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Abstract: This paper proposes an architecture for implementing the Least Mean Square (LMS) adaptive algorithm, using a 20 bit 

fixed-point arithmetic representation. The architecture length was established to 16, but it can be easily modified. This is an 

advantage for large filter orders. The method can also be applied to other LMS versions. This architecture is implemented using 

the NI cRIO-9104 FPGA chassis. The NI cRIO-9012 is a real-time module used for signal control and storage. Experiments were 

done regarding signal to noise ratio (SNR), filter length and type of input signals. The obtained results indicate the implemented 

algorithm as having high performance, while still incurring some limitations. The design is evaluated in terms of SNR, filter length 

and FPGA resources. 
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I. INTRODUCTION 
Filtering data in real-time requires dedicated hardware to 

meet demanding time requirements. If the statistical 

properties of the signal are not known, then adaptive 

filtering algorithms can be implemented to estimate the 

signals statistics iteratively. 

DSPs and ASICs have traditionally been the common 

means for building and implementing adaptive filters. Due 

to the technological advance in the development of 

programmable logic devices, Field Programmable Gate 

Array (FPGA) has become attractive for realizing adaptive 

filters. FPGAs present excellent flexibility in terms of 

reprogramming the same hardware and at the same time 

achieving good performance by enabling parallel 

computation at short processing time [1, 2]. However, many 

high-performance DSP systems, including LMS adaptive 

filters, may be implemented using FPGAs. Modern FPGAs 

include the resources needed to design efficient filtering 

structures. Furthermore, some manufacturers now include 

complete microprocessors within the FPGA fabric. This mix 

of hardware and embedded software on a single chip is ideal 

for fast filter structures with arithmetic intensive adaptive 

algorithms. 

Adaptive filters learn the statistics of their operating 

environment and continually adjust their parameters 

accordingly. When the signal of interest and the noise reside 

in separate frequency bands, conventional linear filters are 

able to extract the desired signal [3]. However, when there is 

spectral overlap between the signal and noise, or the signal 

or interfering signal’s statistics change with time, fixed 

coefficient filters are improper. 

One of the most popular adaptive algorithms available in 

the literature is the stochastic gradient algorithm, also called 

the Least Mean Square (LMS) algorithm  that is used in this 

work as well [4, 5]. Its attractiveness comes from the fact 

that it is very simple and robust. This adaptive algorithm is 

used to process a speech signal to enhance its signal to noise 

ratio (SNR). The algorithm is implemented on the National 

Instruments cRIO-9104 FPGA chassis. The acquired speech 

signal is read by the National Instrument cRIO-9012 real-

time controller and then is transferred to the FPGA chassis 

for processing. A pure software architecture of the LMS 

algorithm was first proposed and tested using LabVIEW 

software [6, 7]. Finally a hardware architecture is mapped 

and tested using LabVIEW FPGA. The performance and 

area of the architecture is evaluated in terms of SNR, of the 

filter length, convergence speed, and FPGA resource usage 

[8]. 

This paper is organized as follows: section II deals with 

theoretical overview regarding the LMS algorithm and the 

processing modules used for implementation; section III 

details the implementation of the architecture; section IV 

presents the implementation results, and section V contains 

the conclusions of the paper. 
 

II. THEORETICAL OVERVIEW 
A. THE LMS ALGORITHM 

The LMS algorithm was developed by Windrow and 

Hoff in 1959 as an example of supervised training where the 

learning rule is provided with a set of examples of desired 

behavior. Here the pairs {x[0],d[0]} {x[1],d[1]} ...{x[N-1], 
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d[N-1]} represent the input of the system; d[n] is the 

corresponding target (Figure 1). As each input is applied to 

the network, the output is compared to the target. The LMS 

algorithm (Figure 2) adjusts the coefficients of the filter so 

that the mean square error is minimized [5]: 
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where e[n] is the error signal and d[n] is the desired output 

signal. The LMS algorithm is a gradient descent algorithm 

as it uses the gradient vector of the filter coefficients to 

converge on the optimal Wiener solution. The filter 

coefficients are updated per iteration according to: 
 

[ ] [ ] 2 [ ] [ ]W n W n - 1 e n X n - 1µ= + ⋅ ⋅  (2) 

 

where W[n] = [w0 w1 ... wL-1]
T
 is the coefficients vector at 

time index k, X[n] = [xn xn-1 ... xn-L+1]
T
 is the data vector of 

the L most recent input samples and µ is the convergence 

factor or step-size. This factor controls the stability and 

the convergence rate of the adaptive algorithm [8, 9]. The 

output of the LMS filter is: 
 

[ ] [ ] [ ]TY n W n -1 X n= ⋅   (3) 

 
B. THE USED HARDWARE 

The National Instruments cRIO-9104 reconfigurable 

embedded chassis [9] is used to implement the LMS 

hardware architecture. This chassis contains the Virtex-II 

FPGA chip with 3M gates that offers ultimate processing 

power and the ability to design custom hardware using 

LabVIEW FPGA software. The cRIO-9014 is used for 

audio signal controlling/storing and for configuring the 

FPGA chassis. This is an embedded real-time controller 

module featuring an industrial 400MHz Freescale MPC5200 

real-time processor for deterministic and reliable real-time 

applications. These two modules provide a complete 

platform to implement audio applications based on Xilinx 

FPGAs. The chassis containing the FPGA has 8 slots to 

connect external hardware modules, used for signal 

acquisition. The modules are interfaced to the FPGA in 

order to enable transferring data directly to the chip. The 

real-time controller contains a 10/100BaseT/TX Ethernet 

port to communicate with the PC or with other systems. The 

LabVIEW suite is used to implement the hardware 

architectures for signal processing. 
 

III. FPGA IMPLEMENTATION 

Figure 1 shows an adaptive filter in the role of noise 

canceller [10]. The reference input x[n] is the noisy signal 

applied to the adaptive filter and the primary input d[n] is 

the noise signal or is a highly correlated version of it. By 

subtracting the reference signal from the adaptive filter’s 

output the error signal e[n] is obtained (equation 1) that is 

used to compute the filter coefficients. The aim of the 

adaptation algorithm is to adjust the filter coefficients such 

that the filter output y[n] is as close to the speech signal as 

possible in some mean or average sense. 
Figure 2 shows the block diagram of the LMS algorithm 

to compute only one coefficient at instant k. 
 

 
 
 
 

 
Figure 3 shows the LMS architecture implemented in 

LabVIEW FPGA to compute a 16 coefficients FIR filter. 
 

 
 

Figure 3. LabVIEW FPGA architecture of the LMS 
algorithm. 

 

One of the tasks performed is to shuffle the past samples of 

the contents in the vector X[n]. The two array functions 

Replace Array Subset and Rotate 1D Array act as a circular 

buffer where the input sample at index 0 gets replaced by a 

new incoming sample. In this manner a shuffle regressor is 

obtained. The for loop and its arithmetic operations are used 

to compute the output of the adaptive filter y[n] (equation 

3). The subtraction function on the block diagram computes 

the error signal e[n]. This error is multiplied by the step-size 

µ and then by the elements in the input buffer to obtain the 

coefficient updates. These updates are added to the previous 

coefficients vector W[n-1] to compute the updated 

coefficients vector W[n], described by equation (2). The 

main advantage of this architecture is that the prescription 

for the number of coefficients is done by setting a fixed 

dimension for the vectors W[n] and X[n]. Except this setting 

there is no need for other modifications to obtain a higher 

order adaptive filter. In this manner the architecture is 

available for a wide range of filter orders. After this setting a 

recompilation for the hardware device is required. 
 

IV. EXPERIMENTAL RESULTS 
The experiments regarding noise cancelation were 

carried out with the National Instrument LabVIEW FPGA 
programming environment, which offers real-time 
processing of samples. 

In this paper the input signals were set as follows: in the 
first set of experiments a sine wave with 1V amplitude and 
1kHz frequency (sampled with 100kHz, ≈17,000 samples) 
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was used; in a second set of experiments a speech signal 
(1.53Vp-p, 22.05kS/s, ≈200,000 samples, 1channel/16bits) 
was used. These signals were compromised by a white noise 
with different SNR. In the first set of experiments the input 
signals were generated with the NI cRIO-9263 analog output 
module and acquisitioned with the NI cRIO-9215 analog 
input module. Concerning the second set of experiments 
these were read from wave files from the real-time controller 
module. After reading they were sent to a FIFO memory of 
the FPGA chassis where they were processed by the 
hardware architecture and finally they were sent back to the 
real-time controller module to be evaluated. The FIFO 
memories have the length set to 1023 samples. The 
processing and reading of the signals is done sample-by-
sample from the FIFO’s, thus the algorithm works on-line. 

The accuracy for the processed signals and for the filter 

coefficients was set to 20bit. 

Regarding the FPGA synthesis results, a report was 

generated by the Xilinx FPGA compiler. Its summary is 

presented in Table 1, for two filter lengths. In order for the 

project to work on FPGA, the maximum frequency listed in 

the table must be greater than the actual chassis clock 

frequency (40 MHz). As a measure of the FPGA usage, we 

can take into consideration the percentage of used slices: 

22% for a filter length of 8, and respectively 35% for a filter 

length of 16.The FPGA hardware usage also depends on the 

number of bits describing the process accuracy. Thus, if the 

hardware usage is the priority then a lower filter length is 

recommended or the signals accuracy must be decreased. 
 

Filter 
length 

Max. 
frequency 
on FPGA 

(MHz) 

Slice 
Flip 

Flops 
out of 
28,672 

4 input 
LUTs 
out of 
28,672 

MULT 
18X18s 
out of 

96 

Nr. of 
slices 
out of 
14,336 

8 42.784 
4,110 
(14%) 

5,144 
(17%) 

12 
(12%) 

3,269 
(22%) 

16 42.911 
6,228 
(21%) 

8,379 
(29%) 

12 
(12%) 

5130 
(35%) 

 
Table 1. LabVIEW FPGA hardware usage. 

 

In order to illustrate the capability of the algorithm we 

chose two cases regarding the input signal. The results are 

summarized in Table 2; the step-size was set to 1E-4. 

Figures 4, 5 and 6 show the tracking ability and a spectrum 

analysis of the process for different input SNRs. The quality 

of the process was measured in terms of the filtered signal’s 

SNR and the convergence measured in seconds and samples. 

The SNR for the output signal is evaluated as: 

 

( )

( )

RMS x
SNR

RMS y x
=

−
,                           (4) 

 
where RMS(x), RMS(y-x) are the root mean squares of the 
pure input signal throughout the adaptive filter and the noise 
at the output. The output noise is estimated as a difference 
between the filtered and the pure input signals (y-x). 
 
 
 

 
SNR [dB] Convergence  Signal 

type 
Filter 
length Input Output [s] samples 

7.8 17.4 0.07 6,500 
8 

15.6 24.5 0.06 5,000 

7.8 
18.8 

(Fig.4a) 
0.05 4,500 

Noisy 
sine 

16 
15.6 

24.6 
(Fig.4b) 

0.04 3,500 

6.2 13.1 5 110,000 

8 
12.2 

17.1 
(Fig.5b, 

6b) 
4.1 92,000 

6.2 15.1 3.7 82,000 

Noisy 
speech 
(Fig. 5a, 

6a) 
16 

12.2 
18.2 

(Fig.5c, 
6c) 

3.3 67,500 

 
Table 2. Quality estimation of the process. 

 

 
a) 

 

 
b) 

 

Figure 4. Tracking ability on a sine wave with 16 
coefficients LMS filter: a) SNR=7.8dB, b) SNR=15.6dB. 

 

Figure 4 shows the result of the filtering process when 

the input is a sine wave with different SNRs (7.8dB and 

15.6dB); the filter length was set to 16. As it can be seen the 

SNR at the output of the adaptive filter was increased 

considerably in both cases (Table 2). 

Figure 5 and 6 illustrate a case in the filtering process of 

a speech signal for two filter lengths (8 and 16) with a 

12.2dB SNR at the input. In Figure 5 the tracking ability of 

the algorithm is presented. Figure 6 shows the amplitude 

spectra for the processed waveform shown in Figure 5. The 

SNR was increased well when the filter length is 16 in 

comparison with the case when the filter length is 8. As for 

the case with SNR of 6.2dB, this was increased at the output, 

but not so well than in case from Figure 5 even if the filter 

length was set to 16 (Table 2). 

The same set of analysis with different values for the 

step-size µ was also performed. In this case the filtered 

signal’s SNR was increased well for 1E-6 ≤µ≤1E-4. 
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a) 

 

 
b) 

 

 
c) 

Figure 5. Tracking ability on a speech signal: a) original 
speech; b) and c) - filtered waveforms with 8 and 16 

coefficients LMS filter 
 

V. CONCLUSIONS 

This paper presents a hardware architecture used to 

implement the LMS adaptive algorithm for several filter 

lengths. The architecture is aimed for speech processing 

using the NI cRIO-9104 FPGA chassis and the LabVIEW 

FPGA toolkit. 

The performance of the LMS algorithm implemented by 

hardware is comprehensively analyzed in terms of 

convergence performance, filtered signal’s SNR, filter 

length and tracking ability. The experimental results ensure 

the feasibility of the high-speed FPGA architecture of the 

LMS algorithm (Table 1). The noise cancelling system is 

chosen to validate the performance of LabVIEW FPGA in 

signal processing applications (Table 2); FPGA 

implementation will be more effective for more complex 

digital signal processing systems. 

Various DSP applications that use LMS adaptive FIR 

filters, like echo cancellers, channel equalizers and noise 

cancellers, can be added as a software layer on top of our 

system, without any hardware modifications. 

The presented architecture may be further enhanced so 

that it has the ability to initialize the filter coefficients. This 

feature may be needed for applications requiring faster 

convergence. 
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a) 

 

 
b) 

 

 
 

c) 

Figure 6. Spectrum analysis on a speech signal: a) 
original spectrum; b) and c) - filtered spectra with 8 and 

16 coefficients LMS filter 
 

REFERENCES 
[1] A. Elhossini, S. Areibi, R. Dony, “An FPGA Implementation 

of the LMS Adaptive Filter for Audio Processing”, IEEE 

International Conference on Reconfigurable Computing and 

FPGA's, 2006 

[2] S. Prakash, D.V. Venkatasubramanyam, B. Krishnan, R. 

Nagendra, “Compact FPGA Controller Aircraft/Aerospace 

Structures”, Proceedings of the International Conference on 

Aerospace Science and Technology, India, 2008 

[3] E. C. Ifeachor and B. W. Jervis, Digital Signal Procesing, A 

Practical Approach, Prentice Hall, 2002 

[4] B. Widrow and S.D.Stearns, ”Adaptive Signal Processing”, 

Prentice-Hall, Englewood Cliffs, N.J., 1985. 

[5] S. Haykin, “Adaptive Filter Theory”, Fourth Edition, Prentice 

Hall, Upper Saddle River, N.J., 2002 

[6] E. Szopos, M. Topa, I. Dornean, R. Groza, “Adaptive LMS 

Algorithm System Identification using LabVIEW”, IEEE 

International Conference on Automation, Quality and Testing, 

Robotics, Romania, pp.254-257, 2008. 

[7] E. Szopos, M. Topa, R. Groza, “Adaptive LMS and Pade 

Algorithms in System Identification”, Applied Electronics 

International Conference Pilsen, pp.219-222, 2008 

[8] Sinead Mullins, Conor Heneghan, “Alternative Least Mean 

Square Adaptive Filter Architectures for Implementation on 

FPGA”, Digital Signal Processing Group, Department of 

Electronic and Electrical Engineering, University College Dublin. 

[9] www.ni.com 

[10] T. Lan, J. Zhang, “FPGA Implementation of an Adaptive 

Noise Canceller”, IEEE International Symposiums on Information 

Processing, 2008 


