

Volume 51, Number 4, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received September 2, 2010; revised December 9, 2010

23

A CONCEPTUAL FRAMEWORK AND IMPLEMENTATION FOR

DEVELOPING WS - QoS AWARE ARCHITECTURES

Cosmina IVAN, Vasile DADARLAT
Faculty of Automation and Computer Science, Technical University of Cluj Napoca

26-28, Baritiu,,Cluj-Napoca , Romania,
Email: cosmina.ivan@cs.utcluj.ro, vasile.dadarlat@cs.utcluj.ro

Abstract: Web Services and SOA are becoming more and more popular these days and more and more businesses are planning to

build their future solutions on Web Services technology. By now, SOAP and WSDL have become reliable standards in the field of

Web Services execution. While the concept of UDDI allows for automatic discovery of services implementing a common public tModel

interface, there have been only few attempts to find a standardized form to describe the Quality of service (QoS) with which the

service is performed. Nevertheless, the QoS a provider delivers will become a decisive feature when it comes to selecting one from

many availably services providing the same functionality. Today, we have sophisticated technology to actively differentiate between

various QoS levels both on transport level (DiffServ, IPQoS, CoS for UMTS/ATM/RCL) and server level (load balancing,

transaction differentiation, HTTP request differentiation), yet there are only few means to describe the desired QoS on application

layer. To tackle this, we propose a conceptual framework based on a Xml schema to declare both clients’ QoS requirements and the

QoS level service providers, and we have designed and implemented a framework for C# / .NET application developers to assign

QoS requirements to a client application’s service proxy which can then be used to inquire a QoS service broker for the best QoS

offer fulfilling the requirements from all offers available for services that implement the specified interface.

Keywords: Framework, QoS – Quality of Service , WS-Web Services, SOAP/WSDL/UDDI

I. INTRODUCTION
The increasing industrial and academic involvement in the still

emerging Web Service technology clearly shows the potential of Web

services to become one of the pillars of the software industry.

Competing Web services that implement same or similar

functionalities are already and will be available on the market. As

offered functionalities are similar, the quality of offered services will

be decisive for the success of the service providers. While service

offers with no guarantees on throughput, response time, security,

availability, reliability, etc. are accepted in some simple cases, most

likely this will not be acceptable when a Web service becomes an

important part of an application composed of various Web services

[5].

A service-oriented architecture (SOA) is essentially a collection of

services that communicate with each other. The communication can

involve either simple data passing or it could involve two or more

services coordinating some activity. Hence some means of

connecting services to each other is needed. A key driver for SOA

implementations is the hope to save development time and costs

through a higher degree of reuse of components in the form of

readily implemented services [3],[4]. To achieve this aim it is

necessary, among other things, to make Web services discoverable.

SOA services have self-describing interfaces in platform-independent

XML documents. Web Services Description Language (WSDL) is

the standard used to describe the services.

SOA services communicate with messages formally defined via

XML Schema. Communication among consumers and providers or

services typically happens in heterogeneous environments, with little

or no knowledge about the provider. SOA services are maintained in

the enterprise by a registry that acts as a directory listing. Applications

can look up the services in the registry and invoke the service.

Universal Description, Discovery, and Integration (UDDI) is the

standard used for service registry. Web services are self-described

software entities which can be advertised, located, and used across

the Internet using a set of standards such as SOAP, WSDL, and

UDDI. Web services encapsulate application functionality and

information resources, and make them available through

programmatic interfaces, as opposed to the interfaces typically

provided by traditional Web applications which are intended for

manual interactions. However, discovering web services using

keyword-based search techniques offered by the existing UDDI

registry does not yield results that are tailored to client’s needs.

Several web services may share similar functionalities, but possess

different non-functional properties. When discovering web

services, it is essential to take into consideration, the functional and

non-functional properties in order to render an effective and reliable

service selection process.

Nowadays, both Web Service providers and clients are concerned

with the QoS guaranteed by web services. From the client point of

view, web service based QoS discovery is a multi-criteria decision

mechanism that requires knowledge about the service and its QoS

description. However, most of clients are not experienced enough to

acquire the best selection of web service based on its described QoS

characteristics. They simply trust the QoS information published by

the provider; however most of web services providers do not

guarantee and assure the level of QoS offered by their web services.

Based on the above we propose a Web Services discovery

architecture that contains an extended UDDI to accommodate the

Volume 51, Number 4, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 24

QoS information, and QoS Broker to facilitate the Web Service

discovery. Measuring the degrees to which the web services can

deliver the functionality through a combination of QoS parameters

becomes significant, particularly in distinguishing services competing

in the same domain.

The QoS parameters can be used to characterize the web

services’ overall behavior. Service providers QoS claims may not be

trustworthy. Hence some method is needed to automate the process

of measuring QoS for registered web services. Current UDDI

registries don’t have built-in-capabilities to validate or monitor

published web services. They include only metadata about businesses

and their related web services. If the UDDI registries let service

providers publish their QoS claims, they could publish false or

inaccurate information or the published information could be passive

or outdated. Hence the clients should be able to obtain web service

information based on QoS metrics from a trusted service broker.

QoS delivered to a client may be affected by many factors,

including the performance of the web service itself, the hosting

platform and the underlying network. A set of verification procedures

is essential for providers to remain competitive and for clients to

make the right selection and trust the published QoS metrics. For the

success of any QoS based web services architecture, it should support

a set of features: 1) QoS Verification and Certification to guide web

service selection 2) QoS aware web services publishing and

discovery.

Traditionally, QoS is associated with network parameters such as

bandwidth, packet loss rate, and jitter. However, QoS in the realm of

Web services is more than just traffic parameters. Beyond the

network aspects, QoS for Web services covers server performance,

security, transactional, and monetary aspects, and all components and

layers participating in the Web service communication process.

This paper targets mainly the following issues in Web service

communication:

1. The definition of QoS aspects and parameters related to the

Web service layer.

2. The efficient lookup and selection of services at runtime

according to clients’ requirements.

3. The mapping of QoS aspects and parameters, which are

defined in the Web service layer, on the underlying

communication layer and on the participating components.

The main contributions of this paper are the design and

performance measurements of the QoS framework targeting the

overall QoS support for Web services. Our QoS framework is based

on the QoS XML schema that allows service clients and service

providers to define QoS-aware requirements and offers. Furthermore,

the QoS XML schema allows domains and components along the

Web service communication process to actively support the clients’

QoS requirements. The flexible and extensible WS-QoS framework

addresses various aforementioned QoS aspects, not only the classical

network aspect.

We have implemented our QoS framework. We have conducted

performance measurements of our framework. The measurement

results prove the advantages of applying our framework for QoS

aware Web service communication.

Another outstanding part of this work in comparison to other

Web service related efforts is that we consider QoS through different

layers and components that participate in Web service

communication. Users can define their QoS requirements due to

various aspects on a higher level such as in the application layer by

applying the QoS XML schema. These QoS aspects and their QoS

parameters are evaluated and mapped at runtime to achieve QoS

fulfillments.

The remainder of the paper is organized as follows. Section 2

introduce the background information on WS, QoS and outlines the

related research conducted in the area of web services discovery and

QoS . In Section 3, we describe our proposed architecture. The

fundamental goal of the design of the WS-QoS architecture is QoS

support during the whole communication process. Our framework

supports standard conformity, scalability, extensibility as well as QoS

mapping between different layers in terms of the Internet model.

Section 4 presents the prototypical implementation of the framework.

Section 5 explains how to apply the implementation and presents

some performance measurements and Section 6 summarizes the

paper and presents conclusions and possible future research in this

direction.

II. RELATED WORK

2.1 Web services
According to the Web service specification available at W3C [6], the

definition of a Web services “is a software system designed to

support interoperable machine-to-machine interaction over a

network. It has an interface described in a machine-processable

format (specifically WSDL). Other systems interact with the Web

service in a manner prescribed by its description using SOAP-

messages, typically conveyed using HTTP with an XML serialization

in conjunction with other web related standards”.

 With the increasing popularity and importance of Web services, a

number of Web service related standards have been defined beyond

the basic Web service protocol stack in different areas such as

transaction , security , addressing , discovery , composition , etc. The

basic interaction model consists of three parties, service provider,

service requestor, and the service registry. As shown in Figure 3, the

service provider publishes its services in the service registry; the

service client finds the required service in the service registry. After

discovering an appropriate service in the service registry, the service

client invokes this service at the service provider architecture (SOA)

,the functionality and information on where and how to access Web

services (i.e. under which universal resource identifier (URI) using

which protocol) is described in a WSDL file. This file is commonly

referenced from a UDDI registry for standardized service discovery.

 A UDDI registry is basically a data base with UDDI logic and

interfaces for publishing and searching Web services [10]. Industrial

categorization, contact information, and technical information about

services such as contact information of a company or industry

categories, can be stored and viewed there by either using a Web

interface or an application program interface (API). However, entries

are often inaccurate or expired [13] and UDDI does not provide a

mechanism for automatically updating the registry as services (and

service providers) change [16].

Since the communication between clients and UDDI is a client/server

interaction, UDDI can become a performance bottleneck in case of

overloading or even unavailability. Furthermore, [13] shows that

performance considerations of current UDDI implementations do

have a major impact on the overall acceptance of UDDI. Section 4

introduces the WS-QoS broker, which improves the standard Web

services interaction model.

A Web service can be described by its static functional attributes

and its dynamic non-functional parameters including QoS aspects.

The different QoS aspects are for example : server performance

including throughput, availability and reliability, network

performance including bandwidth, jitter and delay, security and

transactional support, configuration and management capabilities as

well as cost.

With the emergence of functionally equivalent services

implementing a common service type (e.g. tModel in terms of

Volume 51, Number 4, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 25

UDDI), the non-functional QoS properties associated with services

will become distinctive criteria for the success of a company offering

e-business through Web services. It is also imaginable that a business

will offer its services in various classes of quality to meet different

customers’ requirements, according to what they might be willing to

pay in return. Therefore, the need to unambiguously specify both

QoS properties and different QoS levels in some kind of contract

such as SLA and to prove the Web services’ compliance arises.

In terms of SOA, Web services are building blocks from which

more sophisticated applications can be created. An introduction to

current specifications for Web service composition is given in [2].

Our QoS framework does not deal with service composition but can

be well applied for looking up appropriate services in a service

composition process.[5]

Three different phases of QoS management can be identified.

Firstly, QoS constraints on certain parts of a provided service are

formulated in a specification. Since the purpose of such a

specification is to reinforce a certain level of QoS, parameters are

monitored by constant measurements at runtime. Finally, the values

measured have to be tested against the negotiated specification and

appropriate activities should be carried out in order to control the QoS

conformance ensuring a low violation rate. In case of violations,

compensation may be refunded to the service consumer.

The following subsection gives an overview of five selected

major approaches towards QoS specification and management for

Web services, coming from both the industry and the academia.

These approaches[6,16] are :

• the Web Service Level Agreement (WSLA) developed by

IBM ,

• the Web Service Offering Language (WSOL) developed at

Carleton University, Canada ,

• SLAng developed at University College London, UK ,

• a UDDI eXtension (UX) developed at Nanyang Technological

University, Singapore , and

• UDDIe developed at Cardiff University, UK .

Common denominators of the approaches are the use of XML and

the conformance with the existing Web service technologies such as

WSDL and UDDI. While WSLA fosters individually customized

SLAs, WSOL introduces a formal specification of classes of service.

SLAng can be used for SLA specifications in general not only for

Web services, aiming at a wide usage. UX is able to select services

based on reputation among federated UX servers. UDDIe extends the

standard UDDI API in order to associate QoS properties with Web

services.

In the following, we compare the introduced approaches based

on different aspects. We don’t give an overall assessment of each

approach. The table gives rather an overview of the main emphases

of the introduced approaches. Selected assessment criteria include

requirement specification, class of service, QoS aspects, QoS

mapping, and flexibility:

Requirement specification: Both Web service clients and

providers need means to specify non-functional requirements

and offers. The specification should ensure the compatibility

and comparability of the specifications done by clients and

service providers.

Class of service: QoS parameters differ in quality, quantity, and

the corresponding monetary charge. Grouping similar

parameters into a class or category that characterize a service

will ease the utilization of the service.

QoS aspects: A Web services related framework should support

more than the classical QoS parameters such as jitter and

bandwidth. Aspects such as security, reliability, transaction as

well as custom defined aspects should also be considered.

QoS mapping: An overall QoS support requires QoS support

during the whole communication process, ranging from the

QoS specification to monitoring at runtime. QoS has also to be

considered through the different layers in terms of the Internet

Model. Specifications in higher layers have to be carefully

mapped onto lower layers.

Flexibility: An approach should be easy to use, extensible, and

standards conforming.

The assessment of the introduced approaches is summarized in

Table 1. The symbols mean:

“++”: excellent concept

“+”: good concept

“O”: satisfying

“-“: poor or not available

Table 1 Assesment of the approaches

III. THE DESIGN OF THE ARCHITECTURE
The fundamental goal of the design of the QoS architecture is QoS

support during the whole communication process. Standard

conformity, scalability, extensibility have to be supported as well as

QoS mapping between different layers in terms of the Internet model.

 Our framework is fully compatible to standard Web service protocols

such as SOAP, WSDL, and UDDI and targets the following main

requirements:

• designing an architecture that allows both service clients

and service providers to specify requests and offers with

QoS properties and QoS classes,

• enabling an efficient service lookup and selection in

order to accelerate the overall lookup process for service

requestors,

• providing a flexible way for service providers to publish

and update their service offers with different QoS aspects

and parameters.
• considering the QoS requirements regarding different layers and
participating domains of a Web service communication process at
runtime in order to achieve overall performance gains.

2.2.The The QoS Xml Schema
There are three different kinds of root elements for a WS-QoS Xml

Document: A WSQoSRequirementDefinition element specifies client

QoS requirements. These are minimal requirements which must not

be violated by underperformance. A WSQoSOfferDefinition element

contains one or more specifications of QoS offers that a service

provider is willing to deliver for a set price related to the defined QoS

level.

Finally, a WSQoSOntology element holds definitions of QoS

parameters and protocol references.

QoS Info

Volume 51, Number 4, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 26

The most important of all elements are those of the type

tQoSInfo, which hold information on the level of QoS regarding the

server performance, transport QoS support

and protocol required for providing security and transaction support.

In a serverQoSMetrics element, values for the standard parameters

processing time, requests per second, reliability and availability can be

declared. Moreover, custom server QoS metrics can be declared in a

customMetric element as a child node of the serverQoS-Metrics

element. In most cases, neither the client nor the service provider

knows over what kind of network technology the messages will be

exchanged.

Therefore, it does not seem appropriate to declare explicit values

for metrics like the response time for a service. We have decided to

declare transport QoS priorities, which are to be interpreted by the

underlying network layer(s) and then mapped into specific metrics

helping to provide a distinct transport service level. In a

transportQoSPriorities element, priorities can be declared for the

four standard transport parameters delay, jitter, throughput and

packet loss rate.

Figure 1. Structure of a QoSInfo element

Like with the server QoS metrics, custom transport QoS priorities

can be declared in a customPriority element added to the

transportQoSPriorities element. Security and transaction

management for Web Services is realized by a variety of protocols.

Most of them already have sophisticated mechanisms of negotiating

key and session information. Therefore, security and transaction

support at this level will be restricted to listingprotocols needed for a

successful service execution. The securityAndTransaction element

of a QoS info can holdseveral protocol elements, each referencing a

specificprotocol.

A reference to a protocol in a QoS info can either require or offer

compliance with the protocol in question. In the first case, another

QoS info will not be compliant with the first specification if it does

not at least offer using this protocol as well. In the later case the

protocol is offered in case the other party expects it, but interaction

without the protocol is also allowed.

QoS Ontology

Custom metrics, custom priority and protocol support statements

all have an attribute ontology, which references a file containing a

QoS Ontology where the referenced types are defined respectively.

By using the combination of the ontology’s Url and the parameter

name, a reference is unique. A custom transport QoS priority is

defined by a distinct name and a human readable definition of what

metric the priority refers to in a priorityDefinition element.

A custom server QoS metric defined in a metricDefinition

element also has a name and a human readable description of what is

measured, but it also includes information on the standardized unit it

is measured in and the scope of service

invocations the metric is aggregated on, that is, whether the value is

valid for the port on which the service is invoked, the whole service

or even all services of the provider.

Furthermore, it has to be stated whether the value is valid for all

service executions or for executions requested by the user only.

Finally, the direction of how values are to be compared is declared,

which is essential for an automated check of whether an offer fulfills

a set of requirement. Accordingly, in a protocolDefinition element, a

protocol is defined by its name, a human readable description of the

purposes of using this protocol and the Url of an overview document,

the protocol specification if possible.

QoS Definition

An element of the type tQoSDefinition holds one or more QoS

info elements plus specification of contract and management support

and a specific price. QoS information can be defined for specific

operations only in explicit operationQoSInfo elements or for the

scope of all operations in a defaultQoSInfo element. Both the

defaultQoSInfo and operationQoSInfo elements are of the type

tQoSInfo as explained above. The contractAndMonitoring node can

hold references to protocols needed for service management and/or

QoS monitoring and entries of third parties that on one side would be

willing to trust. Finally, the price element relates the specified QoS

level to the cost of service usage per invocation. Elements of the type

tQoSDefinition are either instantiated as a

WSQoSRequirementDefinition element expressing a client’s QoS

requirements or as a qosOffer representing a minimal QoS level a

service provider guarantees to provide for all requests where this

offer is selected. The qosOffer element is extended by an attribute

expires which denotes a point in time until which the offer will be

valid.

QoS Offer Definition

Offers for one service can be declared in a

WSQoSOfferDefinition element which is introduced into the

service’s WSDL file as an extension element of the service

description’s service node. Apart from defining offers in a

WSQoSOfferDefinition element, offers in further QoS files can be

referenced in an include element. This allows for dynamically

adjusting offers without changing the WSDL file. Furthermore, an

offer could be referenced from multiple WSDL files and thus be

reused for different services.
The QoS XML schema is the core of the WS-QoS architecture.

The QoS XML schema enables the specification and thus the

compatibility and comparability of QoS statements defined by both

service clients and servers. All components participating in Web

service communication such as WSB, Adaptation Layer, web servers

apply the QoS XML schema in order to provide QoS support in

different layers and domains.

Three steps are defined in a Web service communication process

from the client’s point of view. They are the definition of

requirements, service discovery and selection, and service invocation.

The QoS architecture ensures QoS-awareness during the whole Web

service communication process resulting in a QoS-aware cross-layer

communication. In contrast to the classical ISO/OSI layered

architecture that does not consider the inter-working of different

layers, the cross-layer communication model has several advantages:

•Higher layers have knowledge about the parameters and

routing algorithms of underlying network technologies

Volume 51, Number 4, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 27

•Higher layers have knowledge about the current

communication structures and their dynamics

•Resulting in higher layers can actively consume the QoS

support of the low layers

•Lower layers have knowledge about the specific requirements

from the higher layers

•All the knowledge can be merged in respect to QoS parameters

of different aspects in order to support application-

dependent requirements.

IV. THE PROTOTYPE IMPLEMENTATION
Due to the requirements discussed in Section 3, we implemented the

QoS framework with the following objectives:

• The QoS API that allows C# and ASP .NET application

developers to define QoS requirements for both client

applications and Web service offers

• The QoS Editor that allows the editing of the QoS

parameters through a graphic user interface (GUI)

• The Requirement Manager that is responsible for

retrieving clients’ requirements

• The Broker, which is responsible for the QoS-aware

service selection .

• The QoS Monitor, which is used for examining the

compliance of offers

A scenario for QoS-aware service selection

From the client point of view, a client application can use one or

more types (tModel) of Web services. The interfaces described in

WSDL of Web services are known at the implementation time. A

proxy class (in the context of Microsoft Visual Studio .NET also

known as a Web Reference) is generated from the tModel’s WSDL

description for each service type. Static WS-QoS custom attributes or

import attributes referencing dynamic requirements in a WS-QoS

XML file can now be assigned to the newly created proxy class and

its methods (known as web methods in Visual Studio .NET). Finally,

the proxy class is handed over to an instance of the QoS Requirement

Manager, which will retrieve the attributes through the reflection

technique and thus holds a representation of the current client

requirements. One can also use the Requirement Manager to adjust

the QoS requirements at runtime without recompiling any code.

On initialization, the client application creates an instance of a

QoS Requirement Manager. A QoS Broker (WSB) is already running

in the same network. Before the service invocation, the client

application will use the Requirement Manager to state its current QoS

requirements and then inquire the WSB for the most appropriate

service offer available that fulfills its requirements. The WSB selects

the most appropriate offer on behalf of the client from the WSBs

local database. We assume in this case that the WSB has already a

local and up-to-date cache of the services the client is asking for.

Therefore, the WSB does not contact any UDDI and service

providers for searching the required service. This model results in a

short response time. Once the client gets the required offer from the

WSB, the client will invoke the service with the desired QoS

properties.

The QoS properties are transmitted in the SOAP header to the

service provider that can treat the request based on the QoS

properties. For example, it could set the thread priority or, as a load

balancer, forward it to one of various possible application servers.

Yet, the information is not only intended for the Web service

provider: A QoS proxy is able to interpret the desired transport QoS

priorities and mark the outgoing packets accordingly so that the

higher layer applications can take advantages of the QoS support that

the underlying QoS-aware transport technologies provide.

Furthermore, the information in the SOAP headers can be used to

perform encryption or digital signatures.

Having processed the client’s request, the service provider will

send the response back to the client. The service provider has to

ensure that it can carry out the client’s requirements about the

transport and security. The service provider should set the

requirements in the SOAP header so that they can be evaluated and

carried out by the participating components on the way back to the

client. The components are e.g. the QoS proxy on the server side,

QoS-aware routers in the network, or an access point for mobile

devices.

Figure 2. Structure of a QoSInfo element

Volume 51, Number 4, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 28

The editor

The QoS Editor allows both the service client and the service

provider to easily edit their QoS requirements or offers, respectively.

They neither need to know the details of the QoS XML schema nor

have any programming skill. One or more XML-based .wsqos files

are generated automatically. The WSDL files are normally generated

automatically by a tool such as wsdl.exe in case of the .NET runtime.

In case of a service offer, one or more references of the .wsqos files

are added manually into the WSDL file of the service. In case of a

service request, the QoS Requirement Manager will retrieve the

values defined in a .wsqos file.

In the GUI for defining custom QoS properties, one can define :

• the name of the requirement,

• the scope in which the requirements are valid, possible

scopes are individual operation of a service or the whole

service,

• the standard metrics of standard QoS aspects such as

processing time, request per second, availability, and

reliability as server QoS metrics,

• the price for the service usage the client is willing to pay or

the service provider is going to charge, and

• custom metrics by applying ontology.

The requirement manager

On initialization, the QoS Requirement Manager obtains a

reference to the service proxy class to which either requirement

attributes have been assigned or a reference to a .wsqos file is given.

The Requirement Manager retrieves the QoS attributes either from

the proxy class or from a .wsqos file. It then collects all import

attributes, builds WS-QoS definition objects and sets their parent

property to receive update messages in case that a .wsqos file has

been changed. Finally, the newly built WS-QoS definition objects are

added to those retrieved from the static attributes.

 The monitor

We have developed the QoS Monitor, which examines all

available offers and the current client requirements, making it

possible to check the compliance of offers. If no appropriate offer can

be found, the overview of possible offers will help users to evaluate

what requirements might be inappropriate and users could then make

adjustments needed in order to find a match.

Moreover, the QoS Requirement Manager can be configured to

log current requirements. Once this file is registered in the monitor,

requirements can be viewed in the requirement watch window or

directly in the offer window of the GUI. Finally, the package QoS

Util provides a SOAP extension attribute, which can be assigned to

the proxy’s web methods. The SOAP extension will log QoS SOAP

headers of all service requests and responses. One can register this

file in the monitor as well use it to survey QoS SOAP headers in the

SOAP header watch window of the GUI.

V. APPLYING FRAMEWORK

When implementing a WS-QoS compliant Web service three issues

have to be taken into consideration: First, the service should

implement a generic service interface (e.g. tModel), which already

defines the use of an optional QoS SOAP header to transport QoS

information within service requests and responses.

 Second, the service has to implement a strategy to provide WS-

QoS offers, which should be adjustable to changing situations of

service utilization.

Finally, to achieve the QoS level(s) associated with distinct offers,

the selected offer and further QoS requirements have to be evaluated

when receiving a request. Apart from developing new services one

can also qualify existing service implementations as QoS compliant

by making just a few alterations to the code

To make the service available for dynamic look-up through the

WSB, one should implement a specific tModel, which specifies a

WS-QoS compliant Web service with the functionality of the service.

The more common a tModel is, the more attractive it is for a client to

search services implementing the tModel. Therefore we encourage

reusing an abstract service description rather than inventing a

redundant interface.

If no such tModel exists, one has to specify a new one. The

easiest way to create a tModel is to implement a dummy service

featuring a WS-QoS SOAP header as described below and call up the

WSDL file for this service. Clients will be able to generate a proxy

object from this interface and use the proxy for various services only

by setting the proxy’s access point URI to the location of a concrete

implementation. In any case, concrete services should use the same

XML namespace as used in the service interface.

The QoS level provided by a service is part of its nature. QoS

offer definitions are therefore expected to be held in a QoS extension

to the service’s WSDL file. This allows for a fast discovery of WS-

QoS offers, since a service’s description file is commonly referenced

from its entry in a UDDI registry along with further information such

as the service access point. The WS-API provides several ways to

publish QoS offers, depending on the personal strategies and

requirements. It should be decided whether

• QoS offers are held directly in WSDL or a further WS-

QoS file is referenced from the WSDL’s WS-QoS

extension,

• the validity period of QoS offers is updated manually or by

the QoS Offer Manager Object provided by the QoS API,

• the service description referenced is a static WSDL file or

XML generated by a server-side engine.

.

Volume 51, Number 4, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 29

Figure 3 gives an overview of the classes of the WS-QoS API

representing elements of the QoS XML schema.

VI. CONCLUSIONS AND FURTHER

DEVELOPMENTS
In order to analyse the state of the art for the proposed research

domain, we introduced five different frameworks dealing with QoS

and Web services.. One can easily identify that our framework

addresses QoS-awareness during the whole Web service

communication process, ranging from the definition of QoS

requirements and offers to QoS-aware lookup, selection, and

invocation. Reiterating the same analysis for the domain including

our solution, we can consider the following :

Requirement specification: The flexible and extensible XML schema

allows the specification of QoS requirements and aspects. The

schema is extensible with custom metrics and aspects.

Class of service: Class of service is supported by the framework.

QoS definitions can be grouped to classes such bronze, silver, and

gold. They can be than assigned to either a whole Web service or

each methods of the Web service. Most of the introduced approaches

do not support class of service.

QoS aspects: our framework supports various QoS aspects ranging

from traditional networks metrics to more high level metrics such as

security, server performance. Each aspect encompasses of different

QoS parameters. Both QoS aspects and parameters can be extended

in a flexible way. Most of the other approaches just defined two or

three simple QoS metrics without any extensibility.

Another important contribution of the framework is the dynamic

mapping of high level QoS definitions onto different components

such as communication network, and server hosting Web services.

None of the other approaches supports QoS mapping.

We proposed a framework that ensures QoS-awareness during a

whole Web services communication process, namely, the QoS-aware

specification of Web services requirements and offers, the lookup and

selection of Web services based on the specified QoS issues, and

finally the QoS-aware Web service invocation at runtime.

We designed the QoS XML schema, which is core of the WS-

QoS framework. All components such as clients, servers, routers,

access points that participate in Web service communication, apply

the schema in order to support QoS-awareness. The proposed schema

is easy to use, standard conform, and fully extensible. We

demonstrated these properties in our prototypic implementations and

performance measurements.

Figure 3. The Framework QoS API

Volume 51, Number 4, 2010 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 30

We propose a Web Service Broker that is responsible for looking

and selecting the most suitable Web service offer based on client

requirements, which is defined by applying the QoS XML schema.

We demonstrated the feasibility and performance of the WSB with

our prototypic implementation and in various scenarios of the

performance measurements.

We proposed that only an overall QoS support can ensure the

fulfillment of clients’ requirements due to QoS. It is not sufficient to

consider QoS in each layer in terms of the Internet model separately.

The different layers should communicate and cooperate with each

other. Traditionally, only network metrics such as jitter and

bandwidth are considered as QoS. In the realm of Web services, more

QoS aspects should be taken into consideration to improve the total

performance of Web service communication. Therefore, our QoS

XML schema encompasses not only the traditional network QoS

aspect, but also application and Web server, security, transaction,

SLA, and pricing related aspects and parameters. One can augment

the schema with custom aspects and parameters easily.

We introduced an Adaptation Layer between the Web services

and the communication.The Adaptation Layer understands the QoS

requirements for the underlying communication network and maps

the high level requirements onto the concrete network technology at

runtime and The is realized by the QoS proxies and ensures that the

high-level definition of the network metrics can be specified in a

technology independent way.

With the QoS xml schema we have created a platform-neutral

infrastructure to describe client QoS requirements and service QoS

offers. Our API provides easy access to our technology for

developers; with a few lines of code they can add the functionality of

the QoS aware service broker. With these two components we have

realized QoS aware dynamic service selection. Future work will have

to concentrate on defining appropriate custom parameters as well as

investigating whether the standard parameters were chosen

appropriately. Moreover, the implementation might well be revised

for the purpose of performance optimization to keep the waiting time

due to the enhanced service selection algorithm as short as possible.

There are several other extensions to the framework. One of

them is the signature of dynamic offers. Service offers consisting of

various QoS parameters and aspects are provided with a signature

identifying offers for the valid time period. That results in that all

actors such as WSB, clients and service providers need not send and

process the various metrics, since the signature of an offer identifies

the metrics belonging to an offer is unique.

Another interesting project would be the integration of the

framework in a project dealing with a Web service execution plan.

We think that our framework can be applied to Web service

orchestration, when a chain of different services is to be found and

selected among competing services at runtime.

ACKNOWLEDGEMENTS

"This work was supported by the PNII-IDEI 328/2007 QAF-Quality

of Service Aware Frameworks for Networks

and Middleware research project within the framework National

Research, Development and Innovation Programme initiated by The

National University Research Council Romania (CNCSIS -

UEFISCSU)"

REFERENCES
[1]Martin-Diaz, O., Ruiz-Cortes, A., Corchuelo, R., and Toro,M.,

2003, “A Framework for Classifying and ComparingWeb Services

Procurement Platforms”, Proc.of 1st Int’l Web Services Quality

Workshop, Italy, pp. 37-46.

[2] Blum, A., 2004, “UDDI as an Extended Web ServicesRegistry:

Versioning, quality of service, and more”. Whitepaper, SOA World

magazine, Vol. 4(6).

 [3] Ran, S., 2004, “A Model for Web Services Discovery with QoS”.

ACM SIGEcom Exchanges, Vol. 4(1), pp.1–10.

[4] Majitha, S., Shaikhali, A., Rana, O. and Walker, D.,

2004,“Reputation based semantic service Discovery”, In Proc. Of the

13 th IEEE Intl Workshops on Enabling Technologies Infrastructures

for collaborative Enterprises (WETICE), Modena, Italy, pp.297-302.

[5] Rajendran, T. and Balasubramanie, P., 2009, “An Efficient

Framework for Agent-Based Quality Driven Web Services

Discovery”, IEEE International conference on Intelligent Agent and

Multi Agent Systems (IAMA2009), Chennai.

[6] Keller, A. and Ludwing. H., 2002, “The WSLA framework:

Specifying and Monitoring Service Level Agreements forWeb

Services”, IBM Research Report.

[7] ShaikAli, A., Rana, O.F., Al-Ali, R., and Walker, D.W.,

2003, “UDDIe: An extended registry for web services”. In

Proc. Of the Symposium on Applications and the Internet

workshops, IEEE CS, pp 85-89.

[8] Chen, Z., Liang-Tien, C., Silverajan, B. and Bu-Sung, L.,2003,

“UX-An architecture providing QoS-aware and

federated support for UDDI”. In proc. of the Int’l Conf. on

web services, CSREA Press, pp 171-176.

 [9] Liu, Y., Ngu, A. and Zheng, L., 2004, “QoS Computation and

Policing in Dynamic Web Service Selection”, Proceedings of WWW

2004 Conf.

[10] Diego Zuquim Guimaraes Garcia and Maria Beatriz Felgarde

Toledo, 2006, “A web service Architecture providingQoS

Management”, Institute of Computing, University of Campinas, Sao

Paulo, Brazil, pp -189-198.

[11] Tian, M., Gramm, A., Ritter, H. and Schiller, J., 2004,

“Efficient Selection and Monitoring of QoS aware Web

Services with the WS-QoS Framework”. Proceedings of the

IEEE/WIC/ACM International Conference on Web

Intelligence (WI’04) Exchanges, vol. 4, no. 1, pp. 1–10.

[12] Eyhab Al- Masri, and Qusay H. Mahmoud, 2007, “QoSbased

Discovery and Ranking of Web services”,

Proceedings of IEEE International Conference.

[13] Ziqiang Xu, Patrick Martin, Wendy Powley and Farhana

Zulkernine, 2007, “Reputation Enhanced QoS-based Web services

Discovery”, IEEE International Conference on Web Services (ICWS

2007).

[14] Demian Antony D’ Mello, V.S.Ananthanarayana and

Santhi.T, 2008, “A QoS Broker Based Architecture for Web Service

Selection”, Proceedings of IEEE International Conference.

 [15] Demian. A. D’Mello and Ananthanarayana, V.S., 2008, “A

QoS Model and Selection Mechanism for QoS-Aware Web

Services”, Proceedings of the International Conference on Data

Management (ICDM 2008).

[16] Serhani, M.A., Dssouli, R., Hafid, A. and Sahraoui, H.,

2005, “A QoS broker based architecture for efficient Web

services selection”. In Proc. of the IEEE Int’l Conf. on Web Services,

IEEE CS, pages 113–120.

