

Volume 54, Number 4, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received October 28, 2013; revised November 20, 2013

7

SECURE MOBILE-CLOUD FRAMEWORK – IMPLEMENTATION ON THE

MOBILE DEVICE

D. POPA
1
 K. BOUDAOUD

2
 M. BORDA

1

1
Communications Department, Technical University of Cluj-Napoca, Romania

Str. Dorobantilor. 71-73, Tel/Fax: +40(0)264401575, {Daniela.Popa, Monica.Borda}@com.utcluj.ro
2
I3S-CNRS Laboratory, University of Nice Sophia Antipolis, France

930 Route des Colles - BP 145- 06903, Tel(Fax): +33(0)492965172(55), karima.boudaoud@unice.fr

Abstract: Secure Mobile-Cloud is a framework proposed to secure the data transmitted between the components of a mobile cloud
application. In addition, the framework, takes into account the following aspects: 1) the users options regarding the security level
required for private data and 2) the device energy consumption. The framework includes several distributed components. Some of
these components are deployed on the mobile device and some of them in Cloud. This paper is focused on the implementation of the
Secure Mobile-Cloud framework components on the mobile device. A proof of concept Android prototype is proposed.

Keywords: Mobile Cloud Computing, Applications, Security

I. INTRODUCTION
One of the greatest opportunities that every person wants to
enjoy is mobility. Furthermore, each person has a small
amount of curiosity, supplemented by a strong need for
communication and knowledge. The mobile devices seem to
be the devices that are able to link the mobility property
with human emotional needs and information technology.
All this is done using the Internet.
 In order to capture people’s attention towards mobile
devices, powerful applications were developed for these
devices. The applications allow mobile users to perform
tasks like: managing personal health, games, editing, making
reservations and paying tickets. As it is generally known,
mobile devices are characterized by lack of resources. Thus,
in order to run this new kind of applications, mobile
hardware and network have known several improvements;
but it wasn’t enough. A solution to the mobile device
challenges is Mobile Cloud Computing.
 Mobile Cloud Computing (MCC) [1] is a new concept
that can be described as the availability of Cloud Computing
resources and services on the mobile device. This fact brings
several advantages for the mobile devices (saving device
energy, new storage place, additional computing power,
etc.) and enables new powerful applications developed for
them (e.g. a wide ranges of features) [2].
 However, Mobile Cloud Computing increases the
security risks and privacy invasion due to data outsourcing
and synchronization via Internet. The security issues are
various and fall into one of these three categories: mobile
threats [3], Cloud threats [4] and threats at the
communication channels level. Personal data (e.g. credit
card numbers, passwords, contact database, calendar,
location) is one of the main target of the hackers.
 We are particularly interested in the security of data
transmission, more specifically, the security of private data
transmitted between the components of the same mobile
cloud application. In our work, we focus on the security
protocol adaptation according to end-user needs and mobile
devices constraints. Furthermore, we assume that there is no
need to apply the same security level (i.e. same security

properties) for all data transmitted between the mobile cloud
application’s components.
 We proposed a framework in [5] called Secure Mobile-
Cloud (SMC). This framework has to secure the
communication between the same mobile cloud application
components. Also, it has to be able to adapt the security
services according to the user needs and device (particularly
the energy constraints). The framework includes two kinds
of components: components deployed on the mobile device
and components deployed in the Cloud.
 In this paper we discuss in detail the implementation of
the Secure Mobile-Cloud framework components on the
mobile device side. In addition, we describe the design and
implementation of the databases used for storing the user
options. The user interface it is also presented.
 This paper is organized as follows: section II describes
the security framework. This section is divided in three
parts: the first part is a short overview of the Secure Mobile-
Cloud Framework described in more details in [5] and [6];
the second part presents the framework implementation on
the mobile device; and in the last part are shown some unit
tests. Section III presents the conclusions.

II. SECURITY FRAMEWORK
This section presents the Secure Mobile-Cloud framework
design, short overview, and implementation.

A. Framework design – short overview
 The Secure Mobile Cloud (SMC) framework is
composed of two types of components, as presented in [6]:
1) security components and 2) management components.
The security components have been designed in [7] for the
LECCSAM architecture. The security components
implement the eponym security properties: integrity,
authenticity, confidentiality and non-repudiation. These
security components are deployed in both, mobile device
and in the Cloud. The management components have been
designed to identify and apply the appropriate security
properties to user’s data. Some of these management

Volume 54, Number 4, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 8

components are deployed on the mobile device and some of
them are deployed in the Cloud.
 The users are able to express their choices regarding the
security level they want to apply to their data. In order to
provide a solution that allows achieving this characteristic
an analysis system was designed. This system is integrated
into the security framework. Its function is to provide to the
framework the security combination needed to be applied to
data (security combination = security properties + security
algorithms); and also the location where this combination
can be performed (e.g. on the mobile or in Cloud).
 The components of the SMC framework that are
designed for the mobile device are presented in Figure 1. A
short description for each component is given in Table I.

TABLE I. COMPONENTS DESCRIPTION

Component
Name

Description

Mobile
Security
Manager

Manager, whose role is to ensure the
composition of the security
components on the mobile side.

Integrity
Security component, which applies
the integrity property to data.

Authenticity
Security component, which applies
the authenticity property to data.

Confidentiality
Security component, which applies
the authenticity property to data.

Non-
Repudiation

Security component, which applies
the non-repudiation property to data.

Policy
Manager

Manager, whose role is to determine
which security components are
required for a specific security level.

State Manager
Manager, whose role is to send the
information regarding mobile device
energy state to the Mobile Manager.

Mobile
Manager

Manager, whose role is to collect
data and events on the mobile device;
it also includes the functionality of
the analysis system.

B. Framework implementation
 This section is divided in five subsections: 1) The
Security Part, 2) The Auxiliary Part, 3) The Analysis
System, 4) The Databases and 5) The User Interface.

The Security Part

 This section presents the implementation of the Mobile
Security Manager and the Security Components.
 The class diagram is presented in Figure 2. The diagram
depicts the connections between the various classes. The
diagram consists of seven classes:
• MobileSecurityManager class: implements the
functionality of the Mobile Security. It includes several
methods, between which the most significant are the
following two methods: apply_combination_toEncript and
apply_combination_toDencript.

Figure 1. SMC framework – mobile device side

The apply_combination_toEncript method applies the
appropriate security level to data in order to encrypt them
(as the apply_combination_toDencript method is used when
needed to decrypt the received data). The method has the
following steps:
1) It finds that security properties combinations and
corresponding algorithms for data security level provided.
This is done by calling a method implemented by the Policy
Manager; this method result returns a string with
information.
2) It reads the string returned at the previous step; it sets the
internal parameters (e.g Integrity, Authenticity) with the
information read from the string.
3) It applies the corresponding security properties, by
calling the appropriated methods.
• Integrity, Authenticity, Confidentiality, NonRepudiation
classes: implement the security components functionality.
Each of them comprises four methods, two private and two
public methods. In the following there are described only the
Integrity methods:
- applyIntegrity and aIntegrity: This two methods, the first
one public and the second one private, are designed to
provide the functionality of the Integrity component for
plain text data. The public method calls the private method
which uses a hash method implemented into the Operations
class to perform the operation.
- verifyIntegrity and vIntegrity: This two methods, the first
one public and the second one private, are designed to
provide the functionality of the Integrity component for
ciphered data.
• Operations class: implements methods that perform
symmetric and asymmetric encryption and decryption and
also the hash operation. These methods are as it follows:
- encrypt: which is symmetric or asymmetric; it takes as
input an array of byte and a cipher; it performs a symmetric
or an asymmetric encryption and returning an array of bytes.
- decrypt: which is symmetric or asymmetric; it takes as
input an array of byte and a cipher; it performs a symmetric
or an asymmetric decryption and returning an array of bytes.
- hash: it takes as input an array of byte and an hash
algorithm performing an hash and returning an array of
bytes.

Volume 54, Number 4, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 9

Figure 2. Security Part – Class diagram

The Auxiliary Part

 In this section is presented the implementation of the
Policy Manager and the State Manager. The implementation
consists of two classes: PolicyManager and StatusManager
as it can be seen in Figure 3.

Figure 3. Auxiliary Part – Class diagram

 The Policy Manager manages the security composition
rules. These rules define the security properties
(components) combination specific to a certain level of
security.
 Into the implementation there two types of encoding for a
security level :

• Basic code: it defines the combinations of the security
properties. Its form is as follow: C[n]; where C stands for
combination and n it is a number (e.g. C7). This code is used
when the user is of type standard or intermediary.
• Advanced code: it also defines the combinations of the
security properties; but also includes the security algorithm
chose by the user. Its form is as follow: AC[n]; where AC
stands for advanced combination and n it is a number (e.g.
AC33). This code is used when the user is of type advanced.

 The PolicyManager includes four methods as it can be
seen in Figure 3:

• discoverComponents(): receives a basic code of security
level as input and returns a string with the corresponding
security properties. This string contains the first letter of
each security component name, if that component
corresponds to the security level; the letters are separated by
a colon. An example is presented in Figure 4.

 Figure 4. Operating example for discoverComponent()
method

• discoverAdvancedComponents(): receives an advanced
code of security level as input and returns the string of
corresponding security properties together with the
corresponding algorithms. This string contains the first letter
of each security component name, if that component
corresponds to the security level, and a number which
represent the security algorithm the user has choosen. All
the information is separated by a colon. An example is
presented in Figure 5.

Figure 5. Operating example for
discoverAdvancedComponent() method

• discoverSecurityLevel() and
discoverAdvancedSecurityLevel(): are the reverse operations
of the methods presented above.

Volume 54, Number 4, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 10

 The StateManager class implements the functionality of
the State Manager. On the current implemented version the
StateManager class does not collect the energy level of the
device. It contains a method that returns a certain number
according to the value received as input.

The Analysis System

 This section will present the implementation of the
Analysis System. The Analysis System is integrated in the
Mobile Manager. The class diagram of the Analysis System
is shown in Figure 6; it can be seen here the connection
between the various classes. The implementation for the
Analysis System consists of two classes and one interface:
MobileManager (the interface), MobileManagerParA and
MobileManagerPartB (the classes).

Figure 6. Analysis System - Class diagram

• MobileManagerPartA class: was implemented as part
of the process that deals with the capture of users choices. It
is the link between the user interface and the PolicyManager
class. The methods implemented here are designed to use
the PolicyManager methods in order to discover the
adequate security level for a certain security properties
combinations (or for the reverse operation).

• MobileManagerPartB class: was designed in order to
implements the Analysis System The method that handles
the Analysis System functionality is called
location_executed(). This method receives as input the users
constrains chosen through the user interface. It returns the
security combination, the security algorithms and the
execution location.

The Databases

 The databases used by the framework are the following:
Admin, Applications, and User.
 The Admin database was designed to keep the default
information needed by the security framework. The default
information is data already predetermined; and refers to the
general type of applications and the security properties
combination encoding. This scheme contains three tables,
described in Table II.

TABLE II. ADMIN DATABASE – TABLES DESCRIPTION

Table Name Role Description

Types Table It contains the types of
applications.

Combination
Encodes Table

It contains the security properties
combination encoding.

Security
Combinations Table

It contains the links between the
two tables previously defined.

 The Applications database was designed in order to keep
the user options regarding the data security level of a certain
mobile cloud application. This scheme contains four tables,
described in Table III.

TABLE III. APPLICATIONS DATABASE – TABLE DESCRIPTION

Table Name Role Description

Applications Table

It contains the list of the
mobile cloud applications
installed on the mobile
device.

 Applications Security
Table

It contains the user options
regarding the data security
level for a certain mobile
cloud application.

 Applications Battery
Table

It contains the user options
regarding of to preserve or
not the battery while a
certain mobile cloud
application is running.

 Applications Priority
Table

It contains data that specifies
which of the two constraints:
security or battery is more
important for the user.

 The User database was designed in order to keep the user
options regarding to his level of knowledge in the security
field. This database has only one table: “User Level Table”.

 To store information into the database, it has been used
the SQLite database in Android applications. SQLite is an
Open Source database. SQLite supports standard relational
database features like SQL syntax, transactions and prepared
statements. The advantages for using SQLite are: 1) the
database requires limited memory at runtime; 2) SQLite is
embedded into every Android device; 3) it is not required a
setup procedure or the database administration; it is only
necessary to define the SQL statements for creating and
updating the database.

Volume 54, Number 4, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 11

Figure 7. User Interface - Functionality diagram

The User Interface

 The user interface was designed in order to capture the
user option regarding the security level of his data and also
regarding the device energy consumption. The user interface
functionality is presented in Figure 7. Its functionality is
divided in two phases: 1) setting the user profile and 2)
setting the security.
 The first phase allows the user to select the group to
which it belongs according to his level of knowledge in the
security field. As it can be seen in the Figure 8, there were
defined three types of users: 1) Standard User Type, 2)
Intermediary User Type and 3) Advanced User Type.

Figure 8. User Interface – The user type

 The second phase, as its name suggest, allows the user to
select data security level (Set Security step in Figure 7). In
the case of the application users it comes to following
question: How much flexibility a user shall have? Through
flexibility it is understand the number of constrains (e.g.
security level, security properties combination, security
algorithms) the user can define. We decided for the
flexibility to vary according to the user type. The Standard
User Type is provided with the lowest flexibility and the
Expert User Type has the greater flexibility. The lowest
flexibility includes only the security level (e.g. strong,

average). The grater flexibility includes, besides the security
level, the security properties combinations and the security
algorithms (see Figure 9). Also in this phase, all the users
are allowed to chose if they want to save or not the mobile
device energy (Set Battery step in Figure 7). In addition, all
the users have to specify which of these two constraints:
1)security and 2)battery is more important for them (Set
Priority in Figure 7).

Figure 9. User Interface – The security properties and
algorithms

C. Unit tests
 In this section there are presented a coupe of test. These
tests target the security framework functionality.

 The first scenario:
The user is of type advanced. He chooses the following
options: 1) all data are secured equally regardless of the
sensitivity level; 2) security level of type average; 3) as
security properties he chooses only confidentiality; 4) as
security algorithms he chooses: SHA(Secure Hash
Algorithm), AES(Advanced Encryption Standard) and RSA;
5) he chooses to save battery; and 6) the priority is also the
battery.

Volume 54, Number 4, 2013 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 12

Figure 10. Results – Unit test first scenario

 It can be seen in Figure 10 that, for data with different
sensibility level (e.g. high and medium), there is the same
security combination (e.g. ac7). Also, according to the
mobile energy status (e.g. 25 or 85), one operation is
executed on the mobile device (the result is also shown in
Figure 10) and the other in Cloud.

 The second scenario:
The user is of type standard. He chooses the following
options: 1) all data are secured according to the sensitivity
level; 2) security level of type average is chosen for low
sensitivity data; 3) security level of type strong is chosen for
medium and high sensitivity data; 4) he chooses not to save
battery; and 5) the priority is the security.

Figure 11. Results – Unit test second scenario

 It can be seen in Figure 12 that, for data with different
sensibility level there are different security combinations
(e.g. C7[ac35] and C1[ac2]). The mobile energy status also
can influence the security algorithm (Figure 11, security
combination ac9 or ac7).

 The security framework implementation on the mobile
device was made using Java programming language and the

Android [8] mobile platform. The programming
environment used was Eclipse.

Figure 12. Results – Unit test second scenario

III. CONCLUSIONS
This paper describes the Secure Mobile-Cloud Framework
implementation on the mobile device and the
implementations details about the security components, the
mobile security manager, the policy manager, the state
manager and the analysis system. In order to allow the user
to express his/her requirements regarding the security level
to be applied to his/her data, a user interface was
implemented. The information collected from users and the
information from the analysis system are stored in a local
SQLite database. Several unit tests were implemented in
order to verify the security framework functionality. As
future development we intend to integrate the proposed
security framework into a mobile cloud application.

ACKNOWLEDGMENT
This paper was supported by the project: Improvement of the
doctoral studies quality in engineering science for development of
the knowledge based society-QDOC" contract no.
POSDRU/107/1.5/S/78534, project co-funded by the European
Social Fund through the Sectorial Operational Prog. HR 2007-
2013.

REFERENCES
[1] S. Gautam Kumar, K. Dinesh, Mathew K. and Abhimanyu
M.A. “Cloud Computing for Mobile World”.
[2] D. Kovachev, Y. Cao and R. Klamma, “Mobile Cloud
Computing: A Comparison of application Models”, in eprint
arXiv: 1107.4940, July 2011.
[3] Lookout Mobile Security, Lookout Mobile Threat Report, Aug.
2011.
[4] Cloud Security Alliance, Top Threats to Cloud Computing V
1.0, March 2010.
[5] D. Popa, K. Boudaoud, M. Cremene, M. Borda, “A Security
Framework for Mobile Cloud Applications”, in Proceedings
ROEduNet 11 th International Conference, Sinaia, 2013.
[6] D. Popa, K. Boudaoud, M. Cremene, M. Borda, “A System to
Analyze the User’s Security Options for Mobile Cloud
Applications”, The 6th International Conference on Security for
Information Technology and Communications, June 25, 2013.
[7] M. Kamel, K. Boudaoud, S. Resondry and M. Riveill, Low-
Energy Consuming and User-centric Security Management
Architecture Adapted to Mobile Environments, in Proceedings of
the 12th IFIP/IEEE, Dublin, Ireland, May, 2011.
[8] R Rodger, „Beginning Mobile Application Developement in
the Cloud”, WROX Programer to Programer.

