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Abstract-Over the Internet, bit errors within the data packets translate into packet losses at the higher layers of the OSI 

model, yielding a packet erasure channel. Modern erasure correcting codes promise to offer a very simple and efficient 

solution to data transfers over these channels, opening up also other interesting applications. Amongst them one can 

enumerate reliable large scale content distribution, high quality real-time data transfers, distributed storage and others. 

These considerations make the study of such codes an actual and interesting topic.Most of the analyses presented in literature 

focus on the evaluation of the performances ensured by these codes. This paper presents an evaluation of the decoding 

complexity of some rateless erasure codes, which is another relevant issue that affects the applicability of these codes. The 

complexities of several decoding methods are evaluated using several metrics which reflect different operations performed 

during the decoding. All results used in the evaluation are based on simulations.  
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I. INTRODUCTION 

Large-scale content distribution is an important aspect of 

the current Internet. Present technologies which offer such 

services usually rely on classical approaches to this issue, 

by breaking down the problem into several single source-

single destination data transfers. These approaches may 

be suboptimal since the underlying network is thus not 

aware of the different nature of these transfers. The main 

effects of this approach may be unnecessary load in the 

network and poor service quality perceived by users. 

Furthermore, the Internet is being increasingly used over 

wireless channels, where non-negligible bit error 

probabilities lead to significant packet loss rates. 

Protocols like TCP, still extensively used, were designed 

when most links were wired and exhibited low packet 

error rates. As a result, these protocols perform poorly 

when used on wireless channels, providing lower 

throughput and greater delays. 

Modern erasure correcting codes like the LT, Raptor or 

Online codes, described in [1][2][3][4] , promise to 

achieve efficient erasure mitigation over lossy channels. 

Besides efficient erasure mitigation, these codes can be 

used to improve the transmission quality for real-time 

data transfers, efficient information propagation in packet 

[5] and swarm networks [6], throughput improvement in 

wireless networks, distributed data storage [7][8] and 

others. Most of the studies presented in literature ([9] and 

others) focus on the performances provided by these 

codes, e.g. the probability of full recovery for a given 

overhead or other equivalent metrics. But another aspect 

that affects the applicability of these codes is the 

complexity, or the computational amount, involved by the 

algorithm employed for the decoding of these codes. This 

paper is a practical study of the decoding complexity of 

some of these modern rateless erasure correcting codes 

which can be used in content distribution technologies. 

Several decoding algorithms for these codes have been 

evaluated according to several complexity metrics, which 

are considered to be significant for the applications 

outlined earlier. 

This paper is organized as follows: Section II reviews 

some theory regarding the codes used in the study, 

Section III gives details about the decoding algorithms 

and the complexity metrics used for the evaluation, 

Section IV presents the main results of the study, while 

Section V concludes the paper outlining the major 

insights gained from this study. 

II. THEORETICAL FUNDAMENTALS 

Most modern erasure correcting codes can be viewed as 

random linear codes over Galois fields. Let F=(GF(2
w
))

n
 

be the set of all w×n bit length strings, for some positive 

non-zero integer values of w and n. The elements of this 

set can be viewed as n-dimensional vectors having 

elements from GF(2
w
) as coordinates for each dimension. 

In the following, consider Φ=(F,⊕) the finite n-

dimensional vector space over F induced by some 

addition operator ⊕. The input symbols for the rateless 

erasure code and the code-words at the output of the 

encoder are elements of Φ. Furthermore, choose 

V=GF(2
w
) as the set of scalars and introduce some 

multiplication operator, ⊗, such that Γ=(Φ, V, ⊗) forms a 

vector field over Φ. 
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The data that is to be encoded is partitioned into K∈N
*
 

input symbols, denoted by xi, i∈{1,…,K}, xi∈Φ, i.e. each 

symbol is w×n bits long.. If the length of the actual data is 

not an integer K times w×n bits, then it can be padded 

with“0” bits up to the next integer value of K. The 

encoder produces an output symbol yj according to (1), by 

choosing randomly K elements aji from V, according to 

some distribution and by using the ⊕ and the ⊗ operators 

for the addition and multiplication: 

 ∑
=

=
K

i

ijij a
1

xy                             (1) 

This procedure can produce, from a set of K input 

symbols, a total number of Nmax = (2
w
) encoded symbols, 

not all of them being linearly independent. Provided that 

K is usually set on the order of hundreds or thousands, the 

number of encoded symbols that can be produced from 

any set of input symbols is very large, hence the name 

rateless erasure codes. The random coefficients are 

chosen using a random number generator (RNG), which 

is also a parameter of the code. 

Assuming that the decoder, receives the random aji 

coefficients together with each encoded symbol yj., the 

decoder needs at least J≥K∈N
*
 encoded symbols to 

perform the decoding. Note that the correct operation of 

the decoder does not require these J symbols to be 

consecutively produced by the encoder. As a result, 

recovering the K input symbols amounts to solving the 

system of equations given in (2), formed by the decoder: 
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The most straightforward method to perform decoding 

is Gaussian elimination. Section III presents other 

possible decoding methods for some of the codes. 

Having a solvable system in (2) requires matrix A to 

have full rank, i.e. rk[A] = K. The probability that rk[A] 

= K depends on the size of the GF used, on the numbers 

of input symbols and received encoded symbols, and on 

the distribution used by RNG which generates the 

coefficients aji. If only J=K encoded symbols are received 

at the decoder, then this probability is lower bounded by 

[5]: 

 [ ] ( )∏
=

= ≤≤





















−−

K

l

Krk

l

w
KP

1

1
2

1
11 A          (3) 

Equation (3) shows that having received only K 

encoded symbols would not always ensure the correct 

recovery of all the input symbols. On the other hand, if 

the decoder is required to ensure the recovery of all input 

data with a higher probability, then the decoder will need 

to receive a number J ≥ K of encoded symbols. 

The average overhead, needed by the decoder to 

recover all input symbols with a imposed (high) 

probability is denoted by ε., and so the average number of 

encoded symbols needed for successful recovery of all 

input symbols is n=(1+ε)K. The probability of this 

recovery, given an ε ∈R
+
, can be made arbitrarily close to 

1 by any of the following means: increase of K, increase 

of w or a careful design of the distribution used by the 

random generator at the encoder. There is no closed-form 

expression for the average overhead ε as a function of the 

design parameters of the code (i.e., K, w, random 

distribution), but its value can be determined by 

simulations, which is a part of the study carried out in this 

paper. 

A straightforward idea is choose the scalars aji from 

GF(2) and thus decreasing the computational complexity 

of the encoding and decoding processes, since the 

addition operation is a bitwise XOR of the two symbols, 

and a value of “1” for an aji coefficient indicates that the 

corresponding source symbol should be added into that 

encoded symbol. For codes using GF(2), the degree of an 

encoded symbol denotes the number of nonzero aji 

coefficients in the matrix row corresponding to it. 

A.  LT Codes 

LT codes, [2], use V=GF(2) as the set from which the 

random coefficients are chosen. A uniform random 

distribution cannot be used in this case because it would 

yield very large values for the average code overhead ε, 

[10]. Therefore, their practical implementations use finely 

tuned distributions for the random generator, i.e. the Ideal 

Soliton and the Robust Soliton distributions [2], to provide 

good performances. 

B.  Raptor Codes 

Raptor codes, [3], are rateless erasure codes such that 

any subset of K(1+ε) encoding symbols are sufficient to 

recover the original K symbols with high probability. 

The main idea behind Raptor codes is to require that 

only a constant fraction of the input symbols be 

recoverable with high probability. This raises a new 

problem, since all input symbols need to be recovered, not 

only a constant fraction. This issue is addressed by 

encoding the input symbols with a traditional erasure 

code, and then applying an appropriate LT-code to the 

new set of symbols, in a way that the traditional code 

would be capable of recovering all the input symbols even 

in the presence of a fixed fraction of erasures. 

This code construction leaves a great degree of freedom 

in the choice of the constituent codes and their 

parameters. A good example of a practical Raptor code is 

described in [11]. 

C.  Online Codes 

On-line codes are rateless, locally encodable codes [4], 

which are characterized by two parameters, ε and q. ε 

determines the degree of sub-optimality; a message of 

size K blocks (symbols) can be decoded from (1+ε)K 

output symbols, with an imposed high probability which 

is linked to ε by means of the q parameter. q also affects 

the success probability of the decoding algorithm. The 
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algorithm may fail to reconstruct the original message 

with a probability of (ε/2)
q+1

. 

The overall structure of an On-line code has two layers. 

To encode a message, first a small number of auxiliary 

symbols are generated and appended to the original ones, 

thus forming a composite message. The composite 

message has the property that knowledge of any 1-(ε/2) 

fraction of its symbols is sufficient to recover the entire 

original message. Next, in the inner encoding, symbols 

are generated to form an infinite, rateless encoding of the 

composite message. These symbols are called check 

symbols because they serve as a kind of parity check 

during message reconstruction. 

III. ALGORITHMS AND METRICS 

A. Decoding Algorithms 

The basic decoding algorithm for rateless erasure codes 

using GF (2) is given in [2] and is called belief 

propagation (BP). From a mathematical point of view, 

this algorithm is actually a method of solving a system of 

equations using substitutions. Although it has low 

computational complexity, , according to [2], this method 

is not optimal, since it may not be able to solve a given 

system of equations due to the fact that there are no 

encoded symbols of degree one, i.e encoded symbols that 

are exact copies of the source symbols, in the buffer of the 

decoder, even if the encoding matrix describing the 

system of equations is of full rank. 

The optimal approach to solving such systems of 

equations is to use Gaussian elimination (GE). On the 

other hand, this method of solving a system of equations 

would be more computationally intensive. 

The third decoding method combines the previous two, 

and is denoted by BPGE. For each encoded symbol that is 

received by the decoder several steps are performed. First, 

the decoder processes the encoded symbol using the BP 

method. If this operation has the result that a new input 

symbol was recovered, this effectively reduces the size of 

the encoding matrix that represents the encoded symbols 

in the buffer of the encoder. In this case, a GE decoding 

attempt is made on the remaining encoded symbols in the 

buffer, by using their corresponding encoding matrix. 

This method has the advantage that encoded symbols of 

degree one are directly recovered, and that the size of the 

encoding matrix is dynamically reduced as new source 

symbols are recovered. The relative performance of the 

three decoding methods will also be evaluated. For the 

rateless erasure codes using higher-order Galois fields 

only the GE method is applicable, since the probability to 

have encoded symbols that are simple copies of source 

symbols is very small. 

B.  Complexity Metrics 

The complexity of the decoding algorithms summarizes 

all the operations which are needed in order to perform 

the successful decoding of a data block. The decoding 

process involves different types of operations, depending 

on the algorithm employed. As a result one cannot use a 

single metric to evaluate the complexity of these 

algorithms, but several are needed. The following metrics 

will be used to evaluate the decoding complexity of the 

codes and algorithms referenced in this paper: 

• Average number of symbol additions. This metric 

represents the average number of symbol additions that 

need to be performed in order to decode a source 

symbol. For the LT, Raptor and Online codes this 

operation is a bit-wise XOR between two memory 

zones where encoded symbols are stored by the 

decoder. For random codes using higher-order Galois 

fields, this operation amounts to Galois field additions 

on groups of bits. Most Galois field software libraries 

are implemented in such a way, that the addition 

operation between elements is again the bit-wise XOR 

between Galois field elements. Such a software library 

was used for the implementation, therefore the 

computational cost of a symbol addition is the same, 

regardless of the order of the Galois field used for the 

code. 

• Average number of matrix row additions. This 

metric represents the average number of matrix row 

additions that need to be performed by the decoder in 

order to decode a source symbol. Again, for the LT, 

Raptor and Online codes this operation is nothing more 

than a bit-wise XOR between the memory regions 

where the contents of the two rows of the encoding 

matrices used by the decoder, are stored. The previous 

considerations regarding codes using higher-order 

Galois fileds are valid in this case as well. As a result 

the computation cost of such an operation is the same 

regardless of the order of the Galois field used by the 

code. 

• Average number of matrix row exchanges. This 

metric represents the average number of matrix row 

exchanges that need to be performed by the decoder in 

order to recover a source symbol. Since this data is 

stored in memory by using pointers, this operation 

implies only the exchange of the two pointers to the 

memory areas where the contents of these rows are 

stored. 

• Average number of symbol substitutions. A symbol 

substitution represents the operations needed to 

eliminate a neighbor from the encoding vector/graph 

associated to a received encoded symbol. This 

operation appears only when decoding the rateless 

erasure codes which use GF(2) as the set for the scalar 

coefficients. The average number of symbol 

substitutions is the average number of such operations 

that need to be performed in order to recover one 

source symbol.  

A unique global metric for the computational 

complexity of the decoding algorithm could be obtained 

using a weighted sum of the metrics described earlier. The 

weights for each term in this weighted sum should be 

chosen depending on the implementation chosen for the 

decoder and the architecture of the system within which 

the decoder operates. 
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IV. RESULTS 

A.  Symbol Operations 

The main complexity metric for the decoding 

algorithms used with rateless erasure codes is the average 

number of symbol additions needed to recover an input 

symbol. It is the main metric because each such operation 

implies the addition of two encoded symbols. Encoded 

symbols may have any size depending on the application, 

but typical size may be on the order of kilobytes for real-

time transfers up to one or several megabytes for swarm 

networks. As a result, a symbol addition is a costly 

operation from a computational point of view. 

Average number of symbol additions for the codes 

using GF(2) are shown in Figure 1 ,where Ideal denotes 

the Ideal Soliton, and Robust denotes the Robust Soliton 

distribution. 

The simple BP decoding algorithm, where applicable, 

exhibits the lowest complexity for all codes (LT Ideal, LT 

Robust, Online), requiring on average only 10-20 symbol 

additions to recover an input symbol. The increase of the 

number of required operations with the increase of the 

number of input symbols is very low and non-linear 

(logarithmic). The drawback of this decoding method is 

the fact that it offers very poor performance of these 

codes in terms of average overhead required to recover all 

input symbols. 

Decoding methods based on Gaussian elimination (GE 

and BPGE) exhibit a linear increase of the complexity,  

which is significantly higher than for the BP decoding 

method, with the increase of the number of input symbols. 

The combination of the BP with the GE decoding method 

results in a slight decrease of the computational 

complexity of the GE-based algorithms. On the other 

hand, the implementation of this method requires a larger 

number of processor instructions, which may be an issue 

for small dedicated equipment. 

Comparing the LT code using the Ideal Soliton 

distribution with the LT code built with the Robust 

Soliton distribution, one can notice that the complexity in 

the second case is about two times higher for all decoding 

methods. For the LT code, the average value of the 

distribution is directly related to the average degree of the 

encoded symbols. This average degree is in turn also 

directly tied to the average number of symbol additions 

needed to be performed by the decoder in order to recover 

one source symbol. For all decoding methods, the Online 

code exhibits the same type of dependency between the 

complexity and the number of input symbols, as the LT 

code. In absolute values, the decoding complexity of the 

Online code is significantly higher than for the LT codes. 

The influence of increasing the dimension of the Galois 

field upon the average number of symbol additions for 

codes using higher-order Galois fields GF(2
m
) is shown in 

Figure 2. 

The codes using higher order Galois fields are 

decodable only using the GE method, which, in this case, 

exhibits the same linear dependency of the complexity 

with the number of input symbols. Their complexity is 

about 5 times higher for the same number of input 

symbols when compared to GF(2) codes, and also 

increases with the order of the GF(2
w
) within which the 

code is constructed.. The advantage of these codes is the 

fact that they offer better performance in terms of average 

overhead required to ensure the high-probability recovery 

of all input symbols,  compared to the codes built in 

GF(2) [9]. 

The average number of symbol substitutions required to 

recover a source symbol is presented in Figure. 3. This 

metric is shown only for GF(2) codes used in conjunction 

with a BP-based decoding method because this decoding 

 
 

Figure 1. Average number of symbol additions for GF(2) codes. 

 
Figure 2. Average number of symbol additions for 

GF(2
m
) codes. 
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method is the only one which makes use of this type of 

operation.  

All codes exhibit an increase of this metric when the 

number of source symbols increases. For some of them 

(LT Robust BPGE, Online BPGE), this increase is linear, 

while for the others this increase is non-linear and has a 

logarithmic trend. 

There should also be noted that the BP-decoded Online 

code requires more symbol substitutions than the other 

types of codes decoded with the same algorithm, because 

the resulting degree distribution used by this code has a 

higher average value than any of the Soliton distribution 

used by the LT code. 

 
Figure 3. Average number of symbol substitutions for 

GF(2) codes. 

Also, the employment of the BPGE decoding algorithm 

decreases significantly the amount of such operations for 

all codes. The combination between the BP and the GE 

decoding methods splits the entire computational between 

these two algorithms. Since the symbol substitutions are 

specific only to the BP decoding algorithm, it was 

somewhat expected that this metric would be lower for 

the combined algorithm compared to the simple BP 

algorithm. 

B.  Matrix Operations 

All GE-based decoding methods make use of an 

encoding matrix which corresponds to the encoded 

symbols in the decoders buffer. These decoding methods 

also make use of matrix operations in order to perform the 

decoding. 

The average number of matrix row additions required 

to recover a source symbol is shown in Figure. 4 for 

GF(2) codes. 
 

Figure 4. Average number of matrix row additions for 

GF(2) codes. 

This metric was not recorded for higher-order GF 

codes, because they can be decoded only using the GE 

method. For this method, any symbol addition results also 

in a matrix row addition, and hence, the graphs, of. 

Figure. 2 right-hand and Figure 4, would be identical.  

The dependency between this metric and the number of 

source symbols is again a linear one, with the number of 

matrix row additions being slightly smaller than the 

number of symbol additions for the same code using the 

BPGE decoding method. 

The average number of matrix row exchanges required 

to recover an input symbol is shown in Figure. 5 for 

GF(2) codes. Decoding with the BPGE algorithm yields a 

linear dependency between this metric’s values and the 

number of input symbols (LT Ideal BPGE has also a 

linear dependency, but with a low slope). The GE 

decoding method on the other hand, leads to constant 

values for this metric, roughly equal with the probability 

that a given position in the encoding matrix has a zero 

value for the aji coefficient. 

 
Figure 5. Average number of matrix row exchanges for 

GF(2) codes. 

The average numbers of matrix row exchanges needed 

by higher-order GF codes to recover an input symbol are 

shown in Figure. 6. 

 
Figure 6. Average number of matrix row exchanges 

GF(2
m
) codes. 

The results of Figure.6 show that for higher-order GF 

codes, there is no dependency between the number of 

input symbols and the average number of matrix row 

exchanges needed to recover an input symbol. This metric 

is constant throughout the entire domain for the number 

of input symbols used in the study, and this constant value 

is approximately equal to 1/2
m
, thus favoring the codes 

which use the higher-order GF. A row exchange occurs 
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when the algorithm needs a pivot for a given column from 

the encoding matrix, but the current row has a zero value 

in that column. As a result, the algorithm needs to find 

another matrix row that has a non-zero value in that 

column. Since these are constructed at random using a 

uniform distribution, the probability of having a zero 

value at any given location in the encoding matrix is 

1/(2
m
). 

V.  CONCLUSIONS 

This paper analyzed the decoding complexity involved by 

the LT Ideal, LT Soliton and Online codes when decoded 

either with a Belief Propagation (BP), a Gaussian 

Elimination (GE), or a combined BPGE decoder. The 

metrics employed were the average numbers of various 

operations required to decode one input symbol. 

The results obtained showed that the BP algorithm 

involves, for most of the considered metrics, a 

significantly lower computational complexity, than the 

algorithms using GE, but, as shown in [9], it also provides 

the worst performance in terms of average overhead. The 

combined BPGE algorithm requires slightly smaller 

amounts of computation than the „pure” GE algorithm. 

The Online code is even more computationally 

demanding than both variants of the LT code. The 

additional computational load translates into a slightly 

better overhead performance, when compared to the LT 

code which uses the Robust Soliton distribution. 

Codes constructed using higher-order Galois fields can 

be decoded only using the GE decoding algorithm. 

Compared to the other codes studied in this paper, these 

codes are more computationally intensive, requiring more 

operations, on average, in order to recover an input 

symbol. The increased computational load translates in 

this case also in a performance gain in terms of average 

overhead [9]. 
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