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Abstract: In this expository paper, we describe three primality-testing algorithms: Miller-Rabin, Fermat and AKS primality tests. 
The first test is very efficient, but is only capable of proving that a given number is either composite or ‘very probably’ prime. The 
second test is also probabilistic with lower probability and higher execution time. The third test is a deterministic unconditional 
polynomial time algorithm to prove that a given number is either prime or composite; however, it had no practical applications due 
to the time complexity  O (log5 (n)). Thus, the first primality test is at present one of the most widely used in practice as it run at 
logarithmic run time complexity  O (log (n)).  
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I. INTRODUCTION 
Recently, the prompt growth in the information and 
communication technology (ICT) has raised the need to 
exchange massive information. This led to introduce the 
technology of Big Data and Internet-Of-Things (IoT) (Gubbi 
et al. 2013) as well as increased the need for secure 
communication to provide the privacy and information 
security from unauthorized users. As a result, several 
security techniques where used to provide data security and 
assurance named collectively as Cryptography (Paar and 
Pelzl 2010). Cryptography is the science of changing 
information to unreadable form by (i.e. ciphertext) using the 
encryption process, where only the authorized person can 
retrieve or modify the original information (i.e. plain text) 
by using the decryption process. 
 Based on the mechanism of Encryption/Decryption 
processes, cryptographic algorithms can be classified into 
Symmetric Key Cryptography (SKC) in which the same key 
is used to encrypt the plaintext and to decrypt the ciphertext, 
and Public Key Cryptography (PKC) in which the two 
parties (sender and receiver) have two keys; one public 
shared common key for encryption and one private key for 
decryption. Modern SKC algorithms such as AES or 3DES 
are very secure. However, there are several drawbacks 
associated with symmetric-key scheme such as key 
distribution problem, number of keys or the lack of 
protection against cheating (Paar and Pelzl 2010). Thus, 
PKC have solved many of SKC's related problems. PKC 
algorithms are used mainly for Key Establishment, 
Identification and Encryption. RSA is well-known public-
key algorithm. 
 Even though PKC algorithms have resolved many of the 
SKC issues, PKC algorithms requires significant 
computation, which based considerably on the use of 
number theory and modular arithmetic. For instance, RSA 
crypto-algorithm (Abu Al-Haija et al. 2014a) primarily 
depends on the modular arithmetic involving the use of large 
prime numbers with even 1024-bit or more to guarantee an 
acceptable level of security. Such large numbers cannot be 

easily selected with modest trial and error methods, instead, 
distinctive iterative methods are used to test if the number is 
prime or composite that are collectively called as primality 
testing. 
Primality testing (Gallier 2017) is a pure mathematics 
problem that concerns of determining whether a given 
integer is prime. This problem has caught the interest of 
mathematicians in the 20th century with the advent of 
cryptographic systems that use large primes, such as RSA, 
which was the main driving force for the development of 
fast and reliable methods for primality testing. Many 
algorithms were proposed by the scientists over the past few 
years to address the efficient method of testing the primality 
of the integer number. For instance, in this paper, we will 
thoroughly review three of them namely; Fermat primality 
test, Miller-Rabin primality test, and AKS primality test as 
well as we mention the two other tests namely Solovay–
Strassen and Baillie-PSW primality tests for comparison 
purposes 
 The remaining of this paper is organized as follows: 
Section 2 provides a brief background for the topics related 
to prime numbers or involved in the primality testing 
algorithms such as divisibility, prime number theorem, Euler 
theorem and Fermat’s Little Theorem. Section 3 discusses 
three different common and practicable primality-testing 
algorithms with numerical examples and flowcharts and it 
mentions two other algorithms as well as provides a cost 
complexity summery of all algorithms. Finally, Section 4 
concludes the paper. 
 

II. MATHMATICAL BACKROUND 
In modern crypto-system, messages (data) are represented in 
numerical values. These values are encrypted and decrypted 
using mathematical operations that turn input message in 
numerical value and into unreadable form. Building, 
analyzing and attacking crypto-systems require 
mathematical tools and number theory is considered as the 
most important of these. The number theory (Stein 2008), 
sometimes-called higher arithmetic, is a branch of 
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mathematics that is concerned with the properties of positive 
integers; divisibility, primes and congruence. Number 
Theory has a reached history of (at least) several centuries 
And among several mathematicians (Z. I. Borevich and I. R. 
Shafarevich 1964) (Allan J. Silberger 1967) 

� Divisibility 
Definition: Let a & b be integers with  0a ≠ . It is said a 
divides b, if there is an integer k such that, b= ak. This is 
denoted by |a b . Another way to express this is that b is a 

multiple of a. 

Example: 3|15 is 3 divides 15 or 15 is a multiple of 3. 

Properties: Let a, b, and c represent integers.  
1. For every a ≠ 0, a|0 and a|a. Also, 1|b for every b. 
2. If a|b and b|c, then a|c. 
3. If a|b and a|c, then a| (sb+ tc) for all integers s and t. 

� Chebysev Theorem 
Definition: A number p > 1 that is divisible only by one 
and itself is called a prime number. 
Composite number means that the number can be written as 
the product of two smaller numbers. For example, 15 can be 
written as 3 times 5. Primes number are infinite, however, in 
finite groups the number of primes can be estimated using 
Prime Number Theorem (Trappe and Washington 2002). 
Let π(x) be the number of primes less than x. Then 

( )
( )ln

x
x

x
π ≈         (1) 

 
Example: calculate the number of primes in 50 digits only: 

( ) ( ) ( )
( )

50 49

50 49

47

10 10
50  49

10 ln 10

7.80 10  .

x
ln

number

π π π≈ − = −

≈ ×

 

 
 Prime numbers are the building block for positive 
integers. All integers can be represented be a product of 
prime numbers. Moreover, these representations are unique. 
This uniqueness plays a vital role in cryptographic 
algorithms. Factorizing any integers will produce a unique 
product of primes where the factors can be reordered only. 
For example, factoring the number 504 produces 2

3
×3

2
×7

1
, 

ignoring the ordering, there is no other representation for the 
number 504 (Trappe and Washington 2002). 

� Euler Theorem 

Where ∅(n) is Euler’s ∅-Function (Trappe and Washington 

2002), defined to be the number m such that m < n and gcd 
(m, n) =1. 
Definition: if gcd (a, n) = 1, then  

( ) ( )1  
n

a mod n
φ

≡         (2) 

 
Example: What is the last three digits of 7

1603
? 

( )
1 1

 1000 1000 1 1 400
5 2

Since φ
  

= − − =  
  

 

( )
4

1606 400 3 4 37 7 7 1  7 343 1 000mod= ≡ ≡  

Thus, by using Euler’s Theorem the last three digits are 343. 

� Fermat's Little Theorem 

Definition: If p is a prime number and p∤a 

1

  

1  

p

p

a a mod p

a mod p
−

≡

≡
                          (3) 

 
Example: Evaluate 3

100,000
 mod 53 

53 1 523 1  35 3 1  53mod mod
− ≡ → ≡  

100,000
1923 , 4

52
quetiont reminder→ = =  

( )
1923

100,000 999,996 4 52 43 3  3 3 3   53mod= ≡  

1923 41  3   53 81  53mod mod≡ ≡  

 In previous example, instead of computing 3
100,000

, using 
Fermat’s little theorem makes it easier and faster to 
calculate. In implementation, Fermat’s Little theorem can be 
used as a primality tester. First, an odd number is n chosen. 
Then, 2

(n-1)
 mod n is computed. If the result is congruent to 

1, the chosen number is a prime and if not, choose the next 
odd number to test. The advantage of this test is faster than 
factoring n, especially since this procedure eliminate many n 
quickly. Fermat’s Little theorem is a special case of Euler's 
theorem. Euler’s theorem ϕ(n) is used to calculate the 
relatively prime numbers less than or equal an integer. For 
example, 10 is co-prime with 1, 3, 7, 9. 
Definition: Let ϕ(n) be the number of integers 1 < a < n 
such that gcd (a, n) = 1. 

( )
|

1
  1  

p n

n n
p

φ
 

= − 
 

C                        (4) 

where p is prime factor of n. 
 
Example Find the number of integers a≤120 such that 
gcd(a,120) =2. 

( )3 1
120 2 3 5  120 120 32

2 3 5

2 4
φ

   
= × × → = =   

   
  

III. PRIMALITY TESTING TECHNIQUES 
Generating prime numbers is a very essential part in any 
crypto-system since they depend heavily on prime’s 
properties. There are two methods to generate a prime 
(Trappe and Washington 2002). First algorithms are called 
Prime Sieve. In this kind, primes in a specified range are 
generated, however, if the need is only for an individual 
prime, primality testers are more convenient since the first 
methods is very slow comparing to the second as well as 
generating many unneeded primes. Primality testers are 
algorithms used to check if the chosen number is whether a 
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prime or composite. Unlike integer factorization, primality 
testers do not generate a prime, but they state whether the 
input is prime or not. Some of the Primality testers are used 
to prove a number is prime where some are used to prove a 
compositeness. Primality testers can be divided into two 
division; probabilistic and deterministic primality tester. 

Basic Principle: Let n be an integer and suppose there exist 
integers x and y with  
x

2
≡y

2
 mod n, but x ≠ ±y mod n, then n is composite. 

Moreover, gcd (x — y, n) gives a nontrivial factor of n. 

� Fermat Primality Test 
Fermat Primality Test is a probabilistic primality tester 
based on Fermat’s Little Theorem (Agrawal 2006). It is used 
to check the compositeness of numbers. If a number is 
declared to be composite, then it is guaranteed to be 
composite. In contrast, if a number is declared to be prime, 
it is probably to be prime. However, Fermat Primality Test 
is quite accurate for large numbers. Moreover, this test can 
be carried out quickly (Trappe and Washington 2002). The 
algorithm is shown below in Figure 1. 
 

Choose odd number

N

Check

aN-1 � 1 (mod N)
N is Composite 

N is Probably 

Prime

PassFail

 
Figure 1. Fermat Primality Test algorithm flow diagram. 

 
Example: show that n=41 is prime with base 2. 

41 1 402 2   41 1   41mod mod
− ≡ ≡  

Thus 41 is most likely a prime number that it is. 

Example: check the primality of n=1105 with base 2. 
1105 11042 2  1 105 1  1 105mod mod≡ ≡  

It declares 1105 to be a prime, however, 1105 is =5×13×17, 
in other word composite.  
 In the previous example, Fermat fails to prove the 
compositeness of a number which is called a Carmichael 
number. In number theory, a Carmichael number is a 
composite number in which satisfies the modular arithmetic 
congruence relation: 

1 1  pa mod p− ≡                             (5) 

For all 1<b<n which are relatively prime to n. 
 
Example: check the primality of n=1105 with base 13. 

1105 110413 13  1 105  936 1 105mod mod≡ ≡  
Thus, composite. 

� Miller-Rabin Primality Test 

Miller-Rabin algorithm (Ishmukhametov and Mubarakov 
2013), as demonstrated in Figure 2, is a probabilistic test 
used to check whether an input number is prime or 
composite based on the basic principle discussed at the 
beginning of this chapter. Since it is probabilistic, Miller-
Rabin test guarantees the compositeness of a number only 
and declare a primality with high accuracy. For instance, 
authors in (Abu Al-Haija 2014b) have used Miller-Rabin 
test in the FPGA hardware implementation of RSA 

Example: check the primality of n=1105 with base 2. 
41 560 16 35,  2 2  35kn so and m− = = × = =  

35

0 2 263   561b mod≡ ≡  

2

1 0 166  561b b mod≡ ≡  

2

2 1 67  561b b mod≡ ≡  

2

3 2 1  561b b mod≡ ≡  

Thus, 561 is composite. Moreover, gcd (b2 - 1, 561) = 33, 
which is a nontrivial factor of 561. 

Input (n, a)

n: odd

1< a <n-1

Compute (k, m)

S.T.

(n-1) = 2km

Compute

α � ams mod n

Let s = 2
0

Is 

α  � ± 1  

Probably 

Prime

Yes

Is

k = S
CompositeS = S * 2 

Yes

No

No

Compute

α � ams mod n

Is 

α � -1 

Probably 

Prime

Yes

Is 

α � 1 

Composite

Yes

No

No

p = 0

d = n – 1 ; even

Check

(n-1) ≡ 0 mod 2

m = d / p

k = p

No

d = d / 2

Yes

Increment

p

Figure 2. Miller-Rabin Primality Test algorithm flow 
diagram. 

 
 For a given base, strong pseudoprimes are much rarer 
than pseudoprimes. Up to 10

10
, there are 455052511 primes; 

14884 pseudoprimes for the base 2, and 3291 strong 
pseudoprimes for the base 2. Therefore, calculating 2

(n-1)
 

(mod n) will fail to recognize a composite in this range with 
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probability less than 1 out of 30 thousand (Fermat Test), and 
using the Miller-Rabin test with a = 2 will fail with 
probability less than 1 out of 100 thousand. It can be shown 
that the probability that the Miller-Rabin test fails to 
recognize a composite for a randomly chosen a is at most 
1/4. In fact, it fails much less frequently than this. If we 
repeat the test 10 times, say, with randomly chosen values of 
a, then we expect that the probability of certifying a 
composite number as prime is at most (1/4)

10
 = 10

-6
 

� AKS Primality Test 
AKS algorithm is the first general unconditional, 
polynomial, and deterministic primality-proving algorithm. 
It was published in 2002. It had no practical applications 
due to the time complexity O(log(n)

12
) and low 

performance. However, in 2005 the time complexity was cut 
into O(log(n)

5
) (Lenstra 2002). However, an improved and 

modified AKS based tester has been used for RSA design in 
(Han et al. 2016). 
AKS primality test is based on the following theorem: 
An integer n≥2 and gcd (n, a) =1, n is prime if and only if: 

( )   
n n

x a x a mod n+ ≡ +                   (6) 

The complete algorithm is shown below in Figure 3. 
 

Input Domain (n, a)

n > 1

Check n = ab

a, b > 1 & integers

n is 

Composite

Find r where

ordr(n) > (log2n)2

Is

 gcd(r, n )= 1

For 2 ≤ a ≤  min(r, n-1) 

Is a | n

n is 

Composite

Is

n ≤ r
n is prime

Skip this r

Find next one

For 2 ≤ a ≤ …………...              

Is

(x+a)n ≡ xn + a mod (xr – 1, n)      

n is 

Composite
n is prime

Pass

Fail

Yes

No

Yes

Yes

Yes No

No

No

Figure 3. AKS Primality Test algorithm flow diagram. 

� Run Time Complexity 
In the previous sections, we have discussed three well-
known primality tests. For comparison purposes, we can 
briefly report on another two common primality tests such as 
Solovay–Strassen and Baillie-PSW tests. The Solovay–
Strassen primality test (Agrawal 2006) developed by Robert 
M. Solovay and Volker Strassen, is a probabilistic test to 
determine if a number is composite or probably prime. It has 
been largely superseded by the Baillie-PSW primality test 
and the Miller–Rabin primality test. The Baillie-PSW 
(BPSW or BSW) primality test (Baillie and Wagstaff 1980) 
is a compositeness test, in the manner of Fermat's test and 
the Miller-Rabin test. It is named for Robert Baillie, Carl 
Pomerance, John L. Selfridge, and Samuel S. Wagstaff, Jr. 
The algorithm was apparently first conceived by Baillie. 
Table 1 below summarizes the run time complexities for five 
prime test techniques. The table estimates the run time 
behavior with respect with the number arithmetic operation 
required by the test to determine whether a given integer is 
prime or composite. It can be clearly seen that Solovay-
Strassen and Miller-Rabin probabilistic primality tests can 
be used alternatively as they recorded the best run time with 
logarithmic complexity. However, Solovay-Strassen has 
been largely superseded by Miller–Rabin primality test 
(Agrawal 2006) as it facilitates better computation 
complexity. The worst run time results were belonged to 
AKS deterministic primality test due to the complex 
computations involved in the algorithm, which results in 
lowering the performance results. However, AKS is 
considered as the most accurate primality test as it depends 
on non-stochastic computation steps, which result in precise 
outcomes in every test. 
 

TABLE 1. Fast Primality Testing Algorithms: 

Primality Tester # of arithmetic operations 

Fermat Primality Test O (m log n) 

Solovay-Strassen Test O (log n) 

Miller-Rabin  O (log n) 

AKS Test O (log
5
 n) 

Baillie-PSW primality test O ((log n)
3
) 

 
IV. CONCLUSION 

Primality test operation is a significant unit of many public 
key Crypto-processor such as RSA, El-Gamal and Schmidt -
Samoa. We reported on different primality testing 
techniques such as Miller-Rabin, Fermat, AKS, Solovay-
Strassen and Baillie-PSW primality tests. We found that 
implementing the probabilistic Miller-Rabin or Solovay-
Strassen test recorded the highest throughput as they 
minimize the execution time complexity (i.e. logarithmic run 
time complexity) while deterministic AKS Test required the 

longest time execution with O (log
5 
n). 
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