

Volume 50, Number 4, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received June 26, 2009; revised August 2, 2009

5

LABVIEW FPGA BASED NOISE CANCELLING USING THE LMS

ADAPTIVE ALGORITHM

Erwin SZOPOS1 Horia HEDESIU2

1
Bases of Electronics Department,

2
Electrical Machines, Marketing and Management Department, Technical

University of Cluj-Napoca, Romania
26-28 G. Baritiu str., Cluj-Napoca, Romania, Tel: +40264401803; Fax: +40264591340 Erwin.Szopos@bel.utcluj.ro,

Horia.Hedesiu@mae.utcluj.ro

Abstract: This paper proposes an architecture for implementing the Least Mean Square (LMS) adaptive algorithm, using a 20 bit

fixed-point arithmetic representation. The architecture length was established to 16, but it can be easily modified. This is an

advantage for large filter orders. The method can also be applied to other LMS versions. This architecture is implemented using

the NI cRIO-9104 FPGA chassis. The NI cRIO-9012 is a real-time module used for signal control and storage. Experiments were

done regarding signal to noise ratio (SNR), filter length and type of input signals. The obtained results indicate the implemented

algorithm as having high performance, while still incurring some limitations. The design is evaluated in terms of SNR, filter length

and FPGA resources.

Keywords: LMS, FPGA, SNR, real-time module, noise cancelling, filter length, step-size.

I. INTRODUCTION
Filtering data in real-time requires dedicated hardware to

meet demanding time requirements. If the statistical

properties of the signal are not known, then adaptive

filtering algorithms can be implemented to estimate the

signals statistics iteratively.

DSPs and ASICs have traditionally been the common

means for building and implementing adaptive filters. Due

to the technological advance in the development of

programmable logic devices, Field Programmable Gate

Array (FPGA) has become attractive for realizing adaptive

filters. FPGAs present excellent flexibility in terms of

reprogramming the same hardware and at the same time

achieving good performance by enabling parallel

computation at short processing time [1, 2]. However, many

high-performance DSP systems, including LMS adaptive

filters, may be implemented using FPGAs. Modern FPGAs

include the resources needed to design efficient filtering

structures. Furthermore, some manufacturers now include

complete microprocessors within the FPGA fabric. This mix

of hardware and embedded software on a single chip is ideal

for fast filter structures with arithmetic intensive adaptive

algorithms.

Adaptive filters learn the statistics of their operating

environment and continually adjust their parameters

accordingly. When the signal of interest and the noise reside

in separate frequency bands, conventional linear filters are

able to extract the desired signal [3]. However, when there is

spectral overlap between the signal and noise, or the signal

or interfering signal’s statistics change with time, fixed

coefficient filters are improper.

One of the most popular adaptive algorithms available in

the literature is the stochastic gradient algorithm, also called

the Least Mean Square (LMS) algorithm that is used in this

work as well [4, 5]. Its attractiveness comes from the fact

that it is very simple and robust. This adaptive algorithm is

used to process a speech signal to enhance its signal to noise

ratio (SNR). The algorithm is implemented on the National

Instruments cRIO-9104 FPGA chassis. The acquired speech

signal is read by the National Instrument cRIO-9012 real-

time controller and then is transferred to the FPGA chassis

for processing. A pure software architecture of the LMS

algorithm was first proposed and tested using LabVIEW

software [6, 7]. Finally a hardware architecture is mapped

and tested using LabVIEW FPGA. The performance and

area of the architecture is evaluated in terms of SNR, of the

filter length, convergence speed, and FPGA resource usage

[8].

This paper is organized as follows: section II deals with

theoretical overview regarding the LMS algorithm and the

processing modules used for implementation; section III

details the implementation of the architecture; section IV

presents the implementation results, and section V contains

the conclusions of the paper.

II. THEORETICAL OVERVIEW
A. THE LMS ALGORITHM

The LMS algorithm was developed by Windrow and

Hoff in 1959 as an example of supervised training where the

learning rule is provided with a set of examples of desired

behavior. Here the pairs {x[0],d[0]} {x[1],d[1]} ...{x[N-1],

Volume 50, Number 4, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

6

d[N-1]} represent the input of the system; d[n] is the

corresponding target (Figure 1). As each input is applied to

the network, the output is compared to the target. The LMS

algorithm (Figure 2) adjusts the coefficients of the filter so

that the mean square error is minimized [5]:

[] [] []
1 1

22

0 0

1 1
N N

n n

MSE e n d n y n
N N

− −

= =

 = = − ∑ ∑ (1)

where e[n] is the error signal and d[n] is the desired output

signal. The LMS algorithm is a gradient descent algorithm

as it uses the gradient vector of the filter coefficients to

converge on the optimal Wiener solution. The filter

coefficients are updated per iteration according to:

[] [] 2 [] []W n W n - 1 e n X n - 1µ= + ⋅ ⋅ (2)

where W[n] = [w0 w1 ... wL-1]
T
 is the coefficients vector at

time index k, X[n] = [xn xn-1 ... xn-L+1]
T
 is the data vector of

the L most recent input samples and µ is the convergence

factor or step-size. This factor controls the stability and

the convergence rate of the adaptive algorithm [8, 9]. The

output of the LMS filter is:

[] [] []TY n W n -1 X n= ⋅ (3)

B. THE USED HARDWARE

The National Instruments cRIO-9104 reconfigurable

embedded chassis [9] is used to implement the LMS

hardware architecture. This chassis contains the Virtex-II

FPGA chip with 3M gates that offers ultimate processing

power and the ability to design custom hardware using

LabVIEW FPGA software. The cRIO-9014 is used for

audio signal controlling/storing and for configuring the

FPGA chassis. This is an embedded real-time controller

module featuring an industrial 400MHz Freescale MPC5200

real-time processor for deterministic and reliable real-time

applications. These two modules provide a complete

platform to implement audio applications based on Xilinx

FPGAs. The chassis containing the FPGA has 8 slots to

connect external hardware modules, used for signal

acquisition. The modules are interfaced to the FPGA in

order to enable transferring data directly to the chip. The

real-time controller contains a 10/100BaseT/TX Ethernet

port to communicate with the PC or with other systems. The

LabVIEW suite is used to implement the hardware

architectures for signal processing.

III. FPGA IMPLEMENTATION

Figure 1 shows an adaptive filter in the role of noise

canceller [10]. The reference input x[n] is the noisy signal

applied to the adaptive filter and the primary input d[n] is

the noise signal or is a highly correlated version of it. By

subtracting the reference signal from the adaptive filter’s

output the error signal e[n] is obtained (equation 1) that is

used to compute the filter coefficients. The aim of the

adaptation algorithm is to adjust the filter coefficients such

that the filter output y[n] is as close to the speech signal as

possible in some mean or average sense.
Figure 2 shows the block diagram of the LMS algorithm

to compute only one coefficient at instant k.

Figure 3 shows the LMS architecture implemented in

LabVIEW FPGA to compute a 16 coefficients FIR filter.

Figure 3. LabVIEW FPGA architecture of the LMS
algorithm.

One of the tasks performed is to shuffle the past samples of

the contents in the vector X[n]. The two array functions

Replace Array Subset and Rotate 1D Array act as a circular

buffer where the input sample at index 0 gets replaced by a

new incoming sample. In this manner a shuffle regressor is

obtained. The for loop and its arithmetic operations are used

to compute the output of the adaptive filter y[n] (equation

3). The subtraction function on the block diagram computes

the error signal e[n]. This error is multiplied by the step-size

µ and then by the elements in the input buffer to obtain the

coefficient updates. These updates are added to the previous

coefficients vector W[n-1] to compute the updated

coefficients vector W[n], described by equation (2). The

main advantage of this architecture is that the prescription

for the number of coefficients is done by setting a fixed

dimension for the vectors W[n] and X[n]. Except this setting

there is no need for other modifications to obtain a higher

order adaptive filter. In this manner the architecture is

available for a wide range of filter orders. After this setting a

recompilation for the hardware device is required.

IV. EXPERIMENTAL RESULTS
The experiments regarding noise cancelation were

carried out with the National Instrument LabVIEW FPGA
programming environment, which offers real-time
processing of samples.

In this paper the input signals were set as follows: in the
first set of experiments a sine wave with 1V amplitude and
1kHz frequency (sampled with 100kHz, ≈17,000 samples)

16

16

1 1

16

1

wk

z
-1

×××× ××××
xk

µ

ek

Σ

LMS

Update

FIR Filter

Model

d[n]

y[n]

e[n]

x[n]

−
+

Σ

Figure 1. Adaptive noise

cancelling block diagram.

Figure 2. Block diagram
of LMS.

Volume 50, Number 4, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

7

was used; in a second set of experiments a speech signal
(1.53Vp-p, 22.05kS/s, ≈200,000 samples, 1channel/16bits)
was used. These signals were compromised by a white noise
with different SNR. In the first set of experiments the input
signals were generated with the NI cRIO-9263 analog output
module and acquisitioned with the NI cRIO-9215 analog
input module. Concerning the second set of experiments
these were read from wave files from the real-time controller
module. After reading they were sent to a FIFO memory of
the FPGA chassis where they were processed by the
hardware architecture and finally they were sent back to the
real-time controller module to be evaluated. The FIFO
memories have the length set to 1023 samples. The
processing and reading of the signals is done sample-by-
sample from the FIFO’s, thus the algorithm works on-line.

The accuracy for the processed signals and for the filter

coefficients was set to 20bit.

Regarding the FPGA synthesis results, a report was

generated by the Xilinx FPGA compiler. Its summary is

presented in Table 1, for two filter lengths. In order for the

project to work on FPGA, the maximum frequency listed in

the table must be greater than the actual chassis clock

frequency (40 MHz). As a measure of the FPGA usage, we

can take into consideration the percentage of used slices:

22% for a filter length of 8, and respectively 35% for a filter

length of 16.The FPGA hardware usage also depends on the

number of bits describing the process accuracy. Thus, if the

hardware usage is the priority then a lower filter length is

recommended or the signals accuracy must be decreased.

Filter
length

Max.
frequency
on FPGA

(MHz)

Slice
Flip

Flops
out of
28,672

4 input
LUTs
out of
28,672

MULT
18X18s
out of

96

Nr. of
slices
out of
14,336

8 42.784
4,110
(14%)

5,144
(17%)

12
(12%)

3,269
(22%)

16 42.911
6,228
(21%)

8,379
(29%)

12
(12%)

5130
(35%)

Table 1. LabVIEW FPGA hardware usage.

In order to illustrate the capability of the algorithm we

chose two cases regarding the input signal. The results are

summarized in Table 2; the step-size was set to 1E-4.

Figures 4, 5 and 6 show the tracking ability and a spectrum

analysis of the process for different input SNRs. The quality

of the process was measured in terms of the filtered signal’s

SNR and the convergence measured in seconds and samples.

The SNR for the output signal is evaluated as:

()

()

RMS x
SNR

RMS y x
=

−
, (4)

where RMS(x), RMS(y-x) are the root mean squares of the
pure input signal throughout the adaptive filter and the noise
at the output. The output noise is estimated as a difference
between the filtered and the pure input signals (y-x).

SNR [dB] Convergence Signal

type
Filter
length Input Output [s] samples

7.8 17.4 0.07 6,500
8

15.6 24.5 0.06 5,000

7.8
18.8

(Fig.4a)
0.05 4,500

Noisy
sine

16
15.6

24.6
(Fig.4b)

0.04 3,500

6.2 13.1 5 110,000

8
12.2

17.1
(Fig.5b,

6b)
4.1 92,000

6.2 15.1 3.7 82,000

Noisy
speech
(Fig. 5a,

6a)
16

12.2
18.2

(Fig.5c,
6c)

3.3 67,500

Table 2. Quality estimation of the process.

a)

b)

Figure 4. Tracking ability on a sine wave with 16
coefficients LMS filter: a) SNR=7.8dB, b) SNR=15.6dB.

Figure 4 shows the result of the filtering process when

the input is a sine wave with different SNRs (7.8dB and

15.6dB); the filter length was set to 16. As it can be seen the

SNR at the output of the adaptive filter was increased

considerably in both cases (Table 2).

Figure 5 and 6 illustrate a case in the filtering process of

a speech signal for two filter lengths (8 and 16) with a

12.2dB SNR at the input. In Figure 5 the tracking ability of

the algorithm is presented. Figure 6 shows the amplitude

spectra for the processed waveform shown in Figure 5. The

SNR was increased well when the filter length is 16 in

comparison with the case when the filter length is 8. As for

the case with SNR of 6.2dB, this was increased at the output,

but not so well than in case from Figure 5 even if the filter

length was set to 16 (Table 2).

The same set of analysis with different values for the

step-size µ was also performed. In this case the filtered

signal’s SNR was increased well for 1E-6 ≤µ≤1E-4.

Volume 50, Number 4, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

8

a)

b)

c)

Figure 5. Tracking ability on a speech signal: a) original
speech; b) and c) - filtered waveforms with 8 and 16

coefficients LMS filter

V. CONCLUSIONS

This paper presents a hardware architecture used to

implement the LMS adaptive algorithm for several filter

lengths. The architecture is aimed for speech processing

using the NI cRIO-9104 FPGA chassis and the LabVIEW

FPGA toolkit.

The performance of the LMS algorithm implemented by

hardware is comprehensively analyzed in terms of

convergence performance, filtered signal’s SNR, filter

length and tracking ability. The experimental results ensure

the feasibility of the high-speed FPGA architecture of the

LMS algorithm (Table 1). The noise cancelling system is

chosen to validate the performance of LabVIEW FPGA in

signal processing applications (Table 2); FPGA

implementation will be more effective for more complex

digital signal processing systems.

Various DSP applications that use LMS adaptive FIR

filters, like echo cancellers, channel equalizers and noise

cancellers, can be added as a software layer on top of our

system, without any hardware modifications.

The presented architecture may be further enhanced so

that it has the ability to initialize the filter coefficients. This

feature may be needed for applications requiring faster

convergence.

VI. ACKNOWLEDGEMENTS
The authors deeply thank National Instruments for

providing support of LabVIEW FPGA hardware/software
tools and for their generous guidance, support and training.

a)

b)

c)

Figure 6. Spectrum analysis on a speech signal: a)
original spectrum; b) and c) - filtered spectra with 8 and

16 coefficients LMS filter

REFERENCES
[1] A. Elhossini, S. Areibi, R. Dony, “An FPGA Implementation

of the LMS Adaptive Filter for Audio Processing”, IEEE

International Conference on Reconfigurable Computing and

FPGA's, 2006

[2] S. Prakash, D.V. Venkatasubramanyam, B. Krishnan, R.

Nagendra, “Compact FPGA Controller Aircraft/Aerospace

Structures”, Proceedings of the International Conference on

Aerospace Science and Technology, India, 2008

[3] E. C. Ifeachor and B. W. Jervis, Digital Signal Procesing, A

Practical Approach, Prentice Hall, 2002

[4] B. Widrow and S.D.Stearns, ”Adaptive Signal Processing”,

Prentice-Hall, Englewood Cliffs, N.J., 1985.

[5] S. Haykin, “Adaptive Filter Theory”, Fourth Edition, Prentice

Hall, Upper Saddle River, N.J., 2002

[6] E. Szopos, M. Topa, I. Dornean, R. Groza, “Adaptive LMS

Algorithm System Identification using LabVIEW”, IEEE

International Conference on Automation, Quality and Testing,

Robotics, Romania, pp.254-257, 2008.

[7] E. Szopos, M. Topa, R. Groza, “Adaptive LMS and Pade

Algorithms in System Identification”, Applied Electronics

International Conference Pilsen, pp.219-222, 2008

[8] Sinead Mullins, Conor Heneghan, “Alternative Least Mean

Square Adaptive Filter Architectures for Implementation on

FPGA”, Digital Signal Processing Group, Department of

Electronic and Electrical Engineering, University College Dublin.

[9] www.ni.com

[10] T. Lan, J. Zhang, “FPGA Implementation of an Adaptive

Noise Canceller”, IEEE International Symposiums on Information

Processing, 2008

