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Abstract: This paper introduces a modeling flow for predicting waveforms as a function of parameters, variables in the system 
generating the waveforms. In order to achieve this goal, a neural network is involved. The model is developed using early-stage 
simulation data from the automotive industry. Usually, a large amount of data is necessary in order to properly create such a model 
and successfully train a neural network, and this can be problematic. To address this issue, a model which can be trained with just 
a handful of characteristics is proposed. The results obtained show that our model can predict waveforms based on input factors 
with high accuracy.  
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I. INTRODUCTION 
The industry of automotive electronics must reduce the time-
to-market while increasing the complexity, therefore the 
pressure on a thorough verification is high, especially for 
safety-relevant systems. To cope with this, pre-silicon 
verification, by modeling and simulation, starting from a 
system-level, has gained a lot of interest because of the 
opportunity to verify at early stages the application-fitness 
[1, 2]. While digital circuitry and software have established 
means of high-coverage verification, analog and mixed-
signal systems need to be verified under all allowed 
operating conditions, given variations of components and 
loads. This introduces a lot of overhead since it is not 
possible to formally (analytically) verify such systems, and a 
reasonable coverage, when the number of variations is high, 
translates into a high number of long simulations [3], [4]. 
 Methods which apply heuristics to the outputs of the 
simulation, in order to predict not-yet simulated points exist: 
[5], [6]. Such methods are applied here, but not to 
optimize/study only static outputs, e.g. performance 
characteristics, but rather full output signals, over the 
complete time-scale. Predictive models are built, which can 
estimate the output signals, given a small variation of the 
system parameters. In this way, the methods are not limited 
to one-objective optimization, which would focus on only 
one output (e.g. one time sample) of the system, but rather 
predict the multi-response output, formed by the time 
samples of the signal. To address this range-based 
verification, some methods are available, such as semi-
symbolic simulation [7], which are harder to apply on a 
system-level. 
 Some existing approaches imply applying statistics on 
the output values [8], but do not build predictive models of 
the signal of interest, therefore can only assess the quality of 
the system, not improve it. 
 The goal here is to predict output (transient) signals of 

the system, in any point inside a multi-dimensional, 
continuous verification space, as a cheap and fast substitute 
to a new extensive simulation. This must be applied on 
signals common in control loops of smart power systems, in 
the automotive industry [9]. Therefore, we focus on signals 
of reduced complexity i.e. not many transitions between 
samples (low frequency), and for which some characteristics 
such as delay, slew rate, maximum value e.g. overshoot, 
settle time, are the main characteristics of interest, measured 
and assessed to be within specification limits. 
 Other important aspects are: 
-the number of samples needed to build the model must be 
reduced i.e. order of magnitude smaller than the Monte-
Carlo circuit simulation methods; 
-the evaluation time of the underlying results-model must be 
much smaller, in comparison to the simulation time; 
-such model must be of reasonable size, and must be 
sufficient to estimate new output signals, with respect to the 
input variations; 
 The system under study here is a typical ECU (electronic 
control unit) for which the control signal is influenced both 
by the DUT (device under test) as well as the load variation, 
as described in [10]. The exact switch-on time, given as 
value and pulse duration, is crucial when it comes to driving 
the squib of the airbag. The SystemC-AMS model is subject 
to simulations, to extract the output signals corresponding to 
applied variations on the DUT and Load parameters (Table 
II in [10]). 
 In the literature, there are some examples of using 
Artificial Neural Network (ANN) to address different aspect 
in waveform processing. Back Propagation Neural Network 
and Radial Basis Function Neural Network are used to 
develop behavioural models of a RF power amplifier, the 
predicted output signal corresponding to sampling points of 
the amplifier output waveform value [11]. In [12], an ANN 
is used for detection and classification of electrical 
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disturbances in three-phase systems. Automatic detection of 
spikes in electroencephalograms (EEG) can be solved using 
neural network as it is presented in [13]. In [14], a neural 
network provides a means of determining a degree of belief 
for each identified disturbance waveform in Power System. 
 In order to extract the waveform features, ANNs are 
usually combined with mathematical analysis, such as 
Fourier and wavelet transforms, for the generation of signal 
features which serve as inputs of the neural network [14 - 
17].    
 In this paper we evaluate Neural Networks as an efficient 
way to develop a model that can predict waveforms 
(signals), based only on an input set of parameters (factors), 
given that a significant training data set is provided. One 
problem is that the necessary data required to properly train 
a neural network, can vary in size and complexity. To 
capture the characteristics of a certain set of waveforms, 
common and differentiating, a very large data set is 
required. The waveforms to be predicted are represented by 
their time samples. Using a high enough sample frequency 
we can collect a lot of data points.  The reverse of the medal 
is the fact that a very large data training set can pose 
problems in using computer memory (out of memory type 
errors) and can dramatically increase the training time.  
 The approach presented in this paper performs a 
transformation, from the time domain into the frequency 
domain, followed by a feature selection operation. This way 
we can select only the most meaningful characteristics, thus 
reducing the size of the training set. Finally, we need a 
reverse transformation and waveform reconstruction, once 
the neural network is properly trained. 
  

II. DEVELOPMENT OF THE MODEL 
The block diagram of the model is presented in Figure 1. 
The model has a number of N inputs representing the input 
parameters (p) of the entire data set. Q is the number of the 
outputs representing the samples describing the predicted 

waveform ( Qs...,,s,s 21 ). 

The development of the entire model, involves three phases: 
 1. Training data preparation; 
 2. Neural network training; 
 3. Output waveform reconstruction. 
 

 
 

 The detailed model developing diagram that also 
highlights the phases is presented in Figure 2. 
  

II.1. Training Data Preparation 
In order to reduce the complexity of the data used to train 
the neural network, we resorted to a nominal waveform 

represented in terms of its time samples nomS  (see Figure 2). 

Applying the Fast Fourier Transform (FFT) on this 
waveform resulted in changing its domain, from time 
samples to a new domain consisting of FFT 

coefficients nomC . A coefficient (feature) selection algorithm 

was used to select from the new domain, those coefficients 

that were considered most important ones (according to the 

magnitude), of 1
st
 order, denoted nomIC . For these 1

st
 order 

coefficients we are not interested in their value, but in their 

indices (positions), that are stored as a vector nomIC_idx . 

The remaining coefficients, considered as 2
nd

 order, nomIIC  

(values and indices) are stored for later use in the waveform 
reconstruction phase of the model. 
 The waveforms in the data set are determined by a 
combination of input parameters. For each individual set of 
parameters p, the corresponding waveform is selected (see 

Figure 2). The coefficients wC result from applying the FFT 

on the time samples of waveform wS . From these 

coefficients only the ones corresponding to the 1
st
 order 

indices extracted from the nominal waveform were taken 

into account ( wIC ). In this way, the size of the resulted data 

set can decrease substantially. Because the resulted data set 
is composed of complex numbers and the neural network 
cannot be trained with values of this format, an Inverse Fast 
Fourier Transform (IFFT) is applied to the new data set, 
which is further used to train the neural network. This way, 
the output of the neural network will be represented by a 

collection of predicted time samples ( wIS_pred ) 

corresponding to the position of 1
st
 order coefficients 

extracted from the nominal waveform. 
 

II.2. Neural Network Training 
To develop our model, a fitting neural network [18] is used, 
with one hidden layer with a sigmoid activation function. 
The output layer uses a linear activation function. 
Supervised training is used, meaning that in each training 
epoch, the parameters of the network (weights and biases) 
are adapted based on an error calculated as a distance 
between the target (original waveform samples) and the 
output (predicted output samples) computed by the neural 
network. 
 The input of the network is provided by matrix P 
(equation (1)), composed of elements representing the 
combinations of parameters that describe each of the 
waveforms in the data set. The number of rows represents 
the number of combinations of the input parameters (M – 
length of the data set). The number of columns is given by 
the number of input parameters that are varied (N). The 
target of the neural network is the T matrix (equation (2)) 
that has a number of rows equal to the number of 
combinations of the input parameters (M). The number of 
columns represents the number of samples describing each 
waveform (Q). 
 



















=

MNMM

N

N

ppp

ppp

ppp

P

21

22221

11211

MMM

L

L

                     (1) 

 





















=

MQMM

Q

Q

ttt

ttt

ttt

T

21

22221

11211

MMM

L

L

                      (2) 

 
 Details regarding the structure and training of the neural 
network are provided in Section III. 

Figure 1. Block diagram of the model. 
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II.3. Output Waveform Reconstruction 
The reconstruction of the output waveform is realized using 
both the 2

nd
 order components stored in the data preparation 

phase, and the 1
st
  order components provided by the output 

of the neural network.  
 To do that, a fusion operation (Coefficient fusion – see 

Figure 2) between 1
st
 order coefficients ( wIC_pred ) and 

2
nd

 order coefficients ( nomIIC ) is involved. The 1
st
 order 

coefficients were obtained by applying a FFT operation on 

the 1
st
 order samples ( wIS_pred ) predicted by the neural 

network.   
 Finally, the predicted output waveform is generated by 

its time samples ( wS_pred ) by applying the IFFT once 

again on the predicted coefficients wC_pred . 

 
III. EXPERIMENTAL RESULTS 

The data used for conducting the experiment consists of a 
set of 200 waveforms ( 200=M ), generated by 200 
combinations of 10 input parameters (N=10). The variation 
of these factors takes values between -1 and 1. These 
numbers do not represent absolute values of the parameters, 
but normalized values, -1 representing the minimum value, 

and +1 representing the maximum value. Supplementary, a 
nominal waveform has been provided in order to develop 
this system. Each of the waveforms used to train the neural 
network are described by a number of ca.13600 samples, 
presented in Figure 3. 

 

Figure 3. Training Data Set described by 200 

waveforms sampled in 13600 points. 
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 According to the model development procedure 
presented in the diagram in Figure 2, a number of 105 1

st
 

order coefficients are selected from the nominal waveform, 
the rest of the coefficients representing 2

nd
 order 

components, used to reconstruct the waveform. Undergoing 
the procedure presented in the diagram, the data set used to 
train the network contains only 105 samples, instead of 
13600. This translates into a substantial data dimensionality 
reduction, by a factor of 130, which ensures the avoidance 
of risk concerning memory issues, and also provides a 
reduced time for neural network training. 
 

 
  
 The structure of the neural network is illustrated in 
Figure 4. The number of neurons in the hidden layer was 
selected from a series of trial runs in order to obtain an 
optimal network structure with minimum error. Finally, the 
network has 10 neurons in the hidden layer and 105 neurons 
in the output layer. The input set is provided by the 
parameter matrix P (equation (1)), consisting of 200 
combinations of 10 parameters. The full data set consists of 
200 waveforms corresponding to the combinations of the 
input parameters, sampled in 105 points, describing the main 
characteristics of the waveforms. For the training procedure, 
the full data set was split into three data subsets: training 
subset (70% of the data set), validation subset (15% of the 
data set) and testing subset (15% of the data set). The 
training subset is used to train the neural network, adapting 
its parameters (weights and biases). The validation subset 
supervises the training, detecting the overfitting 
phenomenon. The testing subset, considered as an 

independent data subset, measures the performance of the 
neural network, inasmuch as that is not at all involved in the 
training process. 
 After successfully training the neural network, some 
analysis concerning the performances of this process was 
made. The performance validation graph is presented in 
Figure 5. This figure illustrates the evolution of the mean 
squared error within the three subsets, over the duration of 
the training.  
 In the first 10 training epochs one can see a steep 
improvement (reduction) of the errors in all data subsets. 
Then, the training enters the phase of “fine tuning”. When 
the overfitting phenomenon occurs (after 19 epochs), the 
training stops. 
 A regression analysis is also performed, the results being 
presented in Figure 6. The graph illustrates the linear 
regression of targets (as reference values) relative to the 
outputs (predicted values) of the neural network. The 
regression equation is:  
 

 Target=a·Output + b                         (3) 
 
where a is the slope of regression fit and b is the offset of 
regression fit.  
 An ideal fit (network outputs match the targets exactly) 
means a=1 and b=0, and a regression value R=1. It is easy to 
see that our neural network presents extremely good fitting 
performances in all data subsets. The slope of the regression 
fit is a ideal one (1 for all subsets), while the offsets have 
very low values for all subsets (0,0095 for the training 
subset, 0.22 for the validation subset and 0.059 for the 
testing subset). The regression value is almost equal to 1 in 
all cases: 999940.R = for training, 999820.R = for 
validation, 999870.R = for testing, and 999910.R = for the 
entire data set.  
 This means that our neural network provides very good 
generalization capabilities; in particular it can correctly 
predict a waveform corresponding to a new combination of 
input parameters, combination that was not included in the 

Figure 4. Structure of the neural network. 

Figure 5. Performance validation graph. 
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data set that actually trained the network. For all 30 
waveforms from the testing subset, the results confirm the 
previous statement (see graph in lower left side of Figure 6). 
 To appreciate the goodness of fit of the predicted 
waveform compared with the corresponding reference 
waveform, Figure 7 illustrates both an arbitrary chosen 
reference waveform from the testing subset and the 
corresponding waveform predicted by the model. We can 
very easily see the quality of the prediction, namely the two 
waveforms are almost identical.  

 

 
 

 Figure 8 presents the sample-by-sample error between 
the reference waveform and the predicted waveform. The 
error values are both positive and negative, around 0. The 
maximum error is 0.127, as a difference between the 
reference values and predicted values, for an expected value 
of 3.12. In this point we also have the maximum relative 
error of 4%. It is worth mentioning that the maximum error 
happens (as expected) in the most difficult region of the 
waveform with the maximum nonlinearity, where the 

Figure 7. Simulation results 
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waveform changes its shape from an almost vertical segment 
to a horizontal segment. The mean value of the absolute 
error of the whole waveform is 0.014.  
 For further analysis of the performance and 
generalization capabilities of the resulted model, all our 30 
waveforms in the testing subset have been used to compare 
the reference version with the predicted one.  Figure 9 
illustrates the mean value of the absolute value for all these 
30 waveforms. The errors are very small, lying in the 
[0.0037, 0.019] range, with a maximum error value of 0.019 
for the 29

th
 waveform.  

 
 
 The above results show that our model can effectively 
predict accurate waveforms, for any new combination of 
parameters that were not used at all in the model 
development phase. 

 
IV. CONCLUSIONS 

This paper proposes a model based on a neural network for 
predicting waveforms, with respect to an input set of 
parameters. By applying some transformations to the initial 
data set, which was very large, in terms of samples, we 
obtained a reduced size of data, further used to train the 
neural network. Based on the experimental results, our 
model features very good generalization capabilities. It is 
able to correctly predict waveforms corresponding to any 
new combination of input parameters, combination that was 
not included in the data set used to train the model. 
 One further research direction to improve the model 
developing procedure and the prediction accuracy consists 
in implementing an adaptive coefficient selection algorithm, 
to assure a better discrimination between the 1

st
 order and 

2
nd

 order coefficients of FFT transform. Also, to simplify the 
procedure, the possibility to train the neural network with 
real and complex parts of FFT coefficients should be 
investigated; this way one FFT and one IFFT transform can 
be eliminated from the model developing procedure. 
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