

Volume 57, Number 3, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received July 19, 2016; revised September 21, 2016

10

AUTOMATIC PARKING ACCESS USING OPENALPR ON RASPBERRY PI3

Elena Roxana BUHUS, Daniel TIMIS, Anca APATEAN

Technical University of Cluj-Napoca, Cluj, Romania

Abstract: Automatic parking access using a real time embedded system for Automatic License Plate Recognition (ALPR) and access
control is common these days in urban commercial spaces, office buildings and other similar public spaces. This paper provides another
method for implementing an ALPR system using an open source C/C++ library called Open ALPR, based on OpenCV and Tesseract-
OCR. The fundamental goal of the system is to use image processing to identify every single vehicle that goes in and out through the
barrier gate parking system. The hardware is implemented with the latest version of Raspberry Pi, and a Pi Noir camera.

Keywords: OCR, Vehicle license plate, OpenALPR, Application Programming Interface (API), Raspberry Pi.

I. INTRODUCTION
The today’s science and IT companies are developing
research in intelligent automatic systems, with a great impact
on people lives, especially in urban spaces. Many intelligent
systems today use computer vision as a way to acquire,
process, analyze, and understand images and videos from
the real world.

OpenCV (Open Source ComputerVision) is a library of
programming functions, initially developed at Intel Research
Center initiative, to analyze images by computer vision.
Starting few years ago, the support for OpenCV is assured
by a nonprofit foundation, with the same name [1], being
free for both academic and commercial use.

OpenCV can be used on a variety of operating systems
(O.S.) including Windows, Android and Unix-like ones and
having interfaces for more programming languages, like
C/C++, Python and Java.

Image operations like convolution, filtering, detecting
foreground/ background regions and depth, extracting
features, classifying, tracking by Haar cascades for example
are possible by OpenCV [2].

ALPR (Automatic License Plate Recognition) or simply
LPR is an image-processing technology used to identify
vehicles by their license plates (LP), being popular in
various security and traffic applications: it is often
implemented in different parking or access control systems
to automatically enter pre-paid or authorized members, to
calculate parking fee or to provide a proof of parking in case
of a lost ticket or even to help in preventing car hijacking
(by using an additional driver face image recognition
operation). Other applications include border control - in the
entry or exits of different countries, traffic control - the
vehicles can be directed to different lanes according to their
entry permits, to reduce traffic congestions and the number
of attendants, or to produce a violation fine on speed or red-
light semaphores and others.

The ALPR task can have complex characteristics given
the diverse effects in matters of light and speed. Depending
on the use of the application, different systems can be
deployed, such as smart cameras for traffic surveillance that
has the advantage of allowing direct on site image

processing tasks [3].
Most of the existing ALPR systems commonly use

cores in Matlab for Optical Character Recognition (OCR).
This paper provides a method for implementing an ALPR
system using an open source C/C++ library called
OpenALPR, which is based on OpenCV and Tesseract-
OCR. Tesseract is one of the most accurate open source
OCR engines, being able to work under various O.S.; it is a
free software, initially developed at HP labs and being
released under the Apache License [4]. The ultimate version
V3.04 brings the total count of support languages to over
100 [5]. Still, to deliver accurate results, images given to
Tesseract should be properly preprocessed: images must be
scaled up, any rotation or skew must be corrected, low-
frequency changes in brightness must be high-pass filtered,
and dark borders must be removed [6].

Generally, there are two types of applications
employing an embedded system (ES): the ones dedicated for
Internet of Things and Big Data, where a server located at
distance may collect and process some data registered by the
ES and the ones employing a powerful ES, with PC-like
capabilities, which locally may perform some processing
with the collected data.

The second type of applications generally use a SBC
(single-board computer) like development platform that use
a SoC to perform several functions locally. In our case, the
information is extracted from the input data and sent in a
compressed form to a central node implemented with a
Raspberry Pi platform, hence decreasing demands on both
communication and computation infrastructure. Further-
more, ESs are cheaper than general purpose computers and
suitable for deployment in harsh environments due to
physical robustness [3].

In this sense, focusing upon the automatic parking
access ES, one can say that such video surveillance is
important not only for access control but also for tracking of
stolen cars, even identification of dangerous drivers. The
system runs fully autonomous using a Raspberry Pi board
equipped with a Pi Noir camera.

In section II, we provide an overview of the embedded

Volume 57, Number 3, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 11

platform and of the software system, while in section III we
present some details and results of the implementation and
developed tests. Finally, the conclusion and possible
improvements are highlighted in section IV.

II. SYSTEM DESCRIPTION

Our system mainly consists of a hardware part and a
software part. The hardware is using a SBC platform, i.e. the
3-rd version appeared recently on the market, Raspberry Pi
3 and as a capability, a Pi Noir camera for image deploying.
The software part is mainly based on an open source packet-
library [7]. Even the application is designed for a complete
system, thus including to lift up or down the barrier, in this
paper we mainly focus on the part concerning the Raspberry
Pi board.

II.A Embedded Platform Description

The ES we used, consists of a Pinoir Camera for image
acquisition and a Raspberry PI3 platform for image
processing; besides, a barrier control algorithm is also used,
but is not detailed in this paper. In Figure 1, a part of the
setup used for tests is presented.
 On the Raspberry Pi 3 platform, a Broadcom SoC, which
includes an ARM compatible CPU and an on chip Graphics
Processing Unit GPU (a VideoCore IV) is located. The CPU
speed is ranked at 1.2 GHz, with an on board memory of
1GB RAM and some consistent cache for the quad-core 64-
bits CPU. Table I compares the most important capabilities
of some Raspberry Pi models. As one could notice, the CPU
speed ranges from 700 MHz to 1.2 GHz, the on board
memory range from 256 MB to 1 GB RAM, and most
boards have between one and four USB ports. HDMI,
composite video output and a 3.5 mm jack for audio are also
present on the board. There is also a number of 26 or 40
GPIO pins which support common protocols like I2C. Some
models have an Ethernet port and the Raspberry Pi 3 has
also on board WiFi 802.11n and Bluetooth.
 Using a Secure Digital SD card, the Raspberry Pi
platform stores the O.S. and program memory in either
SDHC or MicroSDHC size [8]. The Raspberry Pi
foundation provides Debian and Arch Linux for download
[9]. For this project, a Debian distribution was used meaning
Raspbian, dedicated for Raspberry Pi platforms.

This type of platform has a wide area of possible
applications [10], [11], [12].
 Three years ago, with a relatively low-cost, the
Raspberry Pi Noir Camera board was first launched on the
market. It has no Infrared IR filters (thus the name) and
provides great capabilities also for low light conditions. A
5MP Omnivision 5647 Camera Module provide still
pictures with resolution of 2592x1944 pixels, and the later
version launched in May 2016 has 8 MP [9]. Video stream
are also supported: 1080p at 30fps (frames per second),
720p at 60fps and 640x480p 60/90 [9]. The advantage for
the chosen application is that the camera is fixed and frontal
to the barrier. It is used for close distance object detection,
in this context vehicle license plates.
 The camera board is equipped with a flexible flat cable
that plugs into the CSI connector of the board, which is
located between the Ethernet and HDMI ports, as shown in
Figure 1.

Table I. The main characteristics of Raspberry Pi boards

Gen. V.1 V.2 V.3

Model A, A+ B, B+ Model 2 Model 3

USB

Hub
No

Yes, with

 2 (resp.4)

USB ports

Yes Yes

Ether-

net
No Yes Yes Yes

2835 2836 2837 SoC:

BCM

283x

with

CPU

32b,700MHz

ARM1176 JZF-S

32b,900MHz

4-cores ARM

Cortex-A7

64b,1.2GHz

4-cores ARM

Cortex-A53

CPU

 cache

L1: 16KB,

L2: 128KB

(L2 – mostly by GPU)

L1: 16KB,

L2: 256KB

(shared)

L1: 16KB,

L2: 512KB

(shared)

RAM

 on

board

256 MB 512 MB 1 GB 1 GB

GPIO

pins
40 26, resp.40 40 40

Considering the hardware implementation of the system, this
technology does not need any installation per car, the
prototype being only mounted on the barrier or near it.
 The system may use illumination (such as infrared light
source if there is no source of light) and the camera will take
the image of the front or rear of the vehicle. In this way, a
monochrome image result, since the infrared spectrum is
above the normal color spectrum. The image-processing
software analyzes the image and extracts the LP
information. If it recognizes the vehicle number, it opens the
barrier.
 The LP recognition task is also called in different
references as Automatic Vehicle Identification, Car Plate
Recognition, Automatic Number Plate Recognition, Car
Plate Reader or even Optical Character Recognition for Cars
and possibly others [13].
 Besides, the system must consider that different country
standards may exists as concern the vehicle license plates:
they may differ in form, shape and material. Therefore, the
LPR systems are country specific and are adapted to the
country where they are installed and used. Also, the process
may be inappropriate for some plates if they present
additional information (written inside the LP area or
attached to the plate).

Figure 1. Raspberry PI3 with Pi Noir camera setup

II.B. Software System Overview
The proposed system functions in the following manner:

Volume 57, Number 3, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 12

while the vehicle approaches the barrier, the LP recognition
unit automatically reads the LP registration number,
compares it to a predefined list and opens the barrier if there
is a match. Thus, the software framework consists of two
modules: one to accomplish the ALPR task and another one
to provide the barrier control (the hardware corresponding
part not being presented in the current paper).

Figure 2. Automatic Parking access concept

The ALPR module provides input for the control algorithm
that will take the decision if the barrier will authorize the
access for the current vehicle (present in front of it) or not.
The focus in this paper is upon the ALPR module instead of
the barrier control module.

The OpenALPR library, available in C/C++, has
bindings in C#, Java and Phyton. Furthermore, the software
can be used as standalone black box to process video
streams and make the data available to another subsequent
system. Pre-compiled binaries are available for 32/64-bit
Windows and Ubuntu Linux. The Application Programming
Interface (API) operates as a pipeline in matter of
processing stages, and the output of each stage can be
viewed in the debug mode, as illustrated in Figure 3.

There are 8 pipeline stages, as follows: 1. LP image
detection, 2. image binarization, 3. char analysis, 4. compute
LP image edges, 5. LP image deskew, 6. character
segmentation, 7. OCR, 8. post processing. To easily explain
in text, we grouped the 8 pipeline stages in 3 main modules,
as shown in Figure 4.

Figure 3. Processing pipeline stages in debug mode

Figure 4. Block schematic of the ALPR algorithm

As presented in Figure 4, the API to accomplish the ALPR
task can be seen as divided in three main modules: license
plate detection, license plate character recognition and post
processing, according to the pipeline stages.

The ALPR algorithm starts with the detection stage,
where potential LP regions are identified. Next, in the
binarization stage, the LP region image is converted into an
image with only black and white pixels, while in the char
analyses stage, the character-sized “blobs” in the LP region
are identified. In the following step, the edges of the LP are
identified and provided as input to the deskew stage, where
an image transformation is applied to improve readability,
view based on the ideal LP size.

After the LP area was detected and the data was
prepared as shown in the first module from Figure 4, the
next module performs the recognition of the characters
inside the LP image. Thus, the character segmentation stage
isolates and cleans up the characters, setting proper input for
the OCR stage, where it analyses each character image and
provides multiple possible letters. In the last stage or
module, the one of post processing, the algorithm
determines the best possible LP letter combinations,
providing the information to the Beanstalk queue as JSON
data. These are detailed in the next sections.

Module 1: LP detection

LP area detection

For each input image the detection phase is first applied.
The Local Binary Patterns (LBP) algorithm is used for
classification, to find possible LP regions and the dimension
values (x, y, width, height).
 The basic idea of LBP computation is to summarize the
local structure in an image by comparing each pixel with its
neighborhood. Thus, the LBP algorithm considers a pixel as
center and threshold its neighbors against. If the intensity of
the center pixel is greater or equal to that of its neighbor,
then denote it with 1 and 0 if not. In this sense, each pixel
will be represented in binary, after 8 compare computations,
for example like 11001111.
 With 8 surrounding pixels, there are 256 possible
combinations, called LBP features or sometimes referred to
as LBP codes [17]. The detection phase is usually the most
processing-intensive one.
 To improve the system performance, this operation can
be GPU accelerated [9].

Volume 57, Number 3, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 13

Figure 5. An example of LP input used for ALPR testing

LP image binarization

This phase occurs once for each possible LP region detected
in the first step. Within this phase, multiple binary images
are created for each LP region, these helping to provide the
best possible chance of finding all the characters inside the
LP region. For example, if the image is too dark or too light,
a single binarized image may miss some characters. The
method used to accomplish this operation is inspired by
[15], [18] but with various parameters. Each of the binary
images are processed in subsequent phases, as presented in
the following.

Character Analysis

Within this phase, the goal is to find character-sized regions
in the LP region. This is done by first finding all connected
blobs in the LP region. Second, it searches for blobs that are
roughly the width and height of a LP character and have
tops/bottoms that are in a straight line with other blobs of
similar width/height. In each region, this analysis is
performed multiple times: it starts by looking for small
characters, while gradually searches for larger ones. If there
are no findings in the region, then the region is thrown out
and no further processing takes place. If it finds some
potential characters, then the character region is saved and
further processing takes place.

Compute LP image edges

The next phase is to find the edges within the LP image. If
in the detection phase, a region is provided where a possible
LP exists, this being larger or smaller than the actual plate,
in this stage the goal is to find the precise top/bottom/left
and right edges of the LP. The first step is to find all of the
Hough lines for the LP region, by processing the LP image
and by computing a list of horizontal and vertical lines.

In the second step, using this list as well as the character
height (computed in the third stage of Character Analysis)
the likeliest LP line edges are found. The algorithm used in
this stage employs a number of configurable weights to
determine which edge would be a good fit. Based on the
default edge, meaning the ideal width/height of the LP, it
identifies a good match. The theory used is as presented in
[19], already implemented in OpenCV by functions
HoughLines and HoughLinesP.

Figure 6. An example of LP edges in the output stage

Perform LP image deskew

At this point, using the LP edges information, the deskew
stage remaps the LP region to a standard size and
orientation. In an ideal approach, this should provide a

correctly oriented LP image, no rotation or skew being
present in this stage.

Module 2: LP characters recognition

Character Segmentation

The character segmentation phase, has the goal to isolate all
the characters that make up the LP Image. It uses a vertical
histogram to find gaps in the LP characters. In this phase,
also the character boxes is cleaned up by removing small,
disconnected speckles and disqualifying character regions
that are not tall enough. It removes “edge” regions so that
the edge of the LP to not be inappropriately classified as a
‘1’ or an ‘I’. This stage also uses filters to clean the image
after segmentation, so that the provided output will be more
accurate for the next processing stage.

Figure 7. An example of segmentation output before
cleaning filters applied, and afterwards

OCR (Optical Character Recognition)

The OCR phase, based on the Tesseract OCR engine,
analyzes each character independently. For each character
image, it computes all possible characters and their
confidences.

Figure 8. An example of LP matching number as
provided by the OCR stage

Module 3: Post processing

The OCR stage will provide a list of all possible OCR
characters and the confidences associated to those, and the
post processing stage will identify the best plate letter
combinations.

In this stage, all characters below a particular threshold
will be disqualified. At this stage, the region validation is
handled if requested. For example, if in the OpenALPR is
specified that it is a “Missouri” plate, then it will try and
match the results against a template that matches the
Missouri format (e.g. [char][char][number]-[char][number]
[char]) [7].

III. Software architecture overview and configuration

The ALPRD module of the OpenALPR application enables
the use of the ALPR library on a mjpg video stream in order
to achieve real-time LP numbers recognition in real world
situations.

The module works by first analyzing the configuration
files and providing runtime parameters, checking if present
and then connecting to a valid video-camera/mjpg video
stream. The configuration files required to accomplish this
operation are openalpr.conf and alprd.conf which are

Volume 57, Number 3, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 14

responsible for the behavior of the alpr library, respectively
of the alprd module.
The configurable options of the ALPRD module as
mentioned in alprd.conf are used to:
- set the LP format the users wishes to identify, the available
possibilities for the LP format are the US or Europe format;
- define a site name for the provided stream which helps to
sort or label saved results from multiple devices to a server;
- define the interested stream to be processed, providing the
IP address if it is a network or IP camera stream, or using
the web cam keyword to enable the application to manage
the video-stream from a connected video-camera via using
the OpenCV library;
- set the number of results provided by the OCR library
Tesseract to be considered;
- configure if images containing identified license plates
should be stored or uploaded via POST to a remote server
and also configuring the destinations for both options.

After the runtime dependencies and parameters have
been analysed and set, the daemon enters within a for loop
that will keep it running for as long as the provided stream is
active. Inside the for cycle, a new process is forked, that will
create two new threads for the image processing and
recognition and for uploading/storing the results to a
location set in the alprd.config file.

The stream information is retrieved and the first thread
is created to run a streamRecognitionThread function which
in turn will run the ALPRD library recognition function and
process its results by converting the information to JSON
format, as illustrated in Figure 9.

After this thread is finished, the upload data thread
takes the results and sends them via POST to a server if
enabled and uploads the results to a Beanstalk message
queue where they can be consumed by the end user.

Figure 9. Software implementation for ALPR on Raspbian

The maximum resolution used for image captures is
1280x720 pixels, while the threshold detection for contrast
detection was set to a value of 0.3. The minimum distance of
the car in front of the camera was calibrated to 1m. The
maximum range distance from the camera was observed
while testing between 2-3m, however this depends on the
lighting conditions. If these ranges are not meet,
experiments showed that the LP recognition operation can
be inaccurate, even from the beginning, e.g. no detected
plate. If the light condition affect too much the contrast of
the captured image, no plate is detected.

The level of confidence for the OCR stage was set to
10, meaning that from 10 possible proposed identified LP
numbers. The candidate with the highest level of confidence
will be considered as the correct result.

An example of the performance of the application at each
pipeline stage, is provided in Table II. Processing speed
depends much upon the contrast level identified in the input
capture, meaning that a better contrast will provide a lower
processing time. The extra added delays, given by
intermediate processing between stages are not listed in the
table. The overall effort was summarized and listed, as
presented in the last line of Table II.

Table II. Example of processing performance for ALPR

Processing stage Time
Capture contrast 81.5 ms

Character Analysis Time 168.1 ms

High Contrast Detection Time 1.0 ms

Plate Lines Time 55.8 ms

Plate Corners Time 22.6 ms

Deskew Time 9.6 ms.

Character Segmentation Time 124.2 ms

OCR Time 129.8 ms

Post processing time 4.4 ms

Total Processing time 800.2 ms

III. EXPERIMENTAL RESULTS

Considering some constraints of the application, due to the
fixed camera used for close distance LP recognition, it was
assured that distance range would be most of the time meet
by the driver, as mentioned in section II.B.
 Some basic tests were run on random test images, five at
number, as shown in Table III, to check the processing
speed and detection success over the contrast parameter of
the images. The contrast parameter for each image was
measured using ImageJ 1.51d, an open platform for
scientific image analysis [16]. ImageJ is an open source
image processing program designed for scientific
multidimensional images. It is highly extensible, with
thousands of plugins and macros for performing a wide
variety of tasks, and a strong, established user base. The
results are represented in Table III and Figure 10 illustrate
the prototype mounted on a real barrier.

Table III. Testing more images- the obtained results

Image
Contrast

Value
Total Processing

time [ms]
Image1 95.8 1003.5
Image2 81.5 800.2
Image3 152.3 2740.1
Image4 122.3 3019.2 – no LP

found
Image5 142.6 826.4

Figure 10. The prototype mounted on a real barrier

Volume 57, Number 3, 2016 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 15

IV. CONCLUSION
In this paper, a real-time embedded system used for
automatic parking access using openALPR API over
Raspberry PI 3 platform was presented. The system is based
on a Raspberry Pi platform, a hardware which has evolved
through several versions and feature variations in CPU
capabilities, memory capacity and peripheral-device
support. The system operates on image frames acquired with
a Pi Noir camera board, without any additional sensor input.
The camera has no Infrared IR filters, providing thus great
capabilities also for low light conditions. The performances
of the system are more than enough for the application itself
required in matter of response time and compensation of low
image resolution by considering the classification results of
subsequent frames. Considering the complete integration on
an embedded device, the system operates autonomously,
reporting only the finals classification results to the control
module for the barrier control.
 The openALPR library proved to be quite stable and
ready to use for this type of applications. It can be
customized using the configuration option together with
training capabilities for new data sets, for a certain country,
increasing thus the accuracy of the system. Even so, the
obtained results are quite good, meeting the expectations.
For further development, it would be interesting to extend
the application so that, the vehicles that are new for the
parking area should be added to the list in an automated
manner. One solution would be via a mobile application,
that sends the new license plate number as SMS. This would
imply that the user will have to install the application on a
smart phone, and according with some defined steps, to be
able to automatically add the license plate number of his
vehicle to the list. After receiving a confirmation SMS
(where other possible verifications to be performed), he will
be able to grant the access to the parking area.
 Much of such systems are in numerous installations and
the number of systems are growing exponentially, efficiently
automating more and more tasks in different market
segments. The LPR unit checks if the vehicle appears on a
predefined list of authorized cars, and if found - it signals to
open the gate or lift the barrier by activating its relay.

REFERENCES
[1] www.opencv.org [Online, accessed 19 July 2016]

[2] J. Howse, OpenCV Computer Vision with Python, Packt
Publishing, 2013, ISBN: 978-1-78216-392-3

[3] Pratiksha J.,Neha C., Vaishali G. “Automatic License Plate
Recognition using OpenCV”, International Journal of Computer
Applications Technology and Research, vol.3,pp.756-761,2014

[4] Smith, Ray. "An overview of the Tesseract OCR engine.", 2007

[5] wikipedia, http://www.sk-spell.sk.cx/update-of-language-files-
for-tesseract-ocr-304, [Online, accessed 19 July 2016]

[6] https://github.com/tesseract-ocr, [Online, accessed 19 July
2016]

[7] https://github.com/openalpr/openalpr, [Online, accessed 19
July 2016]

[8] https://en.wikipedia.org/wiki/Raspberry_Pi, [Online, accessed
19 July 2016]

[9] http://www.modmypi.com/raspberry-pi/camera/raspberry-pi-
noir-infrared-camera-board-5mp-1080p-v1.3, [Online, accessed 19
July 2016]

[10] Apatean A., Dunca F., “An Intelligent Eye-Detection Based,
Vocal E-Book Reader for the Internet of Things”, Acta Tehnica
Napocensis. Electronics and Telecommunications, No. 2/2016,
Vol. 57, ISSN: 1221-6542

[11] Sai Yamanoor, Srihari Yamanoor, Raspberry Pi Mechatronics
Projects HOTSHOT, 2015, pp. 606, ISBN 978-1-84969-622-7

[12] A.K. Dennis, Raspberry Pi Home Automation with Arduino,
2015, pp. 148, ISBN 978-1-78439-920-7

[13] http://www.licenseplaterecognition.com/, [Online, accessed
19 July 2016]

[14] https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-
benchmarks/, [Online, accessed 19 July 2016]

[15] J. Sauvola and M. Pietikainen. Adaptive document image
binarization. Pattern Recognition, 33(2):225– 236, 2000.

[16] http://imagej.net/Welcome [Online, accessed 19 July 2016]

[17] Ahonen, T., Hadid, A., and Pietikainen, M. Face Recognition
with Local Binary Patterns. Computer Vision - ECCV 2004
(2004), 469–481

[18] C. Wolf and J. Jolion. Extraction de texte dans des videos: ́ le
cas de la binarisation. In 13eme congres francophone de
reconnaissance des formes et intelligence artificielle, volume 1,
pages 145–152, Jan. 2002

[19]http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hou
gh_lines/hough_lines.html

