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Abstract: The optimization of networks which implement Network Coding techniques is necessary for efficient resource 
utilization. If the data is encoded only in a subset of nodes, selected in the appropriate way, the complexity of the coding 
operations could be decreased, while ensuring the imposed performances. Finding the minimum number of encoding nodes is 
a NP-hard problem, but genetic algorithms could offer a good solution to this problem. In this paper we investigate by 
computer simulations the performances of a genetic algorithm adapted to the network optimization problem and we try to 
find the combination of parameters which ensures low optimization time. 
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I. INTRODUCTION 
The Network Coding (NC) concept was firstly introduced 
for satellite communication networks in [1] at the turn of 
the millennium, and then fully developed in [2], where the 
term “Network Coding” first appeared. These coding 
techniques were proposed to increase the throughput in 
communication networks in compensation of the transfer 
rate limitations caused by congestions. 

NC allows intermediary nodes to perform 
mathematical operations on the packets received on the 
incoming links, instead of simply store-and-forward these 
packets, being an alternative to classical routing. In [2] it 
was shown that in multicast networks the optimal 
transmission rate can be achieved using NC, and even 
unicast protocols perform better with NC than with 
classical routing. 

A significant part of the theoretical studies regarding 
NC assume that coding operations take place at every 
intermediary node in the network. The disadvantage of 
this approach is that the necessary mathematical 
operations for coding at the intermediary nodes and 
decoding at the destinations nodes will increase the 
computational complexity of NC operations and will 
require a significant amount of additional resources. In 
many cases it is sufficient that only a set of intermediary 
nodes realize coding operations, without decreasing the 
throughput of the network, as it was shown in [3]. This 
will reduce the number of operations performed by the 
nodes, thus the complexity and the costs of NC 
operations. The problem is to find the minimum number 
of coding nodes, nodes that realize coding operations,, 
while ensuring a maximal throughput of the network. This 
problem is NP-hard and even close approximations of this 
problem are NP-hard. Considering the complexity of this 
problem there are only a few approaches for minimizing 
the necessary resources and the cost for NC. 

Genetic algorithms may be a solution for the 
optimization problem of the networks where NC 
operations are performed [3], but these optimization 
algorithms are also computationally expensive and their 

theoretical performances are hard to be evaluated. 
The paper proposes an evaluation of the genetic 

algorithms based network optimization process 
complexity by employing computer simulations. The 
relation between the number of iterations / optimization 
time and the different parameters of the genetic 
algorithms is analyzed. This study is important especially 
in the network optimization problem in discussions, 
because the number of iterations has a strong influence on 
the amount of necessary signaling overhead, while the 
optimization time has to be significantly smaller than the 
time periods during which the network topology remains 
unchanged. 

This paper is organized as follows: Section II presents 
shortly the basic aspects related to NC techniques; 
Section III describes the optimization process of the 
network performing NC using genetic algorithms. 
Simulation results are presented in Section IV and Section 
V concludes the paper.  

 
II. NETWORK CODING TECHNIQUES 

In order to perform NC the communication network has 
to be modeled as a directed graph, in which every edge 
represents a communication link and every vertex a node 
from the network. In order to simplify the model we 
consider lossless links and every link is modeled by 
several elementary links with unit capacity, capable of 
transferring only one symbol in one time unit. 

In Figure 1 the well-known butterfly network [2] is 
presented, as a basic example. The source nodes R1 and 
R2 transmit two bits, b1 and b2, to destination nodes R3 
and R4. If node R5 is allowed to mix the incoming bits 
from the source nodes by a simple bitwise XOR operation 
and forward the resulting bit, b1⊕b2, to R6, then every 
link in the network will be used exactly once, and both 
destinations will receive simultaneously the two bits.  
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Figure 1. The butterfly network. 
 
Destination node R3 receives bits b1 and b1⊕b2, so it 

is able to decode bit b2. Similarly, node R4 is also able to 
decode bit b1 from the received bits, b2 and b1⊕b2. If 
node R5 simply forwards the incoming bits, without 
mixing them, at least one link has to be used twice, and 
the throughput of the two sources will decrease. 

The coding operations performed in the considered 
example are representing deterministic linear NC 
operations, when for each node the coding coefficients are 
imposed. The drawback of such a solution consists in the 
increased signaling overhead required by the distribution 
of the coding coefficients among the nodes performing 
NC operations. 

Random Network Coding, introduced in [4, 5], is an 

alternative solution which allows to each node to chose 

independently the coding coefficients, by generating 

randomly these coefficient. The coding operations are 

realized on symbols represented by vectors of length u, 

seen as elements of the finite field F(2u). The coded 

symbol Y(j) transmitted on an outgoing link j of node v is 

a linear combination of the information symbols, Xi, 
generated at node v = tail(j) and of the data or coded 

symbols, Y(l), received by node v on it’s incoming links l, 

as it is depicted in Figure 2. For Y(j) we can write the 

following equation: 

 

( )
{ }

( )
{ }, ,: : ( )i

i j i l ji X generated at v l head l v
Y j a X f Y l

=
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where 
, ,

,
i j l j

a f  represent the coding coefficients used in 

node v for the locally generated respectively for the 

received data or coded symbols [4].  

 

  
 

Figure 2. The coding process at node v. 

The received data at the destination node, β, is also a 

linear combination of the data received on the input links: 
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where 
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β

 represent the coding coefficients used in the 

destination node. The coefficients 
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β β=  of 

dimension r w× , where r is the transmission rate in 

symbols/s and w is the total number of links in the 

network, and matrix 
,

( )
l j

F f=  of dimension w w× . The 

structure of these matrices depends on the topology of the 

network, as described in [4, 6]. The collection of matrices 

(A, F, B) represents a linear network code, including both 

the coding operations and the topology of the network 

where these operations are performed. The coding 

problem has solution if and only if the transfer matrix M 

of the network defined by (3) is nonsingular. 
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The coding coefficients are selected randomly from 

the elements of the finite field F(2u). If the field size is 

sufficiently large, at the destination node, β, the 

coefficients 
,i l

bβ can be selected such that the transfer 

matrix M is nonsingular. The increased size of the finite 

field, necessary to ensure coding solution, represents the 

main drawback of random NC operations.  
 

III. GENETIC ALGORITHM BASED 
NETWORK OPTIMIZATION 

In a multicast scenario it is not always necessary that 
coding operations to be realized at every node of the 
network. There are nodes which can simply forward the 
received packets without decreasing the throughput of the 
network. To minimize the cost of the NC operations and 
to optimize resources needed for NC, it is necessary to 
find the minimum number of coding nodes and the 
minimum number of links on which coded packets are 
transmitted, such that a given transmission rate is 
achievable. A simple example is presented in Figure 3, 
where the source node (node 1) transmits simultaneously 
two packets, a and b, to the destination nodes (node 9, 10 
and 11). If NC is not used, the simultaneous reception of 
both packets by all the destination nodes is not possible. If 
NC is realized in its simplest form (bitwise XOR) at the 
intermediate nodes 5 and 6, without any optimization, the 
destination nodes 9, 10 and 11 receive the following 
packets: a, a⊕b; a⊕b, a⊕b; and a⊕b, b respectively. It 
can be seen that every destination node will be able to 
decode the received coded packets. The transmission rate 
in this case is 2 packets / time unit. If the network is 
optimized, the same transmission rate (2 packets/time 
unit) can be achieved, but it is sufficient that only one of 
the nodes 5 and 6 mixes the received packets. 
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Figure 3. Network Coding cost optimization 
 
Supposing that node 5 performs the coding operations 

on the received packets, the destination nodes 9, 10 and 
11 receive the following packets: a, a⊕b; a⊕b, b; and a, b 
respectively. Both data packets, a and b, can be recovered 
in all destination nodes. 

Finding the minimum number of coding nodes in a 
more complex network topology is not a simple task (like 
in the previous example) and a possible solution could be 
to adapt genetic algorithms to this problem. A genetic 
algorithm operates on a set of possible solutions, called 
population, which improve sequentially using different 
mechanisms inspired from biological evolution. 

A particular variant of genetic algorithms which can 
be easily used to solve the optimization problem of 
networks employing NC is presented in [3]. In this 
algorithm the chromosomes of the initial population are 
defined as follows: for each pair of incoming link i∈{1, 
…, din}, din≥2, and outgoing link j∈{1, …, dout}, dout≥1, of 
an intermediate node, a binary value ai,j is associated 
randomly. This value is 1 if the information received on 
the incoming link i contributes to the information sent on 
the outgoing link j, and is 0 otherwise. For the outgoing 
link j (j∈{1, …, dout}), the set of associated binary values 
aj=(ai,j)i∈{1, …, din} forms the coding vector and every 
chromosome is defined as the collection of these coding 
vectors. Thus, a given chromosome indicates which 
inputs will contribute to which outputs at every 
intermediate node, as presented in Figure 4. 

If din(v) is the number of incoming links of node v, and 
dout(v) is the number of outgoing links of the same node, 
then the length of a chromosome can be defined as: 
 

                 ( ) ( )
in out

v V

m d v d v
∈

= ∑ ,                (4) 

 
where V is the set of intermediate nodes. Every gene in 
the chromosome represents an incoming-outgoing link 
pair from the network. 

The size of a population is limited usually to a few 
hundreds of chromosomes and it is possible that none of 
these chromosomes is feasible, due to their random 
generation. To avoid such a situation, if the size of the 
population is N, only N-1 chromosomes are generated 
randomly, and the chromosome containing value 1 at 
every position will be added to the population. This 
chromosome is feasible, but it represents a non-optimal 
solution. 

 
 

Figure 4. Coding vectors 
 
For the evaluation of the chromosomes a fitness 

function is defined. In every chromosome, the number of 
links which carry coded data is equal to the number of 
coding vectors which contain at least two values of 1. The 
number of coding nodes is equal to the number of nodes 
which have at least one output link carrying coded 
symbols. Using Random Network Coding it has to be 
checked if the transmission rate can be achieved after the 
data transmission is restricted in the way that a given 
chromosome specifies. The input links which have a 0 
value assigned in a coding vector composing the 
chromosome are not used for data transmission and 
coding operations on the output link related to that coding 
vector. A chromosome is feasible if the transmission rate 
can be achieved according to the restriction given by the 
chromosome, otherwise it is not feasible. In other words a 
chromosome is feasible if the transfer matrix at every 
destination node is nonsingular. The fitness function 
according to [3] can be defined as: 
 

, if z is feasible
( )

,    if z is not feasible

number of coding nodes
F z


= 

∞

    (5) 

 
From the current population a new population is 

created using three operations: selection, crossover and 
mutation. 

The chromosomes intended to form the new 
population are selected based on their fitness values, 
chromosomes with better fitness value being selected with 
a higher probability. From the current population M 
chromosomes are selected randomly, and the one with the 
best fitness value is kept, where M is a parameter of the 
genetic algorithm called selection pressure. This selection 
method is repeated N times, where N is the size of the 
population. 

The chromosomes selected for the new population 
undergo uniform crossover. The chromosome pairs are 
selected randomly, and they interchange part of their 
genes according to a given crossover probability. The 
chromosomes generated by the crossover process undergo 
a binary mutation, the bits of the chromosomes being 
inverted according to the mutation probability. 

The new population obtained after crossover and 
mutation is evaluated using the fitness function. The best 
chromosome of the population (the chromosome with the 
smallest fitness value in our situation) is kept unchanged 
for the next generation, while the worst chromosome, 
having the largest fitness value, is eliminated. New 
populations are generated until the termination criterion is 
reached, meaning that the number of generations reaches 
the imposed limit. Another termination criterion can be 
adopted, which stops the iterations when in a given 
number of generations the fitness value of the best 
chromosome does not change significantly. 
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IV. EXPERIMENTAL RESULTS 
If the optimization of the network is successful, the 
genetic algorithm will return the coding coefficients 
which will be used for the NC operations involved by the 
data transmission. Considering that the network topology 
can change relatively fast (it is the case of wireless 
networks), it is a subject of interest how fast the genetic 
algorithm finds the best solution. The influence of the 
parameters of the genetic algorithm – population size, 
selection pressure, crossover probability, mutation 
probability, maximum number of generations, finite field 
size – on the optimization time and on the necessary 
number of generations is evaluated in this section. For the 
evaluation we use a simulator implemented in Matlab and 
the Random Network Coding operations are realized in 
GF(2

5
) in all simulations.  

The first test topology is the same as presented in 
Figure 3. If every link in the network has a capacity of 1 
data unit / time unit, then without NC it is not possible to 
transmit simultaneously two packets to every destination 
node. If the intermediate nodes can mix the received 
packets – NC is used in the network – the maximum 
multicast transmission rate of 2 data units / unit time, can 
be achieved. Without optimization both intermediate 
nodes, 5 and 6, perform coding operations, although for 
achieving the maximum transfer rate it is sufficient that 
only one of the nodes 5 and 6 mixes the received 
information. For this topology the simulations were 
performed considering the following parameters of the 
genetic algorithms: selection pressure = 5, crossover 
probability = 20%, mutation probability = 2% and 
maximum number of generations = 150.  

First we evaluate the performances depending on the 
population size. The simulations are done for different 
population sizes: {20, 30, 50, 70, 100, 150} and the 
results are presented in Figure 5. The optimization is 
successfully done in 7 generations and it does not depend 
on the size of the population, if the size is large enough. 
The time needed for successful optimization increases 
proportionally with the size of the population, for 50 
chromosomes in the population the duration is 10.24 s, for 
100 chromosomes it is 20.45 s and for 150 chromosomes 
it is 30.68 s, as presented in Figure 5; the optimization 
time intervals are valid only for the simulations 
performed. The operations of the genetic algorithm 
(selection, crossover, mutation and evaluation) take place 
for every chromosome from the population, so larger 
populations need higher number of operations, and the 
algorithm needs more time for optimization. 

 

0

5

10

15

20

25

30

35

20 30 50 70 100 150

Population size

N
o
. 
it

er
a
ti

o
n

s 
/ 

O
p

ti
m

iz
a
ti

o
n

 t
im

e 
[s

] Number of iterations

Optimization time [s]

 
 

Figure 5. Number of iterations and optimization time vs. 
population size 
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Figure 6.Optimization time vs. mutation probability 
 

The population size depends on the test topology. If 
the population is too small, it is possible that the 
optimization will not be successful, because none of the 
randomly generated chromosomes offers a solution for 
the optimization problem. If the population size is too big, 
then the algorithm will take too long to find the solution. 

Next we assign to the mutation probability the 
following values: {2%, 5%, 9%, 10%, 20%}; the 
population is composed of 100 chromosomes. The results 
presented in Figure 6 show us that for small values of 
mutation probability (<10%) the optimization time 
decreases with the increase of mutation probability. If the 
mutation probability is higher than 10%, the optimization 
time increases, because more inversions will take place in 
the chromosomes. The value of mutation probability 
depends on the application for which the genetic 
algorithm is used; for optimization of networks 
performing NC a mutation probability of 2% is 
recommended. 

The second test topology is a modified butterfly 
topology, in which every link has a different non-
elementary capacity. The capacities of the links are 
indicated in Figure 7.a. The maximum transmission rate 
which can be achieved in this network topology with NC 
is 3 data units / time unit. In Figure 7.b is presented the 
same network topology after optimization. Before 
optimization each link was used for data transmission and 
6 links were used for the transmission of coded packets. 
After optimization 3 links will become unused and coded 
packets will be transmitted only on 2 links. The 
optimization process reduces the complexity of the coding 
and decoding operations through the simplification of the 
transfer matrix of the network and it frees some links, 
which can be used for other transmissions.  

The termination criterion is that the fitness value of 
the best chromosome does not change in 5 generations. 

 

 
 

Figure 7. Modified butterfly test topology 
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For this topology the simulations were performed 
considering the following parameters of the genetic 
algorithm, if not specified otherwise: population size = 
100, selection pressure = 5, crossover probability = 20%, 
mutation probability = 2% and maximum number of 
generations = 150. 

Figure 8 presents the variation of the optimization 
time as a function of the population size. In the 
simulations performed the population size takes the 
following values: {20, 30, 50, 70, 100, 150, 200}. The 
optimization process is successful usually after 7 
generations, regardless of the size of the population. The 
optimization time increases proportionally with the size of 
the population. For 50 chromosomes in the population the 
optimization is achieved in 13.8 s, for 100 chromosomes 
in 26.24 s, and for 150 chromosomes in 39.68 s; the time 
periods are valid only for the simulations performed. The 
optimization time of this topology is higher than that of 
the first test topology, because this topology has a higher 
number of links, which increases the dimension of matrix 
F (which contains the coding coefficients). Also the 
transmission rate is higher, which increases the number of 
operations required to compute the transfer matrix.  

Next we evaluate the effect of the selection pressure 
on the optimization time and on the number of 
generations needed for successful optimization. The 
simulations were performed considering the following 
values for the selection pressure: {4, 5, 6, 7, 8, 9, 10, 15} 
and the results are presented in Figure 9. Neither the 
number of iterations nor the optimization time changes 
uniformly with the selection pressure. The optimization 
time is proportional to the number of iterations needed for 
successful optimization. The duration of one iteration step 
is approximately constant with the selection pressure.  
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Figure 8. Optimization time vs. population size 
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Figure 9. Optimization time vs. selection pressure 
 

Figure 10 shows the effect of the crossover probability 
on the optimization time. The crossover probability has 
the following values in the simulations performed: {5%, 
10%, 15%, 20%, 25%, 30%, 40%, 50%, 100%}. The 
number of generations needed for successful optimization 
is constant with the crossover probability; 7 generations 
are enough for the optimization of the network. If the 
crossover probability is small (<20%) the optimization 
time increases with the increase of the crossover 
probability. For crossover probability higher than 20% the 
optimization time is constant and reaches its minimum. 

The mutation probability takes two values: 2% and 
3%, the population size having also two values: 100 and 
150, for the next simulations. The obtained results are 
presented in Figure 11 and show us that for the same size 
of the population, the duration of an iteration step is 
smaller if the mutation probability is higher. For the same 
mutation probability the duration of an iteration step is 
higher when the population is larger. 

Finding the maximum number of generations after 
which the algorithm stops is also important and in the 
simulations performed the following values were 
considered: {3, 5, 7, 8, 10, 15, 20, 25, 30, 40, 50, 75, 100, 
150, 200}. As it is shown in Figure 12, if the number of 
generations is too small (<20), the optimization is not 
successful in several cases, because in a small number of 
generations it is not always possible to improve the fitness 
value of the best chromosome, such that it can offer a 
solution to the optimization problem. If the maximum 
number of generations is above a threshold value (~ 25 
generations in this case), the optimization is always 
successful. This parameter depends on the topology of the 
network which has to be optimized, increasing with the 
size of the network.  
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Figure 10. Number of iterations and optimization time vs. 

crossover probability 
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Figure 11.Iteration duration vs. mutation probability 
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Figure 12. Number of iterations vs. maximum number 
of generations 

 
The size of the finite field is a significant factor in the 

evaluation of the performances of the genetic algorithms 
used for network optimization, because Random Network 
Coding is employed for the evaluation of populations. 
The total number of iterations and the optimization time 
needed for successful optimization are evaluated for two 
different finite field sizes: GF(2

4
) and GF(2

5
). We 

consider the same parameters of the genetic algorithm as 
in the previous simulation and the maximum number of 
generations is 100. For each field size 7 simulations were 
performed and the results are presented in Figure 13. The 
obtained results show that the optimization time is higher 
if the size of the finite field is smaller. Even if the 
algebraic operations (addition and multiplication) are 
performed faster in a smaller field, the optimization time 
is higher, because by decreasing the size of the field the 
probability of generating linearly independent coding 
coefficients decreases as well. 
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Figure 13.Optimization time vs. field size 
 

V. CONCLUSIONS 
The paper considers the employment of genetic 
algorithms in the optimization of communications 
networks implementing Network Coding techniques. The 
main goal was to evaluate the performances of a 
particular genetic algorithm adapted to the mentioned 
optimization problem. The evaluation was realized using 
computer simulations.  

The particular genetic algorithm considered, also 
shortly described in the paper, was evaluated from the 
point of view of complexity and processing time. These 
parameters are important for optimization of real, 
resource constrained and dynamic topology networks.  

The performance evaluation was realized considering 
the main parameters of genetic algorithms: population 
size, selection pressure, crossover probability, mutation 

probability, maximum number of generations and the size 
of the finite field used for network coding operations.  

Based on the simulation results obtained for several 
network topologies, we can state, as a rule of thumb, that 
the “optimal” parameters of the implemented algorithm 
are close to the following values: population formed from 
100 chromosomes, selection pressure 5, crossover 
probability 20%, mutation probability 2% and maximum 
number of iterations 100. 

An important conclusion is that the number of 
generations needed for successful optimization does not 
change significantly with the above mentioned 
parameters, which proves that the implemented genetic 
algorithm is very robust. However the parameters of the 
genetic algorithm have a big impact on the optimization 
time. A large optimization time could be a serious 
disadvantage of this algorithm when it is applied in 
rapidly changing environments, such as wireless 
networks. This algorithm in particular and genetic 
algorithm in general could be used only for the 
optimization of networks which change their topology 
relatively slow in time. 
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