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Abstract: Evolutionary algorithms for multi-criteria optimization fall into two major categories: Pareto and non-Pareto based 
techniques. Pareto techniques explicitly make use of the Pareto optimality concept in the assessment of individuals’ quality. In this 
regard, the extracting of the non-dominated solutions is a costly procedure in terms of time, but with remarkable results.  Non-
Pareto techniques avoid the drawback of the Pareto ranking techniques but having weaker performance. We believe that the non-
Pareto fitness assignment in evolutionary multi-criteria optimization may be advanced. Therefore, the paper proposes a new 
procedure for fitness evaluation that accompanies a simple evolutionary algorithm for solving multiobjective optimization. The 
proposed evaluation procedure determines the potential of each solution to be non-dominated and does not identify the non-
dominated solutions, thus, the algorithmic efficiency in terms of time becomes superior to the Pareto-ranking based algorithms. 
The performance of a solution is given by the degree it may contribute to the improvement of the population and does not rely on 
its Pareto rank. Comparative analysis shows that the proposed evolutionary algorithm has lower complexity and provides better 
results than the state of the art algorithm.  
Keywords: Evolutionary Computation, multiobjective optimization, Fitness assignment. 

 
 

I. INTRODUCTION 
Solving multi-criteria optimization from the perspective of 
evolutionary algorithms is one of the most prolific research 
directions. In recent decades, many evolutionary methods 
have been developed and successfully solved various multi-
objective optimization problems. As a proof of increased 
interest in the topic stands the huge web repository for 
evolutionary multiobjective optimization [21]. From the 
beginning, the multi-criteria optimization evolutionary 
algorithms challenged the problem of evaluating possible 
solutions in multiobjective context. As for the single-
criterion optimization, fitness function may be built on the 
sole objective’s base, whereas for the multi-criteria 
optimization, researchers struggled to establish a proper 
strategy for assessing the solutions in relation with the 
multiple objectives. Among the first well-known 
evolutionary techniques that have gained popularity and 
remained as reference works, we firstly remark Vector 
Evaluate Genetic Algorithm[13] which implies that 
appropriate portions of the population, or subpopulations, 
are selected from the current generation according to each of 
the objectives, separately. Also, several evolutionary 
techniques were developed on the basis of scalarizing [15], 
aggregation techniques [1],[1],[2], lexicographic method 
[3], [15], constraint approach. Non-Pareto based EA 
recently include algorithms as decomposition based: 
MOEA/D [17] and indicator based evolutionary algorithms: 
IBEA [18]. MOEA/D is an aggregation-based evolutionary 
algorithm based on the idea of decomposing the original 
multi-objective problem into several single-objective sub-
problems by means of well-defined scalarizing functions. 
IBEA can be adapted to the user’s preferences and does not 
require any additional diversity preservation. 

Goldberg's proposal to incorporate the concept of Pareto 

optimality in the evaluation of candidate solutions represent 

a turning point in researching the subject. Currently, most 

evolutionary multi-objective optimization (EMO) algorithms 

apply Pareto-based ranking schemes. MOGA [19], 

NPGA[20], NSGA[8], SPEA [9], NSGA-II[10], SPEA2 

[11], PAES [12]. In a comprehensive review of the state-of-

art evolutionary techniques for multiobjective optimization 

[14], it is stated that Pareto-based approaches are the most 

popular. 
Regarding the Pareto evaluation mechanism, there are 

several issues that should be mentioned. Firstly, Pareto 
ranking procedure, or those procedures which decide if the 
solutions of the current population are Pareto non-
dominated, are costly in terms of the consumed time. For an 
optimization problem with m objectives, using a population 
of n individuals, popular algorithm, NSGA, is reported as an 
efficient technique for MOP but it has O(m·n3) complexity 
for Pareto ranking procedure [[8]]. The improved NSGA-II 
is a faster procedure which alleviates the main criticism 
regarding the computational complexity, having a reduced 
complexity to O(m·n

2
). The authors note that although the 

time complexity has reduced to O(m·n
2
), the storage 

requirement has increased to O(n
2
). Therefore, a less time 

complexity is attained with the cost of an increased space. 
Later, Jensen [7] proposed a faster variant of non-dominated 
ranking in time O(n·log(m-1)·n). Another popular algorithm 
SPEA is later improved by its successor SPEA2 by focusing 
on the fitness assignment strategy, a density estimation 
technique, and an enhanced archive truncation method. The 
improvement does change the overall complexity of the 
algorithms from O(n

3
) to O(n

2
·logn). Many papers discuss 

the complexity issue of the MOEA’s and developing the 
faster MOEAs is one of the desiderata. In [4], [6], 
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comprehensive analysis is given, suggesting the researchers’ 
effort to reduce the computational complexity. The 
popularity of Pareto-based evolutionary algorithms is 
attained rather by their performances, but their 
straightforwardness: for instance, comparing them with the 
uncomplicated aggregation techniques, it is obvious that 
they are more sophisticated and include auxiliary procedures 
to stress some feature (selection mechanism, diversity 
preservation, crowding measurement, and so on) and to 
advance the overall performance. The present paper propose 
a plain non-Pareto based evolutionary algorithm, which is 
comparable, regarding the efficiency and performance with 
the Pareto-ranking based algorithms. The rest of the paper is 
organized as follows: section 2 describes the proposed 
techniques, section 3 reports experimental results and, 
finally, section 4 discusses the main results and suggests 
further research directions. 
  

 II. DESCRIPTION OF THE PROPOSED 
ALGORITHM 

Fitness assignment procedure: Deciding whether a 
solution of the current population is Pareto non-dominated is 
costly, as it requires direct comparisons with the other 
solutions from the population. Therefore, fitness assignment 
based on the Pareto ranking is an expensive procedure. An 
alternative to this expensive procedure would be the 
straightforward aggregation techniques, where the weighted 
sum of the objectives’ values gives the performance of the 
solution. When using an aggregation technique for fitness 
assignment, another issue arises: how to properly choose the 
weights. Thus, the following algorithm for fitness 
assignment comprises the straightforwardness of an 
aggregation technique and the efficiency of a Pareto-ranking 
technique. Notation: 
- pop– population of n solutions: pop(i), i={1,…n} 
- b (m, n) - matrix of scores (integers), where m- number of 

objectives, n- population size. 
For the i

th
 solution of the current population, pop(i), the 

score b(k,i) represents the number of other individuals 
pop(j), j≠ i that are strictly weaker than pop(i) regarding the 
k

th
 objective.  

 

Each solutions pop(i) has m scores b(.,i), corresponding to 
the m objectives involved. The higher the scores are, the 
more qualified solutions are. For instance, if pop(i) is a 
unique Pareto non-dominated solution in a population of 
size n, it would gain maximum scores for each objective, 
respectively b(k,i)=(n-1), for k={1,…,m}. 

       The Figure 1 depicts the evaluation procedure’s results 
for a bi-objective minimization problems (m=2). We 
consider 8 solutions, plotted in the objective space (left). 
The obtained scores are shown as data labels (right). 

 

 
 

Figure 1. Left: solutions plotted in objectives’ space. Right: 

computed scores for the solutions. 

 
 Solutions (1,6) and (5,1)  have the scores (7,0) and (0,7), 

representing that both minimize only one objective. 
Solutions (2,4) and (3,3) having the scores (6,3) and (3,5) 
should be the favorite compromise solutions, as they gain, 
overall, high scores in both objectives. The weakest 
solutions are (5,5) and (3,6) having the scores (0,2) and 
(3,0); the lowest scores suggest that both solutions are 
defeated by many other candidates of the current population. 

The overall score of a candidate solution is computed as the 

aggregation of scores for all objectives. Therefore, for the 

given scenario, the performances of the solutions are: 

 

TABLE 1 Scenario 1: Overall score corresponding to 

objectives 

Solution Objectives 

(F(1),F(2))  

Scores 

(b(1,.),b(2,.)

) 

Overall score 

(performance) 

pop(1) (1,6) (7,0) 7 

pop(2) (2,4) (6,3) 9 

pop(3) (3,3) (3,5) 8 

pop(4) (5,1) (0,7) 7 

pop(5) (3,6) (3,0) 3 

pop(6) (3,4) (3,3) 6 

pop(7) (5,3) (0,5) 5 

pop(8) (5,5) (0,2) 2 

 
Scores of the solutions are integers between 0 and (n-1). 

We observed that genuine, non-dominated Pareto solutions 
correspond to those solutions which have overall scores 
higher or equall to the m*(n-1), where n is the population 
size and m-the number of objectives. This observation leads 
us to the simple replacement procedure which will keep the 
best solutions (according to the overall scores) and will 
replace the solutions with an overall score below a specific 
computable value.  

Considering the following example: 

 

 
 

Figure 2. Left: solutions plotted in objectives’ space. Right: 

computed scores for the solutions. 
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TABLE 2. Scenario 2: Overall score corresponding to 

objectives  

Solution Objectives 

(F(1),F(2))  

Scores 

(b(1,.),b(2,.)

) 

Overall score 

(performance) 

pop(1) (5,4) (2,2) 4 

pop(2) (6,3) (1,3) 4 

pop(3) (7,2) (0,5) 5 

pop(4) (1,6) (6,0) 6 

pop(5) (2,5) (5,1) 6 

pop(6) (4,1) (3,6) 9 

pop(7) (3,2) (4,4) 8 

   
As in the previous scenario, all non-Pareto solutions 

(pop(4), pop(5), pop(6), pop(7)) correspond to an overall 
score above (n-1).  
 

For bi-objective space, the sum of the scores offers a hint 
of the solution’s quality. The sum of the scores also 
represents the distance (p-norm, where p=m-1) to 
reference/minimum point (0,0,…0).  

Intuitivelly, for multi-objective space, of order m, the 
distance between the i

th
 vector of scores 

(b(1,i),b(2,i),…,b(m,i)) to reference point (0,0,…0) is given 
by the Minkowski distance of order p=m-1: 

 
Considering a multiobjective optimization problem with m 
objectives f1,f2,…fm, and n solutions pop(i), i={1,…n}, the 
evaluation procedure computes the objectives’ value for 
each individual, then computes the values of the scores 
b(k,i), k=1,…,m, i=1,…,n  and, further, establishes the 
quality of each individual according to the 
MinkowskiDistance of order m-1.  
The fitness of an individual is computed as the Minkowski 
distance of order p=m-1, between the scores and reference 
point (0,0,…,0) : 

 
where m - number of objectives. 
For different values of m, Minkowski distance corresponds 
to: Manhattan Distance (m=2, p=1), Euclidian distance 
(m=3, p=2). 

 
EvaluaEvaluaEvaluaEvaluationtiontiontion procedure – naivenaivenaivenaive algorithm 
Initalization b(k,l)=0, where k={1…m} and l={1…n} 
Compute objectives’ values for each individual 
pop(i), where i={1…n} 
forforforfor each obj=1 to m //compute the scores b(k,.) 

forforforfor i=1 to n 
forforforfor  j=i+1 to n 

   ifififif pop(i).f(obj) < pop(j).f(obj) thenthenthenthen 
               b(obj, i) = b(obj, i) + 1 
             end ifend ifend ifend if    
            ifififif pop(i).f(obj) > pop(j).f(obj) 

thenthenthenthen 
                  b(obj, j) = b(obj, j) + 1 

               end ifend ifend ifend if    
end forend forend forend for    

end forend forend forend for    
end for end for end for end for     
forforforfor each i=1 to n 

     pop(i).fitness= MinkMinkMinkMinkowskiDistaneowskiDistaneowskiDistaneowskiDistane b(k,i)), 
k={1,…m} 
end for           end for           end for           end for               
EndEndEndEnd    
    
EvaluationEvaluationEvaluationEvaluation procedure – optimizedoptimizedoptimizedoptimized algorithm 
Initalization b(k,l)=0, where k={1…m} and l={1…n} 
Compute objectives’ values for each individual 
pop(i), where i={1…n} 
forforforfor each obj=1 to m //compute the scores b(k,.) 

Sort Sort Sort Sort population pop by fobj  //time complexity 
O(n*logn) 

For i=1 to nFor i=1 to nFor i=1 to nFor i=1 to n    
    count=number of individuals with the same count=number of individuals with the same count=number of individuals with the same count=number of individuals with the same 

value for value for value for value for f(obj)f(obj)f(obj)f(obj) in sorted population in sorted population in sorted population in sorted population    
b(obj,i)=nb(obj,i)=nb(obj,i)=nb(obj,i)=n----iiii----count+1count+1count+1count+1    

end forend forend forend for    
end for end for end for end for     
forforforfor each i=1 to n 
         pop(i).fitness= Minkowski DistaMinkowski DistaMinkowski DistaMinkowski Distane (ne (ne (ne (b(k,i)), 
k={1,…m} 
end for           end for           end for           end for               
EndEndEndEnd    

 
The Score-Based Fitness Assignment algorithm’s time 
complexity is O(m*n

2
), for the naive variant. Optimized 

algorithm has a complexity of O(m*n*logn). Space 
complexity is O(n). Comparing with NSGA-II, where the 
time complexity for ranking the candidates is the same 
O(m·n

2
) but the space complexity is increased to O(n

2
), the 

proposed procedure is less expensive.  
 
Elitism:Starting with the observation that Pareto solutions 
among the current population get, during evaluation 
procedure, an overall score higher than a specific value, we 
propose the replacement mechanism that will keep the 
qualified solutions and will replace only those 
underqualified solutions with smaller scores.  
Initially we have established a threshold which splits the 
population in two: qualified and non-qualified solutions. The 
threshold is computed by the following formula:  

 
 
For instance, the threshold’s value for 2 objectives 
represents the sum of the average scores per each objective 
of the population. Further, the new generation will replace 
only those solutions from the current generation which have 
a fitness value below the given Threshold. For a population 
of constant size n, the threshold is a constant computable 
parameter of the algorithm. 
Replacement Replacement Replacement Replacement procedure    
forforforfor i=1 to n  
 ifififif pop(i).fitness<Threshold thenthenthenthen 
  replace pop(i) with pop_new(i) 
 end ifend ifend ifend if    
end forend forend forend for    

 
  The proposed algorithm for multiobjective optimization 

is a standard genetic algorithm where the fitness is given by 
the Minkowsky distance of order m-1 to origin of the 
individuals’ scores. We used in our implementation: binary 
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encoding with vectors of length 30 x NoOfVariables, binary 
tournament selection, uniform crossover, strong mutation 
with probability 1/(NoOfVariable*30) and elitism.  
    

ScoreScoreScoreScore----based multiobjective Genetic Algorithm based multiobjective Genetic Algorithm based multiobjective Genetic Algorithm based multiobjective Genetic Algorithm     
Randomly generate initial population pop()of 
size n 
whilewhilewhilewhile (termination_condition*) 

callcallcallcall Evaluation 
Compute Threshold 
forforforfor i=1 to n //crossover 
 ind1=binarytournamentselect(pop) 
 ind2=binarytournamentselect(pop) 
 pop_new(i)= uniformcrossover(ind1, 

ind2) 
q=rnd() 
if q<pmut then //mutation 

pop_new(i)= 
binarymutation(i) 
       end if 

end forend forend forend for    
 forforforfor i=1 to n //elitism 
  if fitness(pop(i))<Threshold then 
   pop(i)=pop_new(i) 

end if 
end forend forend forend for    

end whileend whileend whileend while    
EndEndEndEnd    
 
Remark: the Score-based Multiobjective GA does not 
include an extra diversity preservation mechanism. The 
results presented in the following paragraphs show that the 
score-based fitness assignment correlated with elitist 
replacement procedure and binary tournament selection 
maintain the distribution in Pareto fronts, comparable, for 
bi-objective cases, to algorithms which have extra diversity 
preservation mechanism. 

 

III. EXPERIMENTS 
In order to illustrate the performance of the proposed Score-
based Multiobjective Genetic Algorithm, we used several 
test problems proposed in [22], three metrics: Spacing [15], 
Coverage [5] and S-metric (hyper-volume metric) [5] and, 
for comparisons, NSGAII is considered.  
 For a fair comparison, each algorithm runs for 10000 
fitness evaluation. NSGAII settings are: 100 individuals, 
100 iterations, mutation probability 1/(NoOfVariable*30), 
SBX crossover. SBMGA settings are: binary encoding with 
30 binary values per each variables, 100 individuals, 
mutation probability 1/(NoOfVariable*30), uniform 
crossover. The algorithms run for 30 times and the 
hypervolume, spacing and coverage metrics were computed.  
Results: 

S-metric (hyper-volume metric) is a metric which is 
widely used in performance assessment of the MOEAs. 
Hyper-volume represents the volume of the n-dimensional 
space that is contained by an n-dimensional set of points. 
The dominated hyper-volume, or S-metric [5] is computed 
relative to a reference point and corresponds to the size of 
the objective space which contains the solutions which are 
dominated by at least one of the members of the set. Despite 

its computational cost, S-metric is one of the preferred 
performances metric as it measures both convergence and 
diversity. The metric value is to be maximized. 

 

TABLE 3. Average Hypervolume values for ZDT1,2,3,4, 

for 30 runs 

Hypervolume Test 

problem 
NSGA2 SBMGA 

ZDT1 0.775539 0.8402 

ZDT2 0.515311 0.644929 

ZDT3 0.579934 0.536055 

ZDT4 0.513386 0.507048 

 
 The results suggest that SBMGA performs significally 
better than NSGAII for the first two test problems. For 
ZDT3 problem, NSGAII performs better and for the ZDT4 
problem, even the average hypervolume is higher for 
NSGAII, the statistical test did not confirm that NSGAII 
performs better than SBGMA. As the hypervolume metric 
measure both: the closeness to the Pareto front and the 
distribution across the approximated Pareto front, we 
considered that the smaller hypervolume value computed for 
SBMGA in ZDT3 case is given by the solutions’ 
distribution across the Pareto front. Spacing and Coverage 
metric confirms that, for ZDT3, SBMGA offers closer 
solutions to the real Pareto front, but with a weaker 
distribution than NSGAII.  
 For a close comparison of two non-dominated sets 
resulted by using different algorithms, Coverage metric [5] 
is used. Coverage computes the fraction of solutions in one 
set of non-dominated solutions (found by one algorithm) 
that are dominated by those obtained by the other algorithm.  
The results presented in TABLE 4 shows that, except for the 
fourth problem (ZDT4), SBMGA converge closer to the 
Pareto front than NSGAII. 
 

TABLE 4. Average Coverage metric’s values for 

ZDT1,2,3,4, for 30 runs 
Test 

problem Coverage 

C(SBMGA,NSGAII) 0.9992 
ZDT1 

  C(NSGAII,SBMGA) 0.5038 

C(SBMGA,NSGAII) 0.9832 
ZDT2 

  C(NSGAII,SBMGA) 0.5919 

C(SBMGA,NSGAII) 0.7638 
ZDT3 

  C(NSGAII,SBMGA) 0.66465 

C(SBMGA,NSGAII) 0.3514 
ZDT4 

  C(NSGAII,SBMGA) 0.6015 

 
Spacing metric is designed to measure the distribution of 

the vectors among the non-dominated vectors found so far. 
Schott [16] proposed such a metric measuring the range 
(distance) variance of the neighbouring vectors in the non-
dominated vectors found. Spacing metric measures the 
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variation distance between neighbour vectors of the 
approximated Pareto front.  

Regarding the distribution along the Pareto front, 
NSGAII performs significally better for ZDT2 and ZDT3, 
equivalentlly for ZD1 and worse for ZDT4.  

TABLE 5. Average Spacing values for ZDT1,2,3,4, for 

30 runs 

 Spacing NSGAII SbMGA 

ZDT1 0.007517 0.00889 

ZDT2 0.002748 0.016571 

ZDT3 0.008331 0.029442 

ZDT4 0.143162 0.016236 

 
 Overall, the SBGMA’s comparison with NSGAII is 

presented in TABLE 6. 

 

TABLE 6. SBMGA’s comparisons with NSGAII: + 

(better), -(worse), = (equivalent) 

 Hypervolume Coverage Spacing 

ZDT1 + + = 

ZDT2 + + - 

ZDT3 - + - 

ZDT4 = - + 

  
We have tested the algorithm for DTLZ1 and DTLZ2 test 
problems with 3, 4 and 5 criteria. Except for DTLZ1, the 
convergence of SBMGA is promising, but due to the lack of 
explicit diversity preservation mechanism, the solutions in 
the approximation fronts in higher dimensions are not well-
distributed.  
 

IV. CONCLUSIONS 
We propose a simple genetic algorithm of O(m*n*logn) 
computational complexity for multiobjective optimization. 
The popular Pareto-ranking procedure, which offers good 
approximations of the Pareto fronts for many problems is 
one of the most expensive procedure in evolutionary 
algorithms for MOP. Also, the scalarization techniques, for 
instance aggregation techniques, have low computational 
cost but weaker performance. Therefore, we investigated the 
possibility to design a simple genetic algorithm with a low-
complexity fitness assignment procedure for multiobjective 
optimization. The resulted algorithm, SBMGA, is based on 
the observation that aggregation of the scores per each 
objective gives a hint of the solution’s quality in 
multiobjective space. For a minimization/maximization 
problem, the individual’s score for an objective represents 
the number of other individuals from the current population 
which have lower/higher corresponding objective’s value. 
The goal is to maximize the fitness of the individuals, which 
is computed as an aggregation of the scores.  

As for a bi-objective problem, the sum of the scores 
represents the distance (p-norm, where p=m-1) to 
reference/minimum point (0,0,…0), for multi-objective 
space, of order m, we propose as fitness function, the 
generalized distance between the vector of scores to the 
reference point (0,0,…0), respectively, the Minkowski 
distance of order p=m-1.  
For accelerating the convergence, we have included an 
elitistic replacement procedure that allows the high-qualified 

individuals to survive in the next generation. The fitness 
threshold is a computable value at each generation, and it is 
not an extra parameter of the algorithm. 

Experimental results show that, for bi-objective 
problems, SBMGA performs, somewhat better than a 
Pareto-ranking based algorithm, NSGAII. For more than 
two objectives, even the SBMGA converges toward the true 
Pareto front, the lack of diversity preservation mechanism 
prevents a good distribution along the front. Nevertheless, 
score-based fitness assignment procedure has a lower 
computational complexity than Pareto-ranking procedures. 
SBMGA is unsophisticated and less expensive: the main 
advantages are its lower computational complexity in 
comparison with state-of-art MOEA’s and the absence of 
any extra parameter. The conducted experiments strongly 
suggest that mapping the objective space into the scores’ 
space is a promising research direction. As further research, 
we propose to investigate the SBMGA’s performance for 
many objective optimization problems and to incorporate a 
diversity preservation mechanism. 
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