

Volume 50, Number 4, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received November 4, 2009. Revised November 22, 2009

 32

 EVALUATING THE PERFORMANCES OF THE

CASTGATE TUNNEL SERVER OVER TCP AND UDP LINKS

IN MULTI-CLIENT CONFIGURATION

Melinda BARABAS Georgeta L. BOANEA Kris STEENHAUT* Virgil DOBROTA

Technical University of Cluj-Napoca, Communications Department
26-28 George Baritiu Street, 400027 Cluj-Napoca, Romania, Tel: +40-264-401226

E-mails: {Melinda.Barabas, Georgeta.Boanea, Virgil.Dobrota}@com.utcluj.ro
* Vrije Universiteit Brussel, ETRO Department, Pleinlaan 2, B-1050 Brussels, Belgium

E-mail: Kris.Steenhaut@vub.ac.be

Abstract: The CastGate architecture defines a transitory tunneling solution, offering access to native multicast. This paper
describes the implementation of a testing application (CastGate Tester - CT) for the CastGate Tunnel Server (TS), using TCP
and UDP links. The goal is to evaluate the performance of the TS in a controlled environment, by emulating a variable
number of clients that connect to the server. Two scenarios were defined: load test and stress test. Based on these, the
limitations of the CastGate Tunnel Server were identified. The obtained results can be used in the optimization stages of the
TS.

Key words: multicast, CastGate project, UMTP*, Tunnel Server, Tunnel Client, load test, stress test.

I. INTRODUCTION
Multimedia streaming uses many, individual unicast
connections (from a single sender to a single receiver).
This method can put a heavy load on both network and
server because multiple copies of the same stream must
be carried along the full paths of all the connections
between the source and each of the destinations. A better
solution is to send the information from the content server
to a content distribution network, a system of computers
that cooperate transparently to deliver content to end-
users.

Probably the most efficient way of handling massive
amounts of connections without overloading the network
is using IP multicast: having the content server send the
information in the network only once, and creating copies
only when the links to the destinations split. Each
multiplication of information item is kept as close as
possible to the end-users, leading to a minimal traffic
overhead on the network.

Multicast minimizes network and content server load,
the server and the Internet connection of the content
provider needs to support only one single stream.
Multicast reduces the probability of problems regarding
capacity, delay and delay variation for isochronous
applications (streaming) [1]. IP multicast is implemented
in most computers and networking systems, most content
distribution end-user applications are “IP multicast
ready”. Although multicast allows receiving rich media
and other content without placing a high burden on the
network, in practice it is virtually unavailable on the
Internet, being blocked in the access networks of the ISPs
[2]. The main reason behind the lack of multicast
deployment is an economical reason: a “three-party”
deadlock [1]. Content providers do not use multicast, end-

users do not ask for multicast access, and network
providers do not offer multicast, as there is almost no
demand from their customers and hence the initial cost to
enable multicast is not justified. The lack of multicast has
technical reasons too. Current Internet multicast is weak
in: Authentication, Authorization and Accounting.
Another problem is reliability: the communication is
connectionless and usually unidirectional, so instead of
TCP connections UDP is used. Thus packet loss becomes
an issue because flow control is not automatically present.

The CastGate architecture uses unicast tunnels
between the end-user machines to encapsulate the
multicast packets in between the portion where we do
have IP multicast (Tunnel Server) and the end-user.

This paper describes the implementation of a testing
client for the CastGate Tunnel Server, in multi-client
configuration. The second chapter describes the CastGate
project and the CastGate tunneling system. The third
chapter refers to the implementation of a testing client
(CT) for the CastGate tunneling system. Chapter four and
five present the defined scenarios: load test and stress test
and the evaluation of testing results. Conclusion and
future work are presented in the last chapter.

II. THE CASTGATE PROJECT
The CastGate project was started by the “Digital
Telecommunications” (TELE) research group of the
ETRO department at the Vrije Universiteit Brussel and it
is an attempt to provide connectivity for hosts that cannot
access multicast network.
 The objective of the project is to obtain a breakthrough
in the enabling of IP multicast in the public Internet. The
key is to provide a simulated access towards end-users
without native multicast connectivity, allowing thus

Volume 50, Number 4, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 33

content providers to distribute audio and video streams
[3]. The CastGate project attempts to make the threshold
for multicast access towards Internet users as low as
possible.
 This solution is mainly a transition technology to
increase the number of multicast users and to boost
Internet multicast traffic. CastGate by itself does not aim
to reduce the network load, but it allows a gradual
enabling of native IP multicast access by network
operators. A detailed description of the project can be
found in [1].

A. THE CASTGATE TUNNELING SYSTEM
The basic idea is to have a tunneling system, allowing
end-users to connect through an automatically configured
tunnel network. This is unicast communications to a
server situated in a multicast enabled portion of the
Internet, and the whole multicast traffic is transported
inside those unicast connections.
 The concept is presented in Figure 1. The following
devices are included in this architecture:

a) Tunnel Clients (TC): host stations or Content
Servers without multicast access, acting as end-
points of a tunnel, and sending/receiving
multimedia content;

b) Tunnel Servers (TS): encapsulate/decapsulate the
multicast channels selected by a client into/out
off a unicast communication, and
receive/transmit that traffic from/to the multicast
enabled network.

Unicast

Internet

Multicast

Internet

TC

User without

multicast access

Multicast
connectionTC

TC

TS
TS

Content
Server

TC Multicast tunnel

TS

User with
multicast access

Figure 1. CastGate tunneling concept

The operation of the CastGate tunnel service is based
on the availability of CastGate Tunnel Servers connected
to the multicast enabled part of the Internet. These allow
stations to set up unicast tunnels to them over which the
multicast traffic can be forwarded. The CastGate
architecture is built around the concept of application
level tunneling augmented with an automatic tunnel end-
point location mechanism [3].

Figure 2 illustrates the basic principle of CastGate
multicast tunneling. The Tunnel Server (implemented at
software level) bridges the multicast portion of the
Internet through the individual tunnels to the clients. At
the end-user side, corresponding tunnel client software
needs to be installed to terminate the tunnel.

Encapsulating unicast data in multicast traffic is
accomplished using the UMTP* protocol. The UMTP*
sublayer is a “trimmed down” version of UMTP, the
“UDP Multicast Tunnel Protocol” (presented in [4]),

enhanced with CastGate specific options (described in
[5]). It is used in the unicast tunnel as a data transport and
signaling protocol, between the multicast traffic layers
and the unicast tunnel connection layers.

Tunnel
ServerTunnel

Client

Multicast
tunnel

MulticastMulticast Unicast

Multicast

UMTP*

Figure 2. Basic principle of CastGate tunneling

The Tunnel Client sends UMTP* commands to the
Tunnel Server, and waits for the proper response. UMTP
means tunneling multicast UDP datagram packets inside
unicast UDP datagrams. The UDP packets sent by the
client contain the 12-octet UMTP tunneling trailer (Figure
3) and negotiation fields (which are optional).

Source Cookie Destination Cookie

Port

(IPv4) Multicast Address

TTL SVers Cmd

32 bits

Figure 3. UMTP Trailer [4]

The multicast address and port identify the multicast
channel to join or to relay data to. The command field
specifies which command is sent and indicates the exact
use of the trailer. Vers indicates the protocol version and
is currently zero. The source cookie and destination
cookie must be unique for each tunnel (these are used to
protect against IP source address spoofing).

The Tunnel Client can send the following commands,
as defined in [5]:

• PROBE: to determine the willingness of a
Tunnel Server to act as a tunnel end-point. The
client also indicates the source cookie that
should be used in the rest of the communication.
The Tunnel Server’s response on a PROBE is
either PROBE_ACK or PROBE_NACK.

• JOIN: to indicate to the Tunnel Server which
group and port to join. The server will respond
with JOIN_ACK or JOIN_NACK messages. The
JOIN message should be repeated every 15
seconds. If a CastGate server does not receive a
JOIN for a given session within 60 seconds, then
the session is no longer tunneled.

• LEAVE: to let the server know that the client is
no longer interested in receiving content from
that session.

Volume 50, Number 4, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 34

Option and parameter negotiation were introduced to
the UMTP protocol in order to support the enhancements
of UMTP* and to make it more extendible. These fields
have variable length and they are sent before the PROBE,
PROBE_ACK, PROBE_NACK, JOIN, JOIN_ACK,
JOIN_NACK trailers and are used to exchange setup
information between the two end-points of the tunnel [5].

The Tunnel Server sends the DATA command if it is
tunneling multicast traffic towards the client. In this case
the UMTP* descriptor is preceded by the data that is
being tunneled. To realize a more efficient transmission,
the Tunnel Server can use a 4-octet trailer (Figure 4),
negotiated previously with the client.

FlowID TTL SVers Cmd

32 bits

Figure 4. FLOW_DATA message

In this case, each channel (multicast address and port)
is identified by a unique 2-octet identifier: FLOW_ID,
obtained by the peer.

B. TUNNELING OVER UDP AND HTTP/TCP
There exist two possible choices for the unicast
communication of the tunnel, as indicated in [1]: transport
over UDP (Figure 5a) and transport over HTTP/TCP
(Figure 5b).

UDP

Multicast

UMTP*

IP

TCP

Multicast

UMTP*

IP

HTTP

(a) (b)

Figure 5. Tunneling over UDP (a) vs.

tunneling over HTTP/TCP (b)

Transport over UDP is preferred to TCP for live

streaming applications and it is the most natural choice,
because native multicast traffic uses it too. However there
are two practical issues: fragmentation and firewalls. To
solve these two problems, an alternative unicast
connection mechanism is provided in the CastGate
project, using HTTP/TCP stack. By adding an additional
encapsulation level in the form of HTTP, the tunnel will
look like being “web” traffic, using TCP destination port
80. This approach deals with the problem of firewall
restrictions on traffic.

Each UMTP* packet is either a “command”
(instructing the Tunnel Server to join or leave a multicast
group address and port) or “data” (an enclosed multicast
UDP datagram payload), depending on the signaling used
in the UMTP* sublayer. Figure 6 illustrates the UMTP*
message sequence chart of a typical client-server
interaction.

HTTP POST

HTTP GET

DATA

Tunnel Client
CastGate

Tunnel Server

HTTP 200 OK

PROBE

PROBE_ACK

JOIN_GROUP

LEAVE_GROUP

TEAR_DOWN

JOIN_GROUP

Required only

when tunneling

over TCP

(not present when

using UDP)

Socket-client

Socket-server

Figure 6. UMTP* message sequence

The CastGate Tester implements this exchange of

UMTP* messages for each simulated Tunnel Client. If we
test the server over TCP connections, the UMTP*
message exchanges are preceded by HTTP POST and
GET interactions.

III. TUNNEL SERVER PERFORMANCE

EVALUATION
The evaluation of the Tunnel Server is performed by
emulating a large number of clients that will be served by
a single Tunnel Server in a controlled environment. The
CastGate server is public TS software provided by
BELNET, the academic and research network in Belgium.
The CastGate Tester runs on a computer that is in the
same local area network (1 Gbps LAN) as the Tunnel
Server.

An evaluation of the performance and capacity of the
CastGate TS is needed because of the unpredictable
behavior of these servers in real usage conditions. When
the CastGate system was tested the first time, because of
the large number of viewers, the system became unstable
and restarted every 5-6 minutes. Not knowing how many
clients the Tunnel Server can handle and how it reacts to
the clients’ behavior, you cannot guarantee the proper
quality of the multimedia stream.

The Tunnel Servers will be used in public and
commercial audio and video streaming (e.g. radio,
television quality video), and it is vital to know how many
tunnels can be managed by a single server, in which
conditions and for what type of media, in order to be able
to satisfy the clients’ expectations. Based on these
observations, we have to identify techniques to improve
the behavior of the CastGate Tunnel Server. Before
deploying large scale content distribution architectures
based on CastGate, all bugs and imperfections of the
software implementation have to be identified and
eliminated.

The CastGate Tester is a software application written
in C# using the Microsoft.NET technology, Framework
3.5. The CastGate Tester emulates a large number of

Volume 50, Number 4, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 35

clients simultaneously in order to evaluate the
performance and capacity of the CastGate multicast
system, i.e. detecting missing packets by monitoring the
sequence numbers in the RTP header, respectively
detecting the failure to create new tunnels.

For each client an application level tunnel must be
built. Each emulated client uses two sockets to establish a
connection with the Tunnel Server (see Figure 6). The
first socket is responsible for sending the following
commands: PROBE, JOIN_GROUP, LEAVE_GROUP,
TEAR_DOWN, and HTTP POST (only in the case of
TCP connections). Using the second socket, the Tunnel
Server sends the PROBE_ACK command and the DATA
messages. This socket is also responsible for the exchange
of HTTP GET and HTTP 200 OK messages.

Each tunnel is identified by the port numbers in the
outer UDP header (when tunneling over UDP) or in the
TCP header (when tunneling over TCP) of the involved
sockets. In this way, the different clients emulated with
the CastGate Tester (having the same IP address) must be
bound to different ports on the local machine in order to
create distinct tunnels.

Two major testing approaches were identified: load
testing and stress testing. In this paper we describe both
testing scenarios, in order to determine how the CastGate
server acts in heavy loading scenarios. In these scenarios
we assume that the Tunnel Server is behaving incorrectly
if a client is unable to connect to the server or if packets
with multicast content are missing.

Figure 7 presents the testing scenario for both testing
approaches.

Tunnel

Server

Content
Server

Unicast
Internet

Multip
le tu

nnels
Multicast

Internet

Multicast

tunnel

Multicast

connection

CastGate

Tester

193.190.238.134

193.190.238.136:80

233.177.170.182:5004

Figure 7. Testing scenario

IV. LOAD TESTING
The goal of the load test is to estimate the number of
Tunnel Clients that can connect consecutively to a Tunnel
Server, i.e. to determine how many simultaneous
connections can be handled by a single Tunnel Server
without having a significant loss of multicast data
packets. With this information a service provider can set
up a functional, stable CastGate tunneling system by
limiting the number of clients connected to a certain
server, and redirecting or not accepting other clients.

Emulating the operation of multiple Tunnel Clients
relies on implementing a special client. This asks for the
creation of a large number of tunnels, setting up one

tunnel at a time and incrementing the number until the
server does not respond anymore, or a given number of
errors start to appear in the tunnels. The final result of a
load test represents the number of tunnels for which the
CastGate server functioned properly.

The multicast stream is described by RTP (Real-Time
Transport Protocol) headers, which also contain a
sequence number indicating the frame being transmitted.
Comparing the sequence numbers of the incoming
packets, we can detect missing packets. The absence of
more consecutive packets in a certain stream indicates
that the Tunnel Server is overloaded and cannot manage
to send all the frames to each client. Another indicator of
the incorrect behavior of the Tunnel Server is the failure
to send PROBE_ACK or PROBE_NACK messages to the
newly connecting clients.

In the load testing scenario, tunnels are created one
after the other, using multi-threading, and the data packets
sent by the server are monitored. Setting up tunnels
emulates the behavior of real clients because it involves
all the messages a real Tunnel Client would exchange
with the tunneling server. But this implementation of
multiple clients, accomplished by the CastGate Tester,
neglects the actual multimedia information. The
multimedia content does not get any attention; it is not
displayed, but discarded after verifying the RTP sequence
number.

Two important parameters of load testing were
identified:

• time delay between setting up two consecutive
tunnels, in seconds (d);

• type of multimedia traffic being tunneled (audio or
video).

We carried out different load tests, changing the delay
interval d and the type of traffic being tunneled, for both
TCP and UDP links. A detailed presentation of the results
of these tests can be found in [6] and [7].

If we define a delay of d=1s between setting of two
consecutive tunnels over TCP connection and if we select
video traffic, we can observe the evolution of the TCP
segments received/sent by the CastGate Tester, illustrated
in Figure 8.

0 5 10 15 20 25 30 35 40 45 50 60 7055 65 75 80

(N
u
m

b
e

r
o
f

T
C

P
 s

e
g
m

e
n
ts

/
s
e
c
o

n
d
)

*
1

0

Time [s]

Received TCP segments / second

Sent TCP segments / second

85 90 95 100

Figure 8. Load testing over TCP connections

Volume 50, Number 4, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 36

Under these conditions up to 70 clients emulated by
the CastGate Tester could connect to a single Tunnel
Server. The test was stopped because some Tunnel
Clients did not receive data over the tunnel, as seen in
Figure 9.

The first client that could

not connect
Stopping the

test

0

500

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

Tr
a

n
sf

e
r

ra
te

[k
b

p
s]

Tunnel index

Transfer rate (video)

Figure 9. Load testing over TCP – transfer rate

If we keep the previous settings (d=1s and video

traffic) and create UDP tunnels, we can observe that up to
155 clients emulated by the CastGate Tester could
connect successfully to a CastGate Server (See Figure
10).

Received UDP datagrams / second

N
u

m
b
e

r
o
f

U
D

P
 d

a
ta

g
ra

m
s
 /
 s

e
co

n
d

Figure 10. Load testing over UDP links

Repeating the tests several times, we observed that we

cannot have more than 110 TCP tunnels connected
simultaneously to a single Tunnel Server, while the
number of UDP tunnels can reach even 400; i.e. if we
create only UDP tunnels, the Tunnel Server is able to
handle a greater number of clients.

Examining the effect of the delay between creating
two consecutive tunnels, we observed that the server is
behaving correctly for a longer period of time if the value
of d increases. We concluded that it is more difficult to
manage clients if they connect to the CastGate Tunnel
Server shortly one after another or almost simultaneously.
For example, in the case of a TCP connection and
transmitting audio traffic, if d=3s: the server behaves
correctly for 115 seconds. If d=0.1s: the first denied
tunnel appears after 17 seconds.

Performing different tests, we came to the conclusion
that the number of clients which can be served by a single
server depends highly on the type of traffic: audio or
video. Table 1 presents the number of connected tunnels,
if modifying the delay between starting two consecutive
tunnels (d). An audio stream requiring less bandwidth,
therefore more simultaneously transmitting tunnels can be
created. This observation is valid for both UDP and TCP
links.

Delay between setting up two consecutive tunnels

d = 0.1 0.1 0.1 0.1 s d = 0.5 0.5 0.5 0.5 s d = 1111 s d = 3333 s

Audio

stream
109 tunnels 90 tunnels 50 tunnels 30 tunnels

Video

stream
85 tunnels 73 tunnels 69 tunnnels 35 tunnels

Table 1. Tunnels connected to the TS over TCP

Another observation is that more RTP packets are

missing if the received traffic is a video stream than in the
case of audio streams.

V. STRESS TESTING

In the stress testing scenario, the CastGate Tester is
randomly setting up and dropping tunnels, the
connection-disconnection rate (dynamic load) depending
on the specified connection time. By connection time we
mean the period of time for which the client stays
connected to the server.

Using this kind of scenario we can test the dynamic
behavior of the Tunnel Server, pinpointing situations
which lead to an unpredictable behavior of the server.
This knowledge could help improve the performance of
the CastGate system by avoiding critical situations or
managing them in a different way.

Two important parameters of stress testing were

identified:
• the average number of clients connected to the

Tunnel Server at a time (M);
• the average connection time in seconds (D).

If we set M=75 and D=1000s, we obtain the following

transfer rates at the CastGate Tester side (Figure 11):

0

12,5
Mbps

25
Mbps

0 50 100 150 200 250 300

Time [s]

T
ra

n
s
fe

r
ra

te
[M

b
p

s
]

Figure 11. Stress testing over TCP – stable TS

But if we set a much lower connection time for the
individual TCP tunnels (D = 10s), even when the number
of served clients is reduced (M = 25), the Tunnel Server
becomes unstable, as you can see in Figure 12.

0

6,25
Mbps

12,5

Mbps

Time [s]

0 50 100 150 200 250 300 350 400

T
ra

n
s
fe

r
ra

te
[M

b
p

s
]

Restart

time

Figure 12. Stress testing over TCP – unstable TS

Volume 50, Number 4, 2009 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 37

Performing several stress tests with different
parameters, we can observe that the Tunnel Server can
manage approximately 70-80 Tunnel Clients when
streaming audio content, and 50-55 Tunnel Clients when
streaming video content. The server becomes unstable if
more than 10-15 clients disconnect simultaneously, i.e.
they induce instability.

This event manifests in periodic restarts, which lasts
50 seconds and occurs once every 2-3 minutes. Without
any warning, a Tunnel Server can shut down and does not
respond for several minutes. Whether using TCP or UDP
links to establish tunnels, the server presents the same
unstable behavior.

To evaluate the combined effect of TCP and UDP
tunnels, we performed stress testing under concurrent
traffic conditions. The defined scenario for this type of
stress testing is illustrated in Figure 13. If we run two
separate instances of the CastGate Tester, one can fulfill
the role of a TCP Tester and the other the role of a UDP
Tester.

TS

Multicast Channel #1

Unicast
Internet

Multiple UDP tunnels

Multicast
Internet

UDP Tunnel

Multicast

connection

193.190.238.134

193.190.238.136

233.177.170.182:5004

Multicast Channel #2
233.177.170.183:5004

193.190.238.134

M
u
lt i

p
l e

 T
C

P
 t
u
n
n
e
ls

TCP Tunnel

UDP Tester

TCP Tester

Figure 13. Stress testing under concurrent traffic

conditions

If we define M=10 UDP tunnels and M=10 TCP

tunnels and D is set to 50 seconds for a video streaming,
the Tunnel Server will restart periodically after 60-70
seconds, as presented in Figure 14.

0

5
Mbps

10
Mbps

Time [s]

0 50 100 150 200 250 300 350

T
ra

n
s
fe

r
ra

te
[M

b
p

s
]

400

Figure 14. Stress testing under concurrent traffic

conditions

In a similar situation, but creating M=20 tunnels of the

same type (either TCP or UDP links), we can observe that
the server remains stable for a longer time. Varying the
number of UDP and TCP connections and analyzing the
results, we can conclude that TCP tunnels have a greater
impact over the Tunnel Server’s behavior. Thus they are
the major cause of instability.

VI. CONCLUSIONS
This paper describes the implementation of a testing-
client for the CastGate Tunnel Server. The CastGate
Tester offers the possibility of evaluating the performance
of the TS in a controlled environment, thus the connection
between the behavior of the TC and the operating mode
of the TS can be determined. Multithreading mechanisms
were used to simultaneously emulate the behavior of a
large number of Tunnel Clients, communicating with the
TS through HTTP/TCP or UDP tunnels. Multicast
information is sent through the tunnel in form of RTP
packets encapsulated in UMTP* packets.

Comparing the results obtained for tunneling over
TCP and over UDP, important differences appear in the
behavior of the CastGate Tunnel Server when we change
the type of the connection. We observed that the number
of TCP tunnels which can be served simultaneously
without errors is much lower than in the case of UDP
tunnels.

Additionally, the Tunnel Server is able to handle a
greater number of clients when streaming audio content.

The stability of the tunneling system proved to be
dependent on the number of clients that end the
connection to the server almost at once. The frequency of
restarts increases with the number of simultaneously
disconnecting Tunnel Clients.

Possible improvements applicable to the CastGate
system, identified with the help of the CastGate Tester,
are: a) separating the UDP and TCP functions of the
Tunnel Servers by providing distinct servers for UDP and
for TCP tunnel, because this approach could ensure a
greater stability of the whole system; b) limiting the
number of clients which can connect to a single tunneling
server using TCP connections (~50); c) limiting the
number of clients which can connect to a single Tunnel
Server using UDP links (~100); and d) preventing the
simultaneous disconnection of more the 10-15 clients.

ACKNOWLEDGMENTS
We acknowledge the support obtained from the TELE
research group of the ETRO department, during our stage
at the Vrije Universiteit Brussel within the Erasmus
Program.

REFERENCES
[1] P. Liefooghe, M. Goossens, A. Swinnen, B. Haagdorens,
"The VUB Internet multicast “CastGate” project", Technical
Report 10/2004 v1.8, 2004.
[2] M. Goossens, P. Liefooghe, A. Swinnen, “The CastGate
project - Enabling Internet multicast for content distribution”,
2006.
[3] P. Liefooghe, “An Architecture for Seamless Access to IP
Multicast Content”, 2002.
[4] R. Finlayson, “The UDP Multicast Tunneling Protocol <
draft-finlayson-umtp-09.txt>”, Internet-Draft, 2003.
[5] P. Liefooghe, “CastGate: an auto-tunneling architecture for
IP Multicast <draft-liefooghe-castgate-02.txt>”, Internet-Draft,
2004.
[6] M. Barabas, “Testing the CastGate Tunnel Server over TCP
Connections in Multi-client Configuration – Diploma Thesis”,
Technical University of Cluj-Napoca, Romania, 18 June 2008.
[7] G. Boanea, “UDP Multi-client Tester for CastGate Tunnel
Server – Diploma Thesis”, Technical University of Cluj-Napoca,
Romania, 18 June 2008.

