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Abstract: EEG signals recorded from scalp contain useful information about the activity of a large number of neurons. 
Signal processing is needed to extract this information from the EEG signal.  Here we study the effects of configurations of Short 
Time Fourier Transform (STFT) to determine how the parameters of STFT affect spectral estimations of the mean and relative 
power in beta and gamma frequency bands of the EEG signal. A statistic analysis was performed showing the effects of several 
window types and window lengths. The estimation of power in a specific frequency band is affected by the configuration of the 
STFT.  
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I. INTRODUCTION 

The Electroencephalogram (EEG) is considered a 
powerful tool in both neuroscience research and clinical 
diagnosis because it allows to record from the surface of 
the scalp, electrical signals arising from the brain. One of 
the important features of the EEG signal is the oscillatory 
modulation in different frequency bands because 
oscillations in various bands are associated to various 
brain processes [1]. The EEG frequency spectrum is 
divided into several dominant frequency bands: delta (0-4 
Hz), theta (4-8 Hz), alpha and Mu (8-12Hz), beta (12-30 
Hz) and gamma (30-100 Hz) [2]. To estimate the extent 
of modulation of the EEG signal in these frequency 
bands, specialized signal processing tools are required, 
which are crucial in the process of understanding 
biological processes underlying normal and pathological 
brain oscillations. 
 Here we focus on the beta and gamma frequency 
bands because these bands are considered to be relevant 
for the active state, being expressed during wakefulness, 
cognitive processes, and so on [1]. Increased power in the 
beta frequency band can reveal that the subject is in an 
active, busy or anxious thinking and active concentration 
states. Gamma oscillations are thought to represent the 
linking between populations of neurons for the purpose to 
carry out a certain cognitive function [3]. 
 To identify modulations of EEG signal in beta and 
gamma frequency bands spectral analyses can be used. 
 In many cases, like here, we need to investigate not 
only the amount of power in some frequency bands but 
also the time dependency of the expression of such 
frequencies along the signal. One of the techniques to 
analyze non stationary signals, like EEG, is the Short 
Time Fourier Transform (STFT) that can perform analysis 

both in time and frequency domain [3]. 
 

II. STFT 
STFT analysis is one of the most utilized techniques to 
analyze a signal in time and frequency domain. This 
technique decomposes the signal into successive window 
(time frames) to make an estimation of the frequencies 
present at a particular moment in time. STFT is based on 
Fast Fourier Transform (FFT), which is a form of the 
Discrete Fourier Transform (DFT) used for signal 
processing [4]. A problem with the STFT is in the inverse 
relation between time and frequency resolutions. 
 When performing time-frequency analysis it is not 
possible to have both temporal and spectral resolution at 
the same time (Gabor limit or Heisenberg-Gabor 
incertitude principle). Generally, a compromise is made 
between the temporal and spectral resolution depending 
on what information is considered to be more important. 
Here, we analyze the parameters of the STFT for the beta 
and gamma frequency bands, because, for these bands 
both the time localization and the power in the EEG 
signal are important.  

Windowing a signal represents a mathematical process 
of multiplying that signal with a window zero-valued 
outside of the analyzed interval. This process is used to 
reduce the effects of the spectral leakage. For the discrete 
EEG signals DFT is used to estimate the power spectrum 
for each STFT window [5].Therefore, the frequency 
spectrum will be divided into frequency bins, whose size 
is dependent on the length of the window. The effective 
width of the window determines if there is good 
frequency representation (smaller frequency bin if the 
window is larger, contains more samples) or a good time 
resolution (if the window is smaller, with fewer samples). 
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 If we have a frame of length N samples, this will give 
N distinct frequencies that represent the sampling 
frequency. The more samples (length) the frame window 
has, the closer the frequency bins lie together, and the 
smaller the bins are. In turn, if the sampling frequency is 
increased, but the length is preserved, then the frequency 
bins will be wider and more distant. Thus, the width of 
frequency bin equals the sampling frequency divided to 
the number N of samples within the frame (3). In 
addition, when for each frame, the DFT is computed 
using the FFT, the frame length must be power of 2 
[4][6]. 
 The power dispersion of the fundamental frequency 
into the neighboring frequencies is called spectral 
leakage. The spectral leakage appears when a finite frame 
length is used for the analysis. Due to use of windowing 
in STFT, a part of the frame is attenuated at the 
boundaries. This represents a loss of data in the 
boundaries regions. Overlapping allows to partly solve 
this problem because samples from these regions can be 
recovered. When two consecutive windows contain some 
common information, an overlapping process is realized. 
This process uses additional computation power but will 
give a better accuracy. 
  

III. MATHEMATICAL METHODS 

Discrete time Fourier Transform is given by the equation:  
 

 

 
 If x(n) is time limited with a duration of  N samples  
(1) becomes:  

 

 
where   is the discrete frequency of DFT and 
k is the bin. The central frequency of bin k in Hz will be:  

 

The STFT can represent sequences of any length by 
breaking them into blocks or frames and applying the DFT 
for each block. If we have N samples we must consider the 
frame length  . R represents the number of non-
overlapping frames of length M the sequence N can be 
divided to, . If o is the fraction by which the 
frames will overlap then the overlap in samples is  
and the number of overlapping frames of length M is [7, 8] 
    
The frames can be represented in fixed time origin as: 
 

 
     

Where:  n=0,..., M-1, i=0,..., L-1, and iD is the start sample 
of the block i. From (2) and (4) we can create the frame by 
multiply  with the window . The frame’s Fourier 
transform is:   

 

From (5) power can be obtained as:  

 

 

is the normalized power factor of the window [8].  

From (6) the power in a frequency band over time can be 
calculated as: 

 

where y and z are the inferior and superior limits of the 
frequency band, in our case for beta and 

 for gamma.  

From (8) we can calculate the mean power:  

 

From (9)  and , the mean power in beta and 

gamma bands can be calculated. For the relative power 
we will use:  

 

If we note  ,  and  the sum of powers across 

frames, in the beta band and gamma band, and the entire 
spectrum respectively, from (10), by changing the  
with  and we obtain the relative power in beta and 

gamma bands  and . 

  
IV. SYSTEM CONFIGURATION 

EEG data was recorded using a high density EEG device 
with 128 active electrodes (BioSemi, ActiveTwo). A 0.5-
100 Hz band pass and a 50 Hz notch filter were applied 
on the raw signal. The sampling frequency was 1024 Hz. 

Data from 32 channels was used for these tests from 
the electrodes placed in the occipital area. For each 
channel the signal was divided into 350 trials of data. 
 MATLAB environment processing tool was used to 
process signals. Multiple window types and window 
lengths were tested to identify the effects of the STFT’s 
configuration on spectral estimates. The tested window 
types were Hamming, Gaussian, Hann and Bartlett-Hann 
with lengths of 128, 256, 512 and 1024 samples. The 
overlap value for these tests was 96% of the frame 
window.  
 

V. RESULTS 

The first part of this session describes the effects of the 
narrowband and wideband transforms (see narrowband 
and wideband spectrogram) on the EEG spectra. A wide 
window length gives better frequency resolution but poor 
time resolution. A narrower window gives good time 
resolution but poor frequency resolution.  
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a) 

 
b) 

 
c) 

 
d) 

 
Figure 1. STFT estimation for one EEG trial. Each 
panel contains two parts: the upper part represents 
the power in beta and gamma bands and the lower 

part the STFT transform. The frame lengths are 128 
(a), 256 (b), 512 (c), and 1024 (d). 

 Analysis was performed on one trial of EEG signal, 
using frames with Hamming window, of different lengths. 

From Figure 1 we can see the influence of the frame 
length over the time and frequency. As shorter windows 
there is a better representation of the signal over time 
(Figure 1 a, b), while with long windows there is a finer 
representation in the frequency domain (Figure 1 c, d ).  

 

 
Figure 2. Power-frequency representation for frame 
length: a) 128 (125 ms), b) 256 (250 ms), c) 512 (500 

ms), d) 1024 (1000 ms) 

 
The same effect is also visible in the periodogram 

(Welch’s periodogram) represented in figure 2. Again, we 
observe a finer representation of the frequencies when the 
window length is higher and a smoother one when the 
frame length is smaller. Due to the relation between 
maximum frequency and the frequency bin (frequency as 
discussed earlier), more and narrow frequency bins will 
give a better frequency resolution, fewer and wider ones 
will give less frequency resolution. 

The second part of the study is a statistical analysis of 
several window types.  

The statistical analysis was performed on 32 EEG 
channels, a total of 62 trials, 1-3 trials for each channel of 
the EEG signal. For each window length and window 
type, we analyze the mean ( ) and relative ( , 

)  power in beta and gamma.  

In these analyses we wanted to assess how spectra 
estimate change when different window types are used. 
We wanted to investigate which window type has the 
maximum influence over the mean and relative power in 
the beta and gamma bands. 
 
 The values from the Table 1 represent percentages of 
cases across trials where one window type yielded 
maximum value compared to the other window types for 
the mean powers and relative powers  , . 
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F
ra
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n
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th

 Window 
Type 

 
(%) 

 
(%) 

 
(%) 

 
(%) 

Hamming 
100.0
0 

12.90 
100.0
0 

16.13 

Hann 0.00 69.35 0.00 70.97 

Gaussian 0.00 16.13 0.00 12.90 

1
2

8
 

Bartlett-Hann 0.00 1.61 0.00 0.00 

Hamming 90.32 25.81 90.32 27.42 

Hann 4.84 59.68 4.84 58.06 

Gaussian 0.00 11.29 0.00 9.68 2
5

6
 

Bartlett-Hann 4.84 3.23 4.84 4.84 

Hamming 62.9 30.65 70.97 45.16 

Hann 14.52 25.81 19.35 25.81 

Gaussian 19.35 43.55 9.68 25.81 5
1

2
 

Bartlett-Hann 3.23 0.00 0.00 3.23 

Hamming 58.06 51.61 51.61 45.16 

Hann 19.35 25.81 24.19 24.19 

Gaussian 22.58 17.74 24.19 29.03 1
0

2
4

 

Bartlett-Hann 0.00 4.84 0.00 1.61 

Table 1. Statistics on the influence of the window type 
over the relative and mean power in frequency bands. 

This distribution was repeated for several window 
lengths. Values in Table 1 indicate that the same window 
type yields different results in different frequency bands 
and with different window lengths. We can see an 
increased in power in beta frequency band  using Hanning 
window while in gamma frequency band can be seen an 
increased in power using Hann, Gausian or Hamming, 
depending on the window length. 
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Window 
Type 

 
(db) 

 
(db) 

 
 

 
 

Hamming -0.249 0.068 0.051 -0.031 
Hann -0.276 0.076 0.048 -0.032 

Gaussian -0.269 0.074 0.049 -0.032 

1
2

8
-2

5
6

 

Bartlett-
Hann 

-0.267 0.074 0.049 -0.032 

Hamming -0.023 0.004 0.034 -0.015 
Hann -0.035 0.006 0.033 -0.015 

Gaussian -0.033 0.005 0.033 -0.015 

2
5

6
-5

1
2

 

Bartlett-
Hann 

-0.031 0.005 0.034 -0.015 

Hamming 0.134 0.072 0.008 0.004 
Hann 0.132 0.073 0.008 0.003 

Gaussian 0.134 0.074 0.008 0.003 

5
1

2
-1

0
2
4

 

Bartlett-
Hann 

0.133 0.073 0.008 0.003 

Table 2. The mean amplitude difference between two 
frame lengths having the same window type 

Finally, we calculate the difference between 
corresponding mean powers  and relative 

powers  ,  computed for windows with consecutive 

lengths. The values from Table 2 represents the power 

difference between the same window type of two 
consecutive frame length. 

As can be seen, there are differences in power between 
window lengths, in some cases the power value increases 
as the window length is increasing, whereas in some other 
cases this trend is reversed. 

 

VI. CONCLUSIONS 

The power in a frequency band is influenced in a different 
way, depending on frequency band and of window type. 
As can be seen, the Hamming window increases the 
power in frequencies from the beta frequency band, while 
Hann and Gaussian will increase power in gamma band.  

The window length also influences the power, but this 
influence is in general both nonlinear and nonmonotonic. 
The window should be chosen considering the frequency 
bands of interest, as it can drastically influence the results 
when estimating EEG signal spectra.   
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