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Abstract: This paper proposes a new method for denoising non-time dependent volumetric oriented data blocks. The method is 
developed under the partial differential equations theoretical framework and it is defined on orthogonal section planes of the three-
dimensional space. The efficiency of the method in denoising oriented volume data is proven using an extensive experimental part 
involving several random computer-generated synthetic data blocks and statistical interpretations. In the experimental section we 
also provide a result obtained on real data. 
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I. INTRODUCTION 
Partial differential equations (PDE) - based filters are 
modeling an image denoising process through a partial 
differential equation that regards the noisy image I(x,y) as 
the initial state of a forward diffusion process and relates the 
image spatial derivatives with a time derivative. A classical 
method that devoted a lot of interest is the anisotropic 
diffusion equation which is essentially driven by a non-
linear diffusivity function g(•) taking as argument the 
gradient vector norms of the evolving image U(•,t) [1]. 

Using the notation )y,x()0,y,x( IU = , the equation 

corresponds to: 
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with the solution of the equation for some time instant t (or 
observation scale) being approximated on the numerical 
domain by an iterative filter which computes recursively 
solutions from fine to coarser scales (i.e. higher t values).  
 A common formalism used in the literature to describe 
the action of a PDE-based filter is based on a moving 

orthonormal basis. Let  UU/η ∇∇=   denote the vector 

collinear with the edge direction passing through a pixel and 

ηξ ⊥   a vector oriented along the structure direction. For 

each pixel, (1) can be put then in the following terms: 
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with )U∇= (gcξ  and [ ]')UU ∇∇= (gcη  representing 

the diffusion coefficients along the two axes.  Equation (2) 
allows a better comprehension of the filter’s behavior. It can 
be shown that for the choice in [1]: 
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the diffusion coefficients along  are always positive. Along 

the   diffusion axis they can be positive   (for  K<∇U  ) or 

negative (for K>∇U ), inverting in the second case the 

smoothing process. K represents the diffusion threshold. 
 Both the robustness of the process with respect to noise 
and its mathematical properties were addressed in several 
publications. We only refer here to the work of Catte et al. 
[2] which shows that from a practical point of view, a pre-
convolution with a 2D Gaussian kernel of standard deviation 
σ  (Gσ)  improves the denoising performance of the filter for 
very noisy images. Equation (1) can be modified to account 
for this beneficial effect by a simple replacement of the 
diffusion function: 
  

         )(g))G((g)(g σσ UUU ∇=∗→∇         (4) 

 . 
 The aforementioned models are not addressing problems 
that may arise due to the influence of the noise on the 
determination of the diffusion directions, namely that for 
heavily degraded images, the diffusion directions in (2) may 
become false and parasite low pass filtering may occur 
across edges.  
 Several authors addressed this issue using more 
elaborated methods for the estimation of the diffusion 
directions [3], [4]. Most of these methods are based on a 
supplementary structure tensor-based orientation estimation 
step, classically known to be robust against Gaussian-like 
additive noise. The main idea is to set the diffusion axis to 
be collinear with the eigenvectors of the structure tensor: u – 
pointing in the directions of the structures and  v - 
orthogonal to u. Most corresponding filters can be written as 
follows: 
 

  
vvvuuu cc

t
UU

U
+=

∂

∂     (5) 

with Uu , Uv and Uuu, Uvv denoting the first and, respectively, 
the second order directional derivatives along the u and v 
vectors.  All the filters included in this class strongly limit 
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low-pass filtering effects in the vicinity of junctions by 
appropriate choices for the diffusion coefficients.  
 Other issues such as relationships with curve evolution, 
energy minimization problems or deblurring actions were 
addressed by numerous researchers; we refer to [5] for a 
complete review. 2D PDE filters were extended for the 
three-dimensional space; we only mention here the 
approaches used in [6],[7] for 3D extensions of the classical 
diffusion equation, in [8] for a 3D PDE-based filter that uses 
a diffusion tensor instead of scalar diffusivity functions and 
in [9] for denoising data on curved surfaces. 
 

II. PROPOSED METHOD 
For processing volume data we propose a method that 
employs the formalism described by (5), acting on 
orthogonal section planes of the 3D space. On each plane we 
use diffusion axes computed at a semi-local scale for 
increased robustness with respect to noise and we employ, 
on both directions, Perona-Malik like diffusivity functions 
(3). The filter is based on the preliminary results included in 
[10] and [11] and it is introduced progressively in the 
following sub-sections. 
A. Diffusion axis 
 Evolved PDE-based models are all relying on a semi-
local based orientation step, needed for the robust estimation 
of the diffusion axes. Structure tensor based approaches are 
presenting the advantages that they are fast, that natural 
extensions to any dimension are immediate and that the 
estimated orientation is robust with respect to white, 
additive Gaussian noise degradations. Nevertheless, such 
orientation estimation operators are only suitable for 
characterizing flow like patterns.  On junctions and corners 
such approaches are always issuing false orientation 
information, computed as a weighted mean of the 
orientations of the gradient vectors falling in their support 
window.  
 An operator allowing for symmetric and asymmetric 2D 
image orientation estimation was proposed in [12]. Called 
IRON (Isotropic Recursive Oriented Network), the operator 
uses planar sliding windows on which a homogeneity-like 
measure is computed. These windows are rotated and the 
orientation estimation in a given pixel corresponds to the 
steered window showing maximal homogeneity. Moreover, 
the asymmetric version of the operator allows for 
minimizing errors nearby junctions and corners.  
 Based on these properties and on the results reported in 
[10] and [11], we employ this operator for determining the 
moving 2D orthonormal basis, u and v, that defines the 
directions of which the 3D filter processes each voxel, on 
the section planes of the processed volume. 
B. Continuous model 
In [10] we introduced the following PDE: 
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 In its non regularized form (σ = 0), (6) corresponds to a 
directional interpretation of an anisotropic diffusion 
equation acting along diffusion directions estimated in [11] 
at a semi-local scale, using a structure tensor-based 
approach. 
 The directional derivative along this axis (Uu) acts as a 
confidence measure in the estimated orientation, and 

depending on the relationship with a threshold parameter Ku, 
the filter can smooth or enhance along the structure 
directions. For reasonable noise levels, this occurs 
preferentially on junctions and the method can preserve or 
even enhance across scales this type of patterns. This PDE 
model was also used in [13] under a semi-differentiability 
constraint along the u direction, estimated via the IRON 
operator. The semi-differentiability hypothesis is benefic for 
junctions and corners but leads to less efficient smoothing of 
oriented patterns. We drop this constraint in the formulation 
of the 3D filter. 
 The PDE model that we propose is based on a section 
plane formulation of the diffusion equation. For a 3D data 
volume, we first compute the maximum homogeneity 
direction on each section plane (xiOxj – see Figure.1); let 
these directions be denoted by uij. The second diffusion axes 
are then determined as being collinear to the 2D vectors 
orthogonal, in the considered section plane, to uij (uij ⊥  vij). 

 
a)                         b) 

Figure. 1.  Volume data. a) Section planes of a data 

volume. b) Diffusion axes on a section plane. 
 
Using these notations, we formulate our PDE-based filter for 
volume data as below: 
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 The method takes as parameters the size of the support 
window for the IRON operator, the stopping time t and the 
diffusion thresholds Ku, Kv. Since IRON-based orientation 
estimation is being computationally extensive, we only 
estimate once the diffusion axes, on the initial, degraded 
image and we use as homogeneity criterion the variance of 
the gray levels. The diffusion thresholds along all the planar 
maximum  homogeneity directions and on the orthogonal 
axis are set as indicated on the experimental section. 
C. Numerical aspects 
For the discrete filter corresponding to (7) we used forward 
time discretization and we approximated  spatial derivatives 
using the classical Perona-Malik scheme on each section 
plane and for each diffusion axis. This translates, in a given 
plane xiOxj, into a forward and backward difference 
operators-based scheme and the needed sub-pixel resolution 
is handled using classic biquadratic interpolations as 
indicated in [10]. Similar approximations hold also for the 
orthogonal axis vij. 

 
 

x1Ox2 

u12 

v12 
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III. EXPERIMENTAL EVALUATION 
To evaluate the efficiency of our method we have generated 
synthetic data blocks composed of sinusoidal oriented 
patterns with different amplitudes and spatial frequencies. 
The experimental plan considered two categories of noise: a 
first category including moderate noise levels corresponding 
to Gaussian noise standard deviations σ =30÷40 and a 
second category of heavier degradations corresponding to σ 
=50÷60.  
 Each category included seven independent data blocks 
composed of 122x122x58 voxels and we quantified the 
denoising performance by two classic measures: the 
classical peak signal-to-noise ratio (PSNR) and the 3D 
extension of structural similarity index measure (SSIM).  
 We used the 3D extension of the anisotropic diffusion 
equation (3D-AD) as a reference and we also performed 
comparisons with a state-of-the-art PDE-based method for 
denoising this type of images: the seismic fault preserving 
diffusion filter (SFPD [8]). We also included in our 
experimental plan a state-of –the-art non-PDE method: the 
video denoising block matching approach (VBM3D [14]), 
reported to produce impressive results on time-dependent, 
volume data.  VBM3D belongs to the class of block 
matching approaches ([15], [16]) that employ collaborative 
filtering principles for finding similar data patches, grouping 
them onto blocks and applying shrinkage operations on the 
transform domain for denoising all the 2D patches within the 
block. 
   The obtained results are shown in Table 1 and the 
original, noisy and processed blocks are published online at 
the following address: http://ares.utcluj.ro/pde_denoise.html. 
 Visual results for both degradation categories for the best 
classified two filters are shown in Figures 2 and 3 for data 
blocks falling into each category. For easing the presentation 
of the results we will denote in the sequel by front, right and 

top the  x2Ox3, x1Ox3 and, respectively, the  x1Ox2 section 
planes of the 3D volume.  
 Being introduced for video denoising, the use of 
VBM3D for 3D data is not straightforward; one has to 
choose in which section planes denoising should take place 
i.e. which plane should be interpreted as a video-frame. We 
used the author’s implementations [17] and we obtained the 
best results in denoising front section planes. These results 
are reported in Table 1. In each front plane, the VBM3D’s 
results (Figure 2 b)) are close to the results obtained with 
our method but the filter is less efficient in eliminating noise 
on the right and top planes. This effect penalizes the 
VBM3D‘s performance, especially for heavily degraded 
blocks.  
 The SFPD filter uses structure tensor-based orientation 
estimation and an elaborated choice of the eigenvalues of 
the diffusion tensor, leading to adaptive unidirectional or 
bidirectional smoothing actions. Despite being specially 
designed to handle faults in seismic data, false orientations 
issued by orientation analysis step and the pure smoothing 
action of the filter can destroy high frequency content in the 
vicinity of junctions (Figure.2. b)) . 
 The proposed approach uses more reliable orientation 
information and, by allowing junction and edge 
enhancement to take place, it performs better in preserving 
high frequency information on these regions, having also 
good denoising properties on the oriented part as shown in 
Figure 2 c) and Figure 3 c). 
  We investigated the statistical relevance of the results 
shown in Table 1 via an analysis of variance (ANOVA) 
performed on the increasing rank-transformation on the 
SSIM values corresponding to the lower half of Table I, on 
the SSIM values.  

  
 

 

 

Table 1 Quantitative measures on synthetic data blocks 
Method label Degraded block SSIM 

and PSNR 3D-AD SFPD VBM3D Proposed approach Block label 
PSNR 
[dB] 

SSIM 
PSNR 
[dB] 

SSIM PSNR 
[dB] 

SSIM PSNR 
[dB] 

SSIM PSNR 
[dB] 

SSIM 

B1 18.59 0.9149 22.08 0.9662 26.68 0.9856 27.93 0.9893 27.93 0.9897 

B2 17.50 0.8819 23.29 0.9633 26.30 0.9819 27.25 0.9859 27.32 0.9861 

B3 17.24 0.8828 22.81 0.9614 26.78 0.9851 27.16 0.9863 27.36 0.9871 

B4 16.75 0.8865 22.09 0.9602 26.07 0.984 26.6 0.9863 26.77 0.9867 

B5 18.03 0.8894 23.60 0.9646 26.80 0.9835 27.96 0.9873 27.78 0.9869 

B6 16.54 0.8597 22.43 0.955 26.39 0.9826 26.69 0.9839 26.81 0.9845 

B7 
16.09 0.8499 22.43 0.9574 26.11 0.9822 26.35 0.9834 26.58 0.9844 

Mean 17.25 0.8803 22.68 0.9608 26.45 0.9834 27.14 0.9860 27.22 0.9864 

B8 13.01 0.7321 20.89 0.9368 24.69 0.9749 24.01 0.9695 25.31 0.9782 

B9 13.65 0.7805 20.74 0.9398 24.43 0.9758 24.41 0.9751 24.81 0.9776 

B10 12.56 0.707 21.12 0.9361 24.74 0.9738 23.49 0.9637 25.05 0.9753 

B11 13.32 0.771 20.61 0.939 24.66 0.9769 24.33 0.9749 25.10 0.9793 

B12 14.15 0.6409 21.74 0.9478 25.19 0.9782 25.09 0.9776 25.75 0.9805 

B13 16.76 0.6487 20.50 0.932 24.68 0.9758 24.10 0.9718 24.71 0.976 

B14 
13.81 0.7649 21.29 0.941 25.25 0.977 24.72 0.975 25.68 0.9794 

Mean 13.90 0.7207 20.98 0.9389 24.80 0.9761 24.31 0.9725 25.20 0.9780 

Table 2 Analysis of variance for the results in table 1 High noise levels 

Source of variance Sum of squares 

 

Degrees of freedom 

 

Mean squares 

 

F p 

Total 1788.43 27 66.24   

Image 362.43 6 54.40   

Method 1373 3 457.67 92.56 2.9E-12 

Residual 89 18 4.94   
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a)                                                                               b) 

  
c) 

Figure. 2.  Front and right slices of the synthetic data block B4. a) Noisy block; b)  Result using the VBM3D approach; 

c) Result obtained using the proposed method. 

 

                              
 a)                                                                               b)                                                 

  
       c) 

Figure.3 Front and right slices of the synthetic data block B10. Noisy block; b) Result using the SFPD approach;         

c) Result obtained using the proposed method. 
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a)                                                                                b) 

 

Figure.4 Front, right and top slices of a real block.  a) Noisy block; b) Result obtained using the proposed method 

 
 The results are included in Table 2 and they are showing 
that the choice of a specific processing method has a 
significant statistical influence on the quality of the obtained 
results. 
 Starting from the ANOVA analysis [18] we then used a 
Student-Newman-Keuls test for performing post-hoc 
multiple means comparisons. On high noise conditions, the 
proposed approach (mean rank 23.14) proved to be 
statistically better that the SFPD approach (rank 17.43) 
which, at its turn, proved to better statistically than the 
VBM3D approach (rank 12.86). On the intermediate noise 
category the proposed approach and the VBM3D method 
proved to be statistically equivalent, followed, by the SFPD 
filter and then by 3D-AD equation. 
 We show in Figure 4 results on denoising a CT scan 
volume data. The original scan was artificially degraded 
with a Gaussian noise of standard variation 25. The result 
shows that our approach is capable of efficiently eliminating 
noise, handling efficiently both oriented patterns and non-
oriented regions.  
 Our method takes as parameters essentially seven values, 
the diffusion thresholds on each direction of the space and 
the standard deviation of the Gaussian kernel used for pre-
smoothing. In all our experiments we set these values as 
described below.  For each slice we first computed the 
distributions of the absolute values of the directional 
derivatives in the corresponding section plane, taken along 
the uij and, respectively, the vij diffusion axis. We then set 
the diffusion thresholds along these axis as being equal to a 
quantile (0,5) of these distributions. Such a choice induces 
decreasing diffusion thresholds and leads to a relative 
independence of the stopping time.  
 As far as the standard deviation of the Gaussian pre-
smoothing kernel is concerned, for all our experiments we 
used a predefined value (σ=0,75), corresponding to a 5x5 
pre-smoothing kernel. 
  
 
 
 
 

IV. CONCLUSIONS 
We propose an approach based on the partial differential 
equations theoretical framework for volume data denoising. 
This approach can efficiently eliminate Gaussian noise 
ensuring also efficient preservation of junctions and corners. 
Possible applications exist in the field of 3D material 
characterization or seismic imagery. 
 Future work will be devoted for proposing a model that 
can handle non-Gaussian, speckle and image dependent 
noise. 
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