise factors. 

- Design, Control factors are controllable factors 
which can be set by design and which give control over the 
responses, allow optimization, either of the nominal value or 
of the range of variation caused by statistical system 
variations. The unknown sources of noise, such as process 
or measurement noise are handled by replication. 

2. Design the experiment: this step can be automated. 
      The experiments are generated on normalized factors at 
first, coded levels, i.e. [-1, 1] range, as Montgomery 
recommends [1]. The factors are specified by ranges, types 
and, if existing, by levels. The experiment is an m x n 
matrix, where m is the number of tests and n the number of 
factors. The experiments depend on the expected complexity 
of noise factors, the allowed number of runs as well as the 
number of factors. In our case, a 2-level fractional factorial 
which can estimate a metamodel with 2-factor interactions is 
used. The blocks are sets of levels for the blocking factors 
and, if the effects of the blocking factors must be separately 
extracted, then we choose a full factorial experiment. Any 
experimental design must take into account the metamodel 
which must be obtained in the end. 

3. Measure 
 First the experiment must be translated into real factor 
levels. The central (nominal) point will be replicated to 
ensure that the noise of the measurement is small enough 
(compare replications with measurements with different 
factors). 

4. Analyze 
 The metamodel must treat the factors’ categories 
differently. The noise factors are expected to have small 
effects, but interactions between them can also occur, while 
the blocking factors have bigger effects, but additive, so the 
first assumption is of no interaction with the noise factors. 
This results into a set of effects corresponding to these 
assumptions on the metamodel, and which will be used to 
perform a regression on the results. The output is a vector of 
corresponding coefficients, which together with any set of 
normalized factors can estimate the value of the measured 
output. 
 The errors between the measurements and the 
predictions are used to evaluate if the metamodel is good 
enough. This is done by comparing the normed residuals to 
a predefined threshold, which is calculated as:  
 

( )max _ 0.1normed residuals <                   (2) 

 
( )( )

( ) ( )

max _   _
 10%

max _ min _

abs predicted response measured response

measured response measured response

−
<

−
(3) 

 
5. Optimize 

 It is important to approximate the extreme values of the 
response, by using its analytical form. Noise factors 
introduce small ranges of variation, while blocking factors 
will have a significant impact. But since the effect of the 
blocking factor is additive, the best/worst point for the 
response with respect to the noise factors will be the same, 
no matter which is the value of the blocking factor. 
 

V. EXPERIMENTAL RESULTS 
The methods presented in the previous section were applied 
on a low-pass filter. We want to estimate the robustness of 
the system with respect to the produced current. The applied 
voltage V is varied in a given range. The passive 
components R, C have deviations from the nominal values, 
as follows:  
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0

0

R R R

C C C

= + ∆


= + ∆
   (4) 

 Having these influence factors, the measured output is 
the maximum value of the current, which must be kept under 
a specified maximum value. 
 An experiment was planned and tested with an 
application emulation test system [11] used for considering 
application variances and parameter spread during post-
silicon verification of automotive smart power products 
[11]. Statistical distributions for different factors (see Table 
3) were executed in an automated way and the current 
consumption was monitored. The resistor and capacitor are 
listed as a noise factor because they are easily affected by 
their noise, and their interaction cannot be estimated. 
 
Factor name Factor type Range 
V ( Supply voltage ) blocking [8V; 16V] 
R ( Filter resistance ) noise [9.5 kΩ ; 10.5 kΩ ] 
C (Filter capacitance ) noise [9µF; 11µF] 
 

Table 3: Classification of the factors for the experiment 
planning 

 
 For validation purposes, measurements were performed 
for a three-level full factorial, with replications. The 
replications were checked for low noise and then averaged 
for further analysis. 
 Based on the metamodel presented in (1) with two noise 
factors and one blocking factor, we can define a 
corresponding set of effects, for each coefficient and design 
a saturated D-optimal experiment [1], which can estimate all 
these coefficients with not more than six runs. MATLAB 
[10] offers functions as cordexch, daugment, which can 
create or augment D-optimal experiments. 
 Table 4 illustrates these design points considering the 
normalized values of the factors, i.e. -1 for the minimum 
values, 0 for nominal values and 1 for maximum. Thus, the 
values of the factors used for fitting the metamodel are 
scaled as: 
 

max min

max min

2

2

V V
V

normedV
V V

+
−

=
−

  (5) 

 

where Vmax  and Vmin denote the maximum and minimum 
voltage levels. The normalized values of the R and C factors 
are obtained similarly. The last column of Table 4 describes 
the measured current I. 
 

Run normedV normedR normedC I [A] 

1. -1 -1 -1 0.45177 

2. -1 -1 1 0.90704 

3. -1 1 -1 0.48715 

4. 0 0 0 0.68591 

5. 1 -1 1 0.82178 

6. 1 1 1 0.90595 

 

Table 4: The saturated D-optimal experiment and the 
response 

 
 The next step is to extract a metamodel from the 
collected data using the regression. The fitted metamodel 
can be approximated analytically by a function as:  
 

0

( ) ( , )

   = normed normed

normed normed normed

V R

C i

I f V f R C err

c c V c R

c C c R C

= + + =

+ ⋅ + ⋅ +

+ ⋅ + ⋅ ⋅

    (6) 

 
 where c0 represents the free term coefficient, cV, cR,  cC are 
coefficients of the main effects and ci represents the 
interaction coefficient. 

 In order to check if the metamodel is properly fit, a 
residuals analysis was performed. We compared the normed 
residuals to a normal distribution. The maximum residual is 
small enough i.e. less than 10%, and the distribution is 
approximated normal with mean 0. These values indicate the 
fact that we can use the metamodel further on. 
  

 
 

Figure 1: The normed residuals plot. 

 
 The metamodel can be visualized in one dimension in 
Figure 2, one factor being varied over the complete range 
and the others being kept to a fixed value. The plots were 
built in MATLAB using the rstool plot [1]. The dashed lines 
show the 95% confidence intervals for the response 
predictions. The factors were used in scaled values for 
consistency of the fit. As seen in Figure 2, the blocking 
factor that is the voltage is indeed important. 
 As previously stated the response studied can be 
approximated as a sum of two functions: one depending on 
the blocking factor (supply voltage) and the other one 
containing the noise factors (R and C) and their interactions. 
Considering the function (6), the current variation is 
described as:  
 

, max , min ,

max min

| ( ) | ( ) |

( , ) ( ) ( , ) ( )

        normed normed

normed normed

R C R C R C

R C

i

I I V I V

f R C f V f R C f V

c R c C

c R C

∆ = − =

= + − − =

= ⋅ ∆ + ⋅ ∆ +

+ ⋅ ∆ ⋅ ∆

            (7) 
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Figure 2: The metamodel using the normed values of the 
factors 

 
Extreme 
values 

normed
V 

normed
R 

normed
C 

Output 
Current I[A] 

Minimum -1 1 -1 0.48715 
Maximum 1 -1 1 0.82178 

 
Table 5: Factor values which determine the extreme 

values of the output current 
 

where ∆normedR and ∆normedC represent the variations of 
the normalized R and C values. Table 5 shows the extreme 
values of the current response and the corresponding factor 
levels.  

The minimum current is obtained for a maximum value 
of the resistance and minimum value of the capacitance. The 
robustness is measured by the maximum current variation 
for any value of the supply voltage

max 0.5394 AI∆ = . 

 The variations determined by the tolerances in the 
components have the maximum impact on the current which 
was computed. If this impact is considered too big we have 
two options for optimization. The first solution is to reduce 
the variation of the R and C factors in order to reduce the 
overall current variation. The second solution is to use the 
interaction between R and C on I to determine optimal, new 
nominal values which will compensate the overall current 
distribution. This is subject to further research. 
 

VI. CONCLUSION 
Electronic systems should behave the same no matter what 
variations appear during functioning. As the design space 
became n-dimensional, the verification is practically hard to 
cover. Planning key experiments is a valid solution for this 
particular problem. 
  The paper proposes a five step method that covers this 
solution. The method is automated with the help of 
MATLAB and involves the following steps: classify the, 
design the experiment, measure the response, analyze the 
response (metamodeling) and optimize the response. 
 The method was applied on a low-pass filter. The 
experiment was planned and tested on a Hardware 
Emulation System. Our purpose was to approximate the 
robustness of the system with respect to the consumed 
current when applied a certain voltage. 
  Normally, the first step is not an easy task, but can be 
performed if the system is known. The step that involved 
planning experiments was fulfilled using the concepts of 
DoE. Principles like blocking and randomization were used 
for refinement because of their capability to characterize 

what happens in real-life situations.  
 The experiment was conducted according to a D-optimal 
design with 6 design points. For validation purposes 
measurements were performed for a three-level full factorial 
with replications and involved 27 runs. There was one 
blocking factor (V) and two noise factors (R and C).  The 
metamodel was obtained by regression on the D-optimal 
design and validated using residual analysis on all available 
measurements.  
 The one-dimension plots of the metamodel showed that 
the supply voltage V has an important impact on the 
response, being indeed a blocking factor. To decrease the 
variation of the response (I) and so the enlarge the 
robustness of the system there are two solutions: either 
reduce the variation of the R and C factors or use the 
interaction between R and C on I to determine optimal, new 
nominal values which will compensate the overall current 
distribution. This is subject to further research. 
 We treated the variations that occur on the real 
measurements. The variations were handled differently, 
depending on their impact on the output response. The 
resulting output was a metamodel and two solutions for 
optimization were proposed. The system’s robustness with 
respect to the undesired variation was calculated. Using this 
electronic system we proved the applicability of the concept 
of DoE in real measurements. 
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