

Volume 56, Number 3, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received September 3, 2015; revised September 8, 2015

48

IPV6 EXTENSION OF HTB-TOOLS FOR LINUX TRAFFIC CONTROL

BASED ON HTB

Doru Gabriel BALAN, Alin Dan POTORAC, Adrian GRAUR

Stefan cel Mare University of Suceava, 720229, Romania
doru.balan@usv.ro

Abstract: It is well known that traffic control is a permanent challenge for network engineers. The present paper proposes a novel
method for Linux QoS (Quality of Service) solution used in network management. The research is focused on the classful queueing
disciplines and specific HTB (Hierarchy Token Bucket) Linux implementations. This paper proposes a new practical improvement
of bandwidth management software, named HTB-tools. These tools are generally used for implementing QoS policies based on the
HTB algorithm, under a common Linux environment. The proposed improvement of the HTB-tools packages updates the software
components with features that allow the implementation of QoS solutions for computer networks running the latest Internet
Protocol version, IPv6. Our solution is extending the applicability domain of the HTB-tools QoS instrument to the addressing space
of the IPv6, deploying an IPv6-ready rule parser component.

Keywords: communication system traffic control, quality of service, queueing analysis, IP networks.

I. INTRODUCTION
Since, in recent years the number of network equipment has
increased exponentially, the public address space provided
by the basic network protocol, IP (Internet Protocol) version
4 [1], was found to be insufficient to cover all connection
requests. A first solution to address this problem was the IP
translation (NAT - Network Address Translation) [2]. The
specific NAT mechanisms provide a mapping of addresses
from private [3] to public IP addressing space. This solution
is not fully satisfactory, since there are incompatibility
problems with the security communication protocol IPSec
(Internet Protocol Security) [4] or conflicts of addressing
whether the two networks with the same private address
space are interconnected via virtual networks (VPN - Virtual
private Networks) [5]. On the other hand, the manner in
which IPv4 address assignment was carried out led to the
existence of a large number of routes in the routing tables of
the routers that manage the internet infrastructure.

These drawbacks and the continuous need for a better

service quality in data networks have given rise to the

transition to a new version of the network protocol, IPv6 [6].

II. LINUX QOS ELEMENTS
Every existing Linux-based operating system provides a set
of tools for managing and manipulating the transmission of
packets [8]. The main components of Linux traffic control
mechanisms are represented by a series of actions applied to
data flows, such as:

- Shaping (delay packets to meet a desired rate);
- Scheduling (organize and/or rearrange packets);
- Classifying (sort or separate traffic into queues);
- Policing (measure and limit traffic in a queue);
- Dropping (discards an entire packet or data flow);
- Marking (modify packet metadata).

In a generic Linux mechanism that is designed to provide
quality of service, the data handling process involves three
types of objects through which data are processed:

- Schedulers or queueing discipline (qdiscs);
- Traffic classes;
- Traffic filters.

The queueing disciplines that can be used in the data flow

scheduler mechanisms are generally classified into two
major categories:

- Classless qdiscs (like: [p|b]fifo pfifo_fast, RED -
Random Early Detection, SFQ - Stochastic
Fairness Queueing, TBF - Token Bucket Filter)

- Classful queuing disciplines (such as: CBQ - Class
Based Queueing, HFSC - Hierarchical Fair
Service Curve, PRIO - priority scheduler, and
HTB - Hierarchy Token Bucket.).

II.A. HTB as a QoS method
The Hierarchy Token Bucket (HTB) [9] is a packet
scheduler algorithm that implements a link sharing hierarchy
of data traffic classes. HTB facilitates bandwidth allocations
to traffic classes, while also allowing specification of upper
limits for inter-class sharing. Taking into account its
features, the HTB mechanism is generally used to provide
shaping functions, based on TBF specific principles [10],
identified by the token bucket concept. At the same time,
HTB is able to prioritize classes of data traffic in a complex
and performant class-based system [11] that allows quality
of service specific control over the network traffic.

A powerful characteristic feature of HTB, that lead to

many QoS success implementations on Linux based
platforms, is related to the fact that since HTB shapes traffic

Volume 56, Number 3, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 49

based on the TBF algorithm, it does not depend on network
interface characteristics and so is not taking concerns about
the underlying bandwidth of the outgoing interface. HTB is
used to control the usage of the outbound bandwidth on a
given link, using one physical link to simulate several slower
links and to send different kinds of traffic on different
simulated links [12].

The system administrator role is to specify how to divide

the physical link into simulated links and to decide which
simulated link to be used for sending a given packet.

In practical implementations, within the Linux based

routers/servers, using Linux distributions such as RedHat
Linux or Fedora Linux, CentOS and others, HTB can be
found as a packet scheduler and is currently included in the
latest Linux kernels, under /net/sched/sch_htb.c kernel
source tree [13].

II.B. Linux traffic control instrument
Modern Linux-like operating systems provide traffic control
through the Iproute2 component, which is a collection of
utilities for controlling TCP/IP networking parameters and
data traffic flows in Linux [14]. Among the kernel included
tools found in the iproute2 package there are two very
important instruments:

- ip command, provides the necessary access to
network control and configuration operations for
IP packets;

- tc command, with powerful traffic control features
used to achieve QoS implementation at the
Linux kernel level.

Since the tc (traffic control) tool from iproute2 can be
used to show or manipulate traffic control settings in a Linux
router environment, this instrument will be used to configure
the QoS mechanism that involves those three types of
objects through which the data flows are processed: qdiscs
(queuing disciplines), classes and filters, as it can be seen in
Figure 1 [15].

II.C. HTB-Tools
There are known several implementations of the HTB
algorithm over Linux-based platforms [16, 17].

The quality assurance solutions that are using HTB
components cover the full scale of methods for QoS
implementation:

- the oldest and most common method, the CLI
(Command Line Interface), as it can be used
with Iproute2 components (e.g. tc);

- the configuration of a Linux network service
(service htb or /etc/init.d/htb), using the text
configuration files (e.g. /etc/htb/eth0-qos.cfg,
contains the QoS rules for the eth0 network
interface, generated by the HTB-tools);

- the most recent method, the Web interface.(e.g.
WebHTB or T-HTB WEB manager).

Among all QoS solutions that are based on the HTB

algorithm, the most interesting one was considered the one
named HTB-tools.

The attraction points of this QoS solution are given by the

fact that it is easy to implement, it is offering a fast
deployment and configuration, and is a low resource
consuming application.

The HTB-tools, bandwidth management software

package, that can be found online in different versions, [18-
20] offers a software suite with several tools that help the
system administrator to simplify the complex process of
bandwidth allocation. Having the Linux kernel's HTB
facility as core structure, it can be used for both upload and
download traffic management. The HTB-tools components
can generate and check the configuration files and also
provide a real time traffic overview for each separate client.

One of the most attractive features of HTB-tools is the

fact that the configuration manner is very simple and
intuitive, in contrast with the Linux standard traffic control
(tc) instrument.

The setting procedure of the QoS service based on the

HTB-tools is accomplished through the configuration files
that can be easily understood and written, having intuitive
directives. The simplicity of the configuration modality
results from the syntax in which the directives for classifying
data traffic and allocating network resources are written.

The initial version of the HTB-tools, as a QoS instrument,

allows src and dst descriptors to identify only IPv4 network
addresses as the source and the destination of a data packet,
schematically represented in Figure 2. In the following
section we will propose a solution to upgrade the QoS
instrument with features that will allow IPv6 addresses
processing also. Having no IPv6 components, the initial
version of the HTB-tools package is unable to process the
IPv6 traffic.

This is a major disadvantage because all IPv6 data traffic

arrived will not fit in any defined traffic class, so this traffic
with no match will be redirected to the default class, as it
can be seen in Fig. 2. Generically, the default traffic class is
a class of traffic that collects the unidentified data traffic and
which allocates low QoS resources.

Figure 1. Traffic control (tc) help usage.

[root@router]# tc

Usage: tc [OPTIONS] OBJECT { COMMAND | help }

where:

OBJECT := { qdisc | class | filter }

OPTIONS := { -s[tatistics] | -d[etails] | -r[aw] }

Volume 56, Number 3, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 50

Figure 2. Possible traffic paths, without IPv6 QoS

component.

III. PROPOSED IMPROVEMENTS
The objective pursued in this article is to provide an
improved version of the HTB-tools instruments by
extending the applicability domain to the IPv6 addressing
space.

The contributions found in the following sections aim to
solve a practical situation where there is a need to enforce
QoS rules within a computer network administered via a
common Linux-based router, when an IPv6 network
protocol specific addressing space it was introduced in
usage, along with the previously used IPv4 addresses.

III.A. HTB-tools limitations
The major drawback of the HTB-tools is related to the fact
that it is limited to the IPv4 addressing space, being
developed before the IPv6 mass implementations. Since the
current IPv4 address space tends to be depleted due to the
increased number of users who need public addresses from
this address space, we are proposing an upgraded version of
HTB-tool, a version that will be able to process the entire IP
addressing space.

Figure 3. Possible data pathway, after IPv6 QoS

components inclusion.

III.B. IPv6 Extension for HTB-tools
As mentioned earlier, the QoS applications found in original
HTB-tools package has been developed for the specific
network address space of IPv4 network layer protocol. Our
research was motivated by the need of simple and
performant quality of service instrument for Linux-based
routers.

The IPv6 networking addressing scheme is solving the
IPv4 deficient addressing space problem. After migrating to
IPv6-based networking or in mixed IPv4 and IPv6 networks,
there is a permanent need of QoS mechanisms to provide
quality communication level to each user or network
component.

We are proposing to improve the parsing component of
the QoS instrument with IPv6 elements. With such features,
the improved QoS mechanism will be able to filter and
classify IPv6 traffic, as represented in Figure 3. In this way,
the IP data traffic can be completely processed in all running
IP versions, and QoS rules can be applied to satisfy the
network administration and performance requirements.

Parsing QoS rules

(HTB service

configuration file)

IP Traffic

IPv4 or IPv6

NO
Match

YES

Apply

Specific

Class

QoS rules

Apply

DEFAULT

Class

QoS rules

Destination

IPv4 data traffic

IPv6 data traffic

Parsing QoS rules

(HTB service

configuration file)

IP Traffic

IPv4 or IPv6

NO
Match

YES

Apply

Specific

Class

QoS rules

Apply

DEFAULT

Class

QoS rules

Destination

IPv4 data traffic

IPv6 data traffic

Volume 56, Number 3, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 51

Figure 4. IPv6 lexical analysis rule [22].

Having both IP addressing classes identified the quality
assurance mechanism will be able to apply the QoS rules to
all IP traffic, including originating from IPv6 sources, or
intended to IPv6 network destinations.

The improvement proposes a contribution to the HTB-
tools QoS application package by extending the applicability
domain of the HTB-tools solution to the addressing space of
the IPv6 version of network protocol, which we have
identified generic as: the IPv6 Extension of HTB-tools.

III.C. HTB-tools improvements
The most important contributions to the HTB-tools package
can be found in the application that is designed to browse
and interpret directives from the configuration file of the
HTB service system. During the development process, we
have identified and made the required improvements to a
HTB-tools component, the instrument called q_parser.

We are proposing an upgraded version of the QoS rules
parser that allows IP addresses interpretation of the IPv6
addressing space. For this reason have to insert in the source
code of the q_parser component a directive that defines the
traffic control filter for IPv6 addresses, as follows:

#define U32v6 "U32v6=\"filter add dev $DEV protocol
ipv6 parent 1:0 prio 2 u32\"".

To make IPv6 addressing space usable by the HTB-tools,
first we had to include a lexical analysis rule for IPv6, as
presented in Figure 4.

The rule is described using the FLEX programing
language, which is the specific language dedicated to
generating lexical analysis. The lexical analysis rule was
included in parse_cfg file. The proposed lexical syntax
analysis overlaps the specific format of IPv6 addresses (i.e.:
2001: b30: 4c02: 1: 219: 66ff: fe73: ddc5).

From Figures 5 and 6, which contain HTB service
configuration items, it can be seen a difference between the
previous version of HTB-tools and the proposed version.
The improved version adds the IPv6 features to the HTB-
tools, providing a more powerful Linux QoS instrument.

Figure 5. HTB service configuration file with IPv4 rules

#################

eth0-qos.cfg ###

#################

class class_ipv4 {

bandwidth 1024;

limit 2048;

burst 2;

priority 1;

que htb;

client client1 {

bandwidth 48;

limit 64;

burst 2;

priority 1;

mark 20;

dst {

80.96.120.48/32;

};

};

client client2 {

bandwidth 148;

limit 264;

burst 2;

priority 3;

mark 20;

dst {

80.96.120.122/24;

};

};

}; # end of specifc traffic class

class default { bandwidth 8;

}; #end of the default class

((([0-9A-Fa-f]{1,4}:){7}(([0-9A-Fa-f]{1,4})|:))|

(([0-9A-Fa-f]{1,4}:){6}(:|((25[0-5]|2[0-4]|[01]?{1,2})(.(25[0-5]|2[0-4]|[01]?{1,2})){3})|(:[0-9A-Fa-f]{1,4})))|

(([0-9A-Fa-f]{1,4}:){5}((:((25[0-5]|2[0-4]|[01]?{1,2})(.(25[0-5]|2[0-4]|[01]?{1,2})){3})?)|((:[0-9A-Fa-f]{1,4}){1,2})))|

(([0-9A-Fa-f]{1,4}:){4}(:[0-9A-Fa-f]{1,4}){0,1}((:((25[0-5]|2[0-4]|[01]?{1,2})(.(25[0-5]|2[0-4]|[01]?{1,2})){3})?)|

((:[0-9A-Fa-f]{1,4}){1,2})))|

(([0-9A-Fa-f]{1,4}:){3}(:[0-9A-Fa-f]{1,4}){0,2}((:((25[0-5]|2[0-4]|[01]?{1,2})(.(25[0-5]|2[0-4]|[01]?{1,2})){3})?)|

((:[0-9A-Fa-f]{1,4}){1,2})))|

(([0-9A-Fa-f]{1,4}:){2}(:[0-9A-Fa-f]{1,4}){0,3}((:((25[0-5]|2[0-4]|[01]?{1,2})(.(25[0-5]|2[0-4]|[01]?{1,2})){3})?)|

((:[0-9A-Fa-f]{1,4}){1,2})))|

(([0-9A-Fa-f]{1,4}:)(:[0-9A-Fa-f]{1,4}){0,4}((:((25[0-5]|2[0-4]|[01]?{1,2})(.(25[0-5]|2[0-4]|[01]?{1,2})){3})?)|

((:[0-9A-Fa-f]{1,4}){1,2})))|

(:(:[0-9A-Fa-f]{1,4}){0,5}((:((25[0-5]|2[0-4]|[01]?{1,2})(.(25[0-5]|2[0-4]|[01]?{1,2})){3})?)|((:[0-9A-Fa-f]{1,4})

{1,2})))|(((25[0-5]|2[0-4]|[01]?{1,2})(.(25[0-5]|2[0-4]|[01]?{1,2})){3})))(%.+)?

Volume 56, Number 3, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 52

only.

Figure 6. HTB service sample configuration file with IPv6

components.

The second major improvement to the HTB-tools is found
in q_parser, where the rules for IPv6 traffic control were
added, to be performed by Linux traffic control (tc) utility.
The source code has been improved by adding code to
process the communications streams between IPv6
addresses. This section also includes traffic control calls for
IPv6 traffic prioritization enforcement, creating traffic
classes and traffic filtering procedures for IPv6 addresses.

After updating the IP-parsing component (q_parser), the
QoS directives can be acquired from the configuration files.
Having IPv6 elements active in the parser components, in
configuration files can be now included rules that have IPv6
components in source and destination descriptors.

HTB-based QoS service monitoring can be done in two
ways: from console (using the q_show console utility) and
from a web page (placing the q_show web component under
a web accessible structure). Figure 7 and Figure 8 present
the interfaces of monitoring utilities for HTB service, from
console and the web interface, respectively, that are
introduced to demonstrate the functionality of the proposed
solution.

Figure 7. HTB-tools with IPv6 extension console.

Figure 6. HTB-tools with IPv6 extension web component.

As it can be seen in the sample configuration file, Fig. 6,
or from the monitoring applications, Fig. 7 (console) and
Fig. 8 (web interface), the improved QoS tools provide
inputs for networking traffic classes with clients (hosts or
networks) that have full range of network addresses.

In previous versions of HTB-tools, all connections from
hosts or networks based on IPv6 addresses were directed to
the default traffic class. This was a great inconvenient
because in previous versions of HTB-tools it was impossible

#################

eth0-qos.cfg ###

#################

class class_ipv4_and_ipv6 {

bandwidth 1024;

limit 2048;

burst 2;

priority 1;

que htb;

client client1_ipv4 {

bandwidth 48;

limit 64;

burst 2;

priority 1;

mark 20;

dst {80.96.120.48/32;};

};

client client2_ipv4 {

bandwidth 148;

limit 264;

burst 2;

priority 3;

mark 20;

dst {80.96.120.122/24;};

};

client client3_ipv6_ssh {

bandwidth 48;

limit 64;

burst 2;

priority 1;

mark 20;

dst {

2001: b30: 4c02: 1: 219: 66ff: fe73:ed61/128 22;

};

};

client client4_ipv6_web {

bandwidth 148;

limit 264;

burst 2;

priority 3;

mark 20;

dst {

2001: b30: 4c02: 1: 219: 66ff: fe73:ed61/128 80;

};

};}; # end of speciffic traffic class

class default { bandwidth 8;

}; # end of the default class

Volume 56, Number 3, 2015 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 53

to identify IPv6 data flows and implicitly it was difficult to
allocate QoS resources to those data streams, hosts,
networks, or services, the default traffic class having, most
of the time, a limited level of associated network resources
(less bandwidth and low priority).

IV. CONCLUSIONS
This article presents the enhancements proposed over the
HTB-tools software packet, which is a successful Linux QoS
solution. With our contribution, we have expanded the scope
of the original applications set to the latest version of
network protocol, IPv6. The result is a more powerful tool
that can be used to ensure the quality of service to the
computer networks, having both, IPv4 and IPv6 resources.

Compared with the previous solutions, the IPv6 Extension
of HTB-tools proposed by the authors has the advantages of
providing the ability to work with both versions of IP
network protocol, IPv6 networking traffic breakdown into
traffic classes, clients or services. Thereby, after introducing
rules for the processing of IPv6 addresses, the improved
QoS instrument can be easily used to associate QoS rules for
each network address, defined network spaces, or specified
network services, whether they are using IPv4 or IPv6.

The easy administration of the QoS service is a decisive
factor in using HTB-tools as QoS tool. Whit HTB-tools
service components, the QoS rules management is
performed through a very intuitive configuration files,
without requiring advanced knowledge of networking, Linux
or QoS principles.

Our proposed solution presents a real interest as QoS
solution on Linux-based packet routing equipment, because
it can be used to manage QoS specific rules over computer
networks having both IPv4 and IPv6 protocol stacks
available, without involving high cost levels. There are QoS
implementations that have already been successfully tested
in production environments, academia and private
companies, which are using our proposed solution of
improving HTB-tools by the IPv6 extension for Linux traffic
control based on the HTB packet scheduler.

ACKNOWLEDGEMENTS
This paper has been financially supported within the project
entitled „SOCERT. Knowledge society, dynamism
through research”, contract number
POSDRU/159/1.5/S/132406. This project is co-financed by
European Social Fund through Sectoral Operational
Programme for Human Resources Development 2007-2013.
Investing in people!

REFERENCES

[1] Postel, J., "Internet Protocol", RFC 791, September 1981.
[2] P. Srisuresh, K. Egevang, “Traditional IP Network Address
Translator (Traditional NAT)”, RFC 3022, January. 2001.
[3] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and E.
Lear, "Address Allocation for Private Internets", RFC 1918, 1996.
[4] Aboba, B. and W. Dixon, "IPsec-Network Address Translation
(NAT) Compatibility Requirements", RFC 3715, March 2004.
[5] P. Srisuresh,and B. Ford, “Unintended Consequences of NAT
Deployments with Overlapping Address Space”, RFC 5684, 2010
[6] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification”, RFC 2460, 1998.
[7] I. van Beijnum, "IPv6 Internals," The Internet Protocol Journal,
vol. 9, no. 3, pp. 16-29, 2006.
[8] M. A. Brown, Traffic Control HOWTO, http://linux-
ip.net/articles/Traffic-Control-HOWTO, 2006.
[9] M. Devera, HTB , http://luxik.cdi.cz/~devik/qos/htb/, 2003.
[10] Martin Devera, Hierarchical token bucket theory,
http://luxik.cdi.cz/~devik/qos/htb/manual/theory.htm, May 2002.
[11] Ivancic, D.; Hadjina, N.; Basch, D., "Analysis of precision of
the HTB packet scheduler," Applied Electromagnetics and
Communications, 2005. ICECom 2005. 18th International
Conference on , vol., no., pp.1,4, 2005.
[12] M. Devera, Bert Hubert, Linux 2.6 - man page for tc-htb,
http://www.unix.com/man-page/linux/8/tc-htb/, 2002.
[13] Linus Torvalds, Linux kernel source tree, git online:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/net
/sched/sch_htb.c?id=refs/tags/v4.0, 2015.
[14] A. Kuznetsov, S. Hemminger, "NET: Iproute2",
http://www.linuxfoundation.org/en/Net:Iproute, 2002.
[15] Martin A. Brown, Traffic Control HOWTO, http://linux-
ip.net/articles/Traffic-Control-HOWTO/software.html, 2002.
[16] Balan, D.G.; Potorac, D.A., "Linux HTB queuing discipline
implementations," Networked Digital Technologies, 2009. NDT
'09. First International Conference on, pp.122-126, 2009.
[17] D. Balan, A. Potorac, “Extended Linux HTB Queuing
Discipline Implementations”, International Journal of Information
Studies, Vol 2, No 2, ISSN 1911-8414, pp. 122-131, 2010.
[18] HTB-tools, http://sourceforge.net/projects/htb-tools.
[19] HTB-tools, http://freecode.com/projects/htb-tools.
[20]HTB-tools, https://aur.archlinux.org/packages/htb-tools.
[21] Bert Hubert, Linux Advanced Routing & Traffic Control
HOWTO - The u32 classifier, http://www.tldp.org/HOWTO/Adv-
Routing-HOWTO/lartc.adv-filter.u32.html, 2002.
[22] Check IPv4 and IPv6 addresses regular expression
http://www.cprogramdevelop.com/1820821/.

