

Volume 52, Number 4, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

Manuscript received September 8, 2011; revised November 28, 2011

30

STUDY OF THE DECODING COMPLEXITY

FOR RATELESS ERASURE CODES

Anghel BOTOŞ
1
, Vasile BOTA

1
, Aurel VLAICU

1

1
Technical University of Cluj-Napoca

Anghel.Botos@com.utcluj.ro, Vasile.Bota@com.utcluj.ro , Aurel.Vlaicu@com.utcluj.ro

Abstract-Over the Internet, bit errors within the data packets translate into packet losses at the higher layers of the OSI

model, yielding a packet erasure channel. Modern erasure correcting codes promise to offer a very simple and efficient

solution to data transfers over these channels, opening up also other interesting applications. Amongst them one can

enumerate reliable large scale content distribution, high quality real-time data transfers, distributed storage and others.

These considerations make the study of such codes an actual and interesting topic.Most of the analyses presented in literature

focus on the evaluation of the performances ensured by these codes. This paper presents an evaluation of the decoding

complexity of some rateless erasure codes, which is another relevant issue that affects the applicability of these codes. The

complexities of several decoding methods are evaluated using several metrics which reflect different operations performed

during the decoding. All results used in the evaluation are based on simulations.

Keywords: rateless erasure codes, computational complexity

I. INTRODUCTION

Large-scale content distribution is an important aspect of

the current Internet. Present technologies which offer such

services usually rely on classical approaches to this issue,

by breaking down the problem into several single source-

single destination data transfers. These approaches may

be suboptimal since the underlying network is thus not

aware of the different nature of these transfers. The main

effects of this approach may be unnecessary load in the

network and poor service quality perceived by users.

Furthermore, the Internet is being increasingly used over

wireless channels, where non-negligible bit error

probabilities lead to significant packet loss rates.

Protocols like TCP, still extensively used, were designed

when most links were wired and exhibited low packet

error rates. As a result, these protocols perform poorly

when used on wireless channels, providing lower

throughput and greater delays.

Modern erasure correcting codes like the LT, Raptor or

Online codes, described in [1][2][3][4] , promise to

achieve efficient erasure mitigation over lossy channels.

Besides efficient erasure mitigation, these codes can be

used to improve the transmission quality for real-time

data transfers, efficient information propagation in packet

[5] and swarm networks [6], throughput improvement in

wireless networks, distributed data storage [7][8] and

others. Most of the studies presented in literature ([9] and

others) focus on the performances provided by these

codes, e.g. the probability of full recovery for a given

overhead or other equivalent metrics. But another aspect

that affects the applicability of these codes is the

complexity, or the computational amount, involved by the

algorithm employed for the decoding of these codes. This

paper is a practical study of the decoding complexity of

some of these modern rateless erasure correcting codes

which can be used in content distribution technologies.

Several decoding algorithms for these codes have been

evaluated according to several complexity metrics, which

are considered to be significant for the applications

outlined earlier.

This paper is organized as follows: Section II reviews

some theory regarding the codes used in the study,

Section III gives details about the decoding algorithms

and the complexity metrics used for the evaluation,

Section IV presents the main results of the study, while

Section V concludes the paper outlining the major

insights gained from this study.

II. THEORETICAL FUNDAMENTALS

Most modern erasure correcting codes can be viewed as

random linear codes over Galois fields. Let F=(GF(2
w
))

n

be the set of all w×n bit length strings, for some positive

non-zero integer values of w and n. The elements of this

set can be viewed as n-dimensional vectors having

elements from GF(2
w
) as coordinates for each dimension.

In the following, consider Φ=(F,⊕) the finite n-

dimensional vector space over F induced by some

addition operator ⊕. The input symbols for the rateless

erasure code and the code-words at the output of the

encoder are elements of Φ. Furthermore, choose

V=GF(2
w
) as the set of scalars and introduce some

multiplication operator, ⊗, such that Γ=(Φ, V, ⊗) forms a

vector field over Φ.

Volume 52, Number 4, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

31

The data that is to be encoded is partitioned into K∈N
*

input symbols, denoted by xi, i∈{1,…,K}, xi∈Φ, i.e. each

symbol is w×n bits long.. If the length of the actual data is

not an integer K times w×n bits, then it can be padded

with“0” bits up to the next integer value of K. The

encoder produces an output symbol yj according to (1), by

choosing randomly K elements aji from V, according to

some distribution and by using the ⊕ and the ⊗ operators

for the addition and multiplication:

 ∑
=

=
K

i

ijij a
1

xy (1)

This procedure can produce, from a set of K input

symbols, a total number of Nmax = (2
w
) encoded symbols,

not all of them being linearly independent. Provided that

K is usually set on the order of hundreds or thousands, the

number of encoded symbols that can be produced from

any set of input symbols is very large, hence the name

rateless erasure codes. The random coefficients are

chosen using a random number generator (RNG), which

is also a parameter of the code.

Assuming that the decoder, receives the random aji

coefficients together with each encoded symbol yj., the

decoder needs at least J≥K∈N
*
 encoded symbols to

perform the decoding. Note that the correct operation of

the decoder does not require these J symbols to be

consecutively produced by the encoder. As a result,

recovering the K input symbols amounts to solving the

system of equations given in (2), formed by the decoder:

 XA

x

x

y

y

Y ×=

⋅

=

=

KJKJ

K

J aa

aa

M

K

MOM

K

M

1

1

1111

 (2)

The most straightforward method to perform decoding

is Gaussian elimination. Section III presents other

possible decoding methods for some of the codes.

Having a solvable system in (2) requires matrix A to

have full rank, i.e. rk[A] = K. The probability that rk[A]

= K depends on the size of the GF used, on the numbers

of input symbols and received encoded symbols, and on

the distribution used by RNG which generates the

coefficients aji. If only J=K encoded symbols are received

at the decoder, then this probability is lower bounded by

[5]:

 [] ()∏
=

= ≤≤

−−

K

l

Krk

l

w
KP

1

1
2

1
11 A (3)

Equation (3) shows that having received only K

encoded symbols would not always ensure the correct

recovery of all the input symbols. On the other hand, if

the decoder is required to ensure the recovery of all input

data with a higher probability, then the decoder will need

to receive a number J ≥ K of encoded symbols.

The average overhead, needed by the decoder to

recover all input symbols with a imposed (high)

probability is denoted by ε., and so the average number of

encoded symbols needed for successful recovery of all

input symbols is n=(1+ε)K. The probability of this

recovery, given an ε ∈R
+
, can be made arbitrarily close to

1 by any of the following means: increase of K, increase

of w or a careful design of the distribution used by the

random generator at the encoder. There is no closed-form

expression for the average overhead ε as a function of the

design parameters of the code (i.e., K, w, random

distribution), but its value can be determined by

simulations, which is a part of the study carried out in this

paper.

A straightforward idea is choose the scalars aji from

GF(2) and thus decreasing the computational complexity

of the encoding and decoding processes, since the

addition operation is a bitwise XOR of the two symbols,

and a value of “1” for an aji coefficient indicates that the

corresponding source symbol should be added into that

encoded symbol. For codes using GF(2), the degree of an

encoded symbol denotes the number of nonzero aji

coefficients in the matrix row corresponding to it.

A. LT Codes

LT codes, [2], use V=GF(2) as the set from which the

random coefficients are chosen. A uniform random

distribution cannot be used in this case because it would

yield very large values for the average code overhead ε,

[10]. Therefore, their practical implementations use finely

tuned distributions for the random generator, i.e. the Ideal

Soliton and the Robust Soliton distributions [2], to provide

good performances.

B. Raptor Codes

Raptor codes, [3], are rateless erasure codes such that

any subset of K(1+ε) encoding symbols are sufficient to

recover the original K symbols with high probability.

The main idea behind Raptor codes is to require that

only a constant fraction of the input symbols be

recoverable with high probability. This raises a new

problem, since all input symbols need to be recovered, not

only a constant fraction. This issue is addressed by

encoding the input symbols with a traditional erasure

code, and then applying an appropriate LT-code to the

new set of symbols, in a way that the traditional code

would be capable of recovering all the input symbols even

in the presence of a fixed fraction of erasures.

This code construction leaves a great degree of freedom

in the choice of the constituent codes and their

parameters. A good example of a practical Raptor code is

described in [11].

C. Online Codes

On-line codes are rateless, locally encodable codes [4],

which are characterized by two parameters, ε and q. ε

determines the degree of sub-optimality; a message of

size K blocks (symbols) can be decoded from (1+ε)K

output symbols, with an imposed high probability which

is linked to ε by means of the q parameter. q also affects

the success probability of the decoding algorithm. The

Volume 52, Number 4, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

32

algorithm may fail to reconstruct the original message

with a probability of (ε/2)
q+1

.

The overall structure of an On-line code has two layers.

To encode a message, first a small number of auxiliary

symbols are generated and appended to the original ones,

thus forming a composite message. The composite

message has the property that knowledge of any 1-(ε/2)

fraction of its symbols is sufficient to recover the entire

original message. Next, in the inner encoding, symbols

are generated to form an infinite, rateless encoding of the

composite message. These symbols are called check

symbols because they serve as a kind of parity check

during message reconstruction.

III. ALGORITHMS AND METRICS

A. Decoding Algorithms

The basic decoding algorithm for rateless erasure codes

using GF (2) is given in [2] and is called belief

propagation (BP). From a mathematical point of view,

this algorithm is actually a method of solving a system of

equations using substitutions. Although it has low

computational complexity, , according to [2], this method

is not optimal, since it may not be able to solve a given

system of equations due to the fact that there are no

encoded symbols of degree one, i.e encoded symbols that

are exact copies of the source symbols, in the buffer of the

decoder, even if the encoding matrix describing the

system of equations is of full rank.

The optimal approach to solving such systems of

equations is to use Gaussian elimination (GE). On the

other hand, this method of solving a system of equations

would be more computationally intensive.

The third decoding method combines the previous two,

and is denoted by BPGE. For each encoded symbol that is

received by the decoder several steps are performed. First,

the decoder processes the encoded symbol using the BP

method. If this operation has the result that a new input

symbol was recovered, this effectively reduces the size of

the encoding matrix that represents the encoded symbols

in the buffer of the encoder. In this case, a GE decoding

attempt is made on the remaining encoded symbols in the

buffer, by using their corresponding encoding matrix.

This method has the advantage that encoded symbols of

degree one are directly recovered, and that the size of the

encoding matrix is dynamically reduced as new source

symbols are recovered. The relative performance of the

three decoding methods will also be evaluated. For the

rateless erasure codes using higher-order Galois fields

only the GE method is applicable, since the probability to

have encoded symbols that are simple copies of source

symbols is very small.

B. Complexity Metrics

The complexity of the decoding algorithms summarizes

all the operations which are needed in order to perform

the successful decoding of a data block. The decoding

process involves different types of operations, depending

on the algorithm employed. As a result one cannot use a

single metric to evaluate the complexity of these

algorithms, but several are needed. The following metrics

will be used to evaluate the decoding complexity of the

codes and algorithms referenced in this paper:

• Average number of symbol additions. This metric

represents the average number of symbol additions that

need to be performed in order to decode a source

symbol. For the LT, Raptor and Online codes this

operation is a bit-wise XOR between two memory

zones where encoded symbols are stored by the

decoder. For random codes using higher-order Galois

fields, this operation amounts to Galois field additions

on groups of bits. Most Galois field software libraries

are implemented in such a way, that the addition

operation between elements is again the bit-wise XOR

between Galois field elements. Such a software library

was used for the implementation, therefore the

computational cost of a symbol addition is the same,

regardless of the order of the Galois field used for the

code.

• Average number of matrix row additions. This

metric represents the average number of matrix row

additions that need to be performed by the decoder in

order to decode a source symbol. Again, for the LT,

Raptor and Online codes this operation is nothing more

than a bit-wise XOR between the memory regions

where the contents of the two rows of the encoding

matrices used by the decoder, are stored. The previous

considerations regarding codes using higher-order

Galois fileds are valid in this case as well. As a result

the computation cost of such an operation is the same

regardless of the order of the Galois field used by the

code.

• Average number of matrix row exchanges. This

metric represents the average number of matrix row

exchanges that need to be performed by the decoder in

order to recover a source symbol. Since this data is

stored in memory by using pointers, this operation

implies only the exchange of the two pointers to the

memory areas where the contents of these rows are

stored.

• Average number of symbol substitutions. A symbol

substitution represents the operations needed to

eliminate a neighbor from the encoding vector/graph

associated to a received encoded symbol. This

operation appears only when decoding the rateless

erasure codes which use GF(2) as the set for the scalar

coefficients. The average number of symbol

substitutions is the average number of such operations

that need to be performed in order to recover one

source symbol.

A unique global metric for the computational

complexity of the decoding algorithm could be obtained

using a weighted sum of the metrics described earlier. The

weights for each term in this weighted sum should be

chosen depending on the implementation chosen for the

decoder and the architecture of the system within which

the decoder operates.

Volume 52, Number 4, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

33

IV. RESULTS

A. Symbol Operations

The main complexity metric for the decoding

algorithms used with rateless erasure codes is the average

number of symbol additions needed to recover an input

symbol. It is the main metric because each such operation

implies the addition of two encoded symbols. Encoded

symbols may have any size depending on the application,

but typical size may be on the order of kilobytes for real-

time transfers up to one or several megabytes for swarm

networks. As a result, a symbol addition is a costly

operation from a computational point of view.

Average number of symbol additions for the codes

using GF(2) are shown in Figure 1 ,where Ideal denotes

the Ideal Soliton, and Robust denotes the Robust Soliton

distribution.

The simple BP decoding algorithm, where applicable,

exhibits the lowest complexity for all codes (LT Ideal, LT

Robust, Online), requiring on average only 10-20 symbol

additions to recover an input symbol. The increase of the

number of required operations with the increase of the

number of input symbols is very low and non-linear

(logarithmic). The drawback of this decoding method is

the fact that it offers very poor performance of these

codes in terms of average overhead required to recover all

input symbols.

Decoding methods based on Gaussian elimination (GE

and BPGE) exhibit a linear increase of the complexity,

which is significantly higher than for the BP decoding

method, with the increase of the number of input symbols.

The combination of the BP with the GE decoding method

results in a slight decrease of the computational

complexity of the GE-based algorithms. On the other

hand, the implementation of this method requires a larger

number of processor instructions, which may be an issue

for small dedicated equipment.

Comparing the LT code using the Ideal Soliton

distribution with the LT code built with the Robust

Soliton distribution, one can notice that the complexity in

the second case is about two times higher for all decoding

methods. For the LT code, the average value of the

distribution is directly related to the average degree of the

encoded symbols. This average degree is in turn also

directly tied to the average number of symbol additions

needed to be performed by the decoder in order to recover

one source symbol. For all decoding methods, the Online

code exhibits the same type of dependency between the

complexity and the number of input symbols, as the LT

code. In absolute values, the decoding complexity of the

Online code is significantly higher than for the LT codes.

The influence of increasing the dimension of the Galois

field upon the average number of symbol additions for

codes using higher-order Galois fields GF(2
m
) is shown in

Figure 2.

The codes using higher order Galois fields are

decodable only using the GE method, which, in this case,

exhibits the same linear dependency of the complexity

with the number of input symbols. Their complexity is

about 5 times higher for the same number of input

symbols when compared to GF(2) codes, and also

increases with the order of the GF(2
w
) within which the

code is constructed.. The advantage of these codes is the

fact that they offer better performance in terms of average

overhead required to ensure the high-probability recovery

of all input symbols, compared to the codes built in

GF(2) [9].

The average number of symbol substitutions required to

recover a source symbol is presented in Figure. 3. This

metric is shown only for GF(2) codes used in conjunction

with a BP-based decoding method because this decoding

Figure 1. Average number of symbol additions for GF(2) codes.

Figure 2. Average number of symbol additions for

GF(2
m
) codes.

Volume 52, Number 4, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

34

method is the only one which makes use of this type of

operation.

All codes exhibit an increase of this metric when the

number of source symbols increases. For some of them

(LT Robust BPGE, Online BPGE), this increase is linear,

while for the others this increase is non-linear and has a

logarithmic trend.

There should also be noted that the BP-decoded Online

code requires more symbol substitutions than the other

types of codes decoded with the same algorithm, because

the resulting degree distribution used by this code has a

higher average value than any of the Soliton distribution

used by the LT code.

Figure 3. Average number of symbol substitutions for

GF(2) codes.

Also, the employment of the BPGE decoding algorithm

decreases significantly the amount of such operations for

all codes. The combination between the BP and the GE

decoding methods splits the entire computational between

these two algorithms. Since the symbol substitutions are

specific only to the BP decoding algorithm, it was

somewhat expected that this metric would be lower for

the combined algorithm compared to the simple BP

algorithm.

B. Matrix Operations

All GE-based decoding methods make use of an

encoding matrix which corresponds to the encoded

symbols in the decoders buffer. These decoding methods

also make use of matrix operations in order to perform the

decoding.

The average number of matrix row additions required

to recover a source symbol is shown in Figure. 4 for

GF(2) codes.

Figure 4. Average number of matrix row additions for

GF(2) codes.

This metric was not recorded for higher-order GF

codes, because they can be decoded only using the GE

method. For this method, any symbol addition results also

in a matrix row addition, and hence, the graphs, of.

Figure. 2 right-hand and Figure 4, would be identical.

The dependency between this metric and the number of

source symbols is again a linear one, with the number of

matrix row additions being slightly smaller than the

number of symbol additions for the same code using the

BPGE decoding method.

The average number of matrix row exchanges required

to recover an input symbol is shown in Figure. 5 for

GF(2) codes. Decoding with the BPGE algorithm yields a

linear dependency between this metric’s values and the

number of input symbols (LT Ideal BPGE has also a

linear dependency, but with a low slope). The GE

decoding method on the other hand, leads to constant

values for this metric, roughly equal with the probability

that a given position in the encoding matrix has a zero

value for the aji coefficient.

Figure 5. Average number of matrix row exchanges for

GF(2) codes.

The average numbers of matrix row exchanges needed

by higher-order GF codes to recover an input symbol are

shown in Figure. 6.

Figure 6. Average number of matrix row exchanges

GF(2
m
) codes.

The results of Figure.6 show that for higher-order GF

codes, there is no dependency between the number of

input symbols and the average number of matrix row

exchanges needed to recover an input symbol. This metric

is constant throughout the entire domain for the number

of input symbols used in the study, and this constant value

is approximately equal to 1/2
m
, thus favoring the codes

which use the higher-order GF. A row exchange occurs

Volume 52, Number 4, 2011 ACTA TECHNICA NAPOCENSIS

Electronics and Telecommunications

__

35

when the algorithm needs a pivot for a given column from

the encoding matrix, but the current row has a zero value

in that column. As a result, the algorithm needs to find

another matrix row that has a non-zero value in that

column. Since these are constructed at random using a

uniform distribution, the probability of having a zero

value at any given location in the encoding matrix is

1/(2
m
).

V. CONCLUSIONS

This paper analyzed the decoding complexity involved by

the LT Ideal, LT Soliton and Online codes when decoded

either with a Belief Propagation (BP), a Gaussian

Elimination (GE), or a combined BPGE decoder. The

metrics employed were the average numbers of various

operations required to decode one input symbol.

The results obtained showed that the BP algorithm

involves, for most of the considered metrics, a

significantly lower computational complexity, than the

algorithms using GE, but, as shown in [9], it also provides

the worst performance in terms of average overhead. The

combined BPGE algorithm requires slightly smaller

amounts of computation than the „pure” GE algorithm.

The Online code is even more computationally

demanding than both variants of the LT code. The

additional computational load translates into a slightly

better overhead performance, when compared to the LT

code which uses the Robust Soliton distribution.

Codes constructed using higher-order Galois fields can

be decoded only using the GE decoding algorithm.

Compared to the other codes studied in this paper, these

codes are more computationally intensive, requiring more

operations, on average, in order to recover an input

symbol. The increased computational load translates in

this case also in a performance gain in terms of average

overhead [9].

ACKNOWLEDGMENT

This work was funded by the Romanian Government

and the European Union within the POSDRU/6/1.5/S/5 –

“PRODOC” project.

REFERENCES

[1] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A

digital fountain approach to reliable distribution of bulk

data,” SIGCOMM Comput. Commun. Rev., vol. 28, no.

4, pp. 56–67, October 1998.

[2] M. Luby, “LT codes,” Foundations of Computer Science,

2002. Proceedings. The 43rd Annual IEEE Symposium on,

pp. 271–280, 2002.

[3] A. Shokrollahi, “Raptor codes,” Information Theory, IEEE

Transactions on, vol. 52, no. 6, pp. 2551–2567, 2006.

[4] P. Maymounkov and D. Mazieres, “Rateless Codes and Big

Downloads,” in In IPTPS’03, 2003.

[5] D. S. Lun, M. Medard, and M. Effros, “On Coding for

Reliable Communication over Packet Networks,” in Proc.

42nd Annual Allerton Conference on Communication,

Control, and Computing, Sept.–Oct. 2004, invited, 2004.

[6] C. Gkantsidis and P. Rodriguez, “Network coding for large

scale content distribution,” in INFOCOM 2005. 24th

Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings IEEE, vol. 4.

IEEE, 2005, pp. 2235–2245.

[7] S. Acedanski, S. Deb, M. Medard, and R. Koetter, “How

good is random linear coding based distributed networked

storage,” in In NetCod, 2005.

[8] R. G. Dimakis, V. Prabhakaran, and K. Ramch,

“Decentralized erasure codes for distributed networked

storage,” IEEE Transactions on Information Theory, vol.

52, pp. 2809–2816, 2006.

[9] Anghel Botoş, Vasile Bota, Mihai P. Ştef, “Performance

Evaluation of Rateless Erasure Correcting Codes for

Content Distribution”, unpublished, accepted for

publication at RoEduNet 2011.

[10] D. J. C. Mackay, “Fountain Codes,” IEEE

Communications, vol. 152, pp. 1062–1068, 2005.

[11] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer,

“RFC5053 - Raptor Forward Error Correction Scheme for

Object Delivery,” 2007.

