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Abstract: In this paper a synthesis of the main concepts and the most important MRI image acquisition and processing methods are 
presented. These two processes are clearly delimited, without any interference in our research means. The magnetic resonance 
acquisition methods are the exclusive tasks of medical equipment provider companies. The image processing methods – 
inhomogeneity correction, segmentation, registration and digital atlases – fall on the software developers. The starting points of 
such a system are the multimodal MR images. The purpose of these methods is the precise delimitation of anatomic structures and 
determination of benign and malign tissues. The goal of the research is to offer to medical experts a useful knowledge to combine 
the methods optimally and to obtain better medical results in assisted diagnosis. 
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I. INTRODUCTION 
The analysis and interpretation of medical images are the 
radiologist’s task. Surgery will greatly facilitate their work 
by automatic or semi-automatic image processing 
technologies. There are many software tools that help 
identify anatomical structures and forms, differentiate 
benign and malignant tissues, determine the exact size and 
localization of organs and recognize different conditions for 
the organism to function properly. 
 Medical images are obtained through the interaction of a 
physical factor with the organism. The measured parameters 
of physical factors are altered differentially according to 
different tissues. Specialized sensors convert the signals 
received into digitally coded information that constitutes the 
basis of software processing. A usual way to present this 
information is the visualization in gray scale or artificially 
colored images. The quality of the images depends on the 
sensitivity and resolution of the sensors. Modern medical 
imaging techniques must make use of the advantages offered 
by the newest developments in computer technology. 
 

I.1 THE MRI ACQUISITION PROCESS 
The MRI acquisition process is based on several important 
discoveries [25]: 
• protons – essentially, small magnets – align themselves 
in the direction of an external strong magnetic field – 
discovered in 1937 by Isidor Isaac Rabi (Nobel Prize in 
1944) 
• the nuclear magnetic resonance phenomenon –which 
means that in a given magnetic field, atom nuclei absorb and 
reemit electromagnetic radiation. – discovered in 1946 by 
Edward Purcell and Felix Bloch (Nobel Prize 1952). 
• the proton magnetic field processes with Larmor 
frequency (ν=γB - γ is the gyromagnetic ratio and B is the 
magnitude of the magnetic field) around the external field. 
• the frequency of the magnetic field can precisely encode 
the spatial position of the nuclei – established by Paul C. 
Lauterbur and Sir Peter Mansfield in 1973 (Nobel Prize in 

2003). 
• achievements in pulsed Fourier Transform with 
application in MRI were made by Richard Ernst in 1991 
(Nobel Prize in 1992). 
 The spectra of the reemitted electromagnetic radiation 
determine the spatial density of protons, and the chemical 
composition of the analyzed matter can only be deduced 
indirectly. Biological tissues are characterized by high water 
content and therefore the concentration of hydrogen atoms 
can be measured easily. In short, if a magnetic field is 
generated which is different in each spatial position, the 
distribution of the hydrogen nuclei concentration can be 
extracted from the signal spectrum intensity. Such magnetic 
fields can be obtained with the use of well-designed coils 
and with computer-derived currents (Figure 1). The 
excitation electromagnetic fields are emitted by RF 
antennas, and the same antennas measure the response signal 
[1]. These responses are time-sampled and create the so-
called raw image. 
 Each frequency component from the row image 
corresponds to a well-defined point in space, and its 
amplitude is proportional to the concentration of hydrogen 
nuclei. This space is called the K-space. Applying the 
inverse Fourier transform to the k-space, a visible image, the 
weighted PD proton density image, is obtained [7]. 
The magnetic resonance phenomenon can be measured after 
the excitation of radio wave stops. Information concerning 
the analyzed tissue is obtained not only from the proton 
density image but also from the measurement of the 
response decay. The time constant which describes how 
parallel magnetization returns to its equilibrium value is 
called the spin-lattice relaxation time, T1. The time constant 
that describes the return to equilibrium of the transverse 
magnetization is called the spin-spin relaxation time, T2. 
These parameters are independent and tissue specific [16]. 
Accordingly, the most frequently used MR images are 
(Figure 1. –one slice vector image with tumor published for 
MICAI 2012 competition [2]):  
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• T1-weighted images – normal anatomical structures: the 
cerebrospinal fluid is dark; 
• T2-weighted images – moderately pathological images: 
the cerebrospinal fluid is white, the white matter is dark; 
• PD-proton density images – the cerebrospinal fluid is 
very clear, gray matter is brighter than the white matter. 

 

 
 

Figure 1. MR images: T1, T2, T1C, FLAIR[2] 
 

 The operating principle of MR image acquisition and 
processing can be seen in Figure 2. Spatial sampling is 
driven by pulse sequences, creating the optimal gradient 
field. The electromagnetic resonance is measured by RF 
antennas, and the signal derived is sampled temporally and 
saved in raw images. Sequences of such images build the 
“K-space”. In the K-space, the spatial information is phase- 
and frequency-encoded. Signal processing techniques and 
the inverse Fourier transformation translate the K-space into 
visible image sequences, usually saved in a standard format. 
 

 
 

Figure 2. MRI acquisition and processing 
 
 This image acquisition process is offered by equipment 
manufacturer companies. Users can apply only some well-
defined procedures in image acquisition, but cannot modify 
them. Even the row images remain proprietary to the 
manufacturer. We can perform further image processing by 
using the Dicom images provided by the equipment. In the 
following chapters, we shall present several methods of 
image processing which are treated separately, yet have a 
strong connection. 
 

II. MR IMAGE INHOMOGENEITY 
The main feature of MR images is the relation of the same 
intensity values to the same tissue regardless of their spatial 

location. Unfortunately, the image processing is greatly 
affected by the changes in intensity. The literature defines 
the inhomogeneity of MR image intensity by the variation of 
the voxel intensities for the same tissue. This inhomogeneity 
affects the whole image. The homogeneous image is an ideal 
theoretical image where the same intensity corresponds to 
the same tissue. The difference between the original image 
and the homogeneous image is called the bias image. This 
image is approximately constant, with slightly varying 
intensity over the image and very low frequencies (Figure 
3). 
 

 
 

Figure 3. MR images: real, bias, corrected 
 
 The human visual system removes this inhomogeneity 
automatically. Conversely, machine vision is greatly 
influenced by the changes in the intensity of the images. The 
goal of automatic image processing is accurate detection, 
localization and separation of the shape of specific tissues, 
and sometimes the discovery of details hidden from the 
human eye. In order to obtain suitable image processing, it is 
necessary to eliminate the inhomogeneity using correction 
procedures. It is important to remove only that type of noise 
without modifying the useful information of the image. 
 The inhomogeneity comes from the imprecision of the 
recorder or from the interaction of the analyzed subject with 
the strong magnetic field. The errors produced by the 
recording equipment result from: the non-linearity of the 
static magnetic field or of the gradient field, the non-linear 
variation of the coil current, and the limited bandwidth of 
the transmission/reception channels. These factors are stable 
and reproducible, and can be minimized with adequate 
equipment calibration. The shape and magnetic properties of 
the subject scanned modifies the linearity of the magnetic 
field. This inhomogeneity varies from subject to subject, 
making correction by hardware calibration alone almost 
impossible. 
 

II.1 MODELS OF INTENSITY 
INHOMOGENEITY 

Intensity inhomogeneity is modeled according to the 
correction methods used. The model assumes that intensity 
inhomogeneity is additive or multiplicative. The additive 
form comes from the superposition of the magnetic field, 
while the multiplicative form originates from the sensitivity 
of the reception coils. Assume the following notations: u(x) - 
the inhomogeneity-free image; b(x) - the bias image; n(x) - 
the noise image; v(x) - the captured real image. Accordingly, 
the most frequently used models are: 
1. The multiplicative model with additive Gaussian noise 
independent from image information [28] 

( ) ( ) ( ) ( )v x u x b x n x= +� , where n(x) Gaussian noise. 

2. The multiplicative model with biological noise [6] 

( )( ) ( ) ( ) ( )v x u x n x b x= + � . 

3. The logarithmic model with additive Gaussian noise [15] 
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( ) log ( ) log ( ) ( )v x u x b x n x= + + , where n(x) Gaussian noise, 

but different from the first model. 
 

II. 2 CORRECTION METHODS 
Inhomogeneity correction procedures that consider the bias 
of the source are prospective and retrospective methods 
[33]. Prospective methods eliminate the nonlinearities 
caused by hardware equipment. There are many procedures 
provided by the equipment manufacturers: 
• using phantoms with known physical properties and 
calibrated images; 
• the choice of adequate surface or volume coils; 
• the application of different special sequences. 
Retrospective methods reduce the perturbation caused by the 
biological sources. These methods are based only on image 
intensities and prior knowledge. These procedures are based 
on one main feature of pixel intensities. Such properties can 
be: 
• image filtering in frequency domain [9, 18]; 
• surface matching [10, 32]; 
• segmentation-based methods [14, 20, 30]; 
• histogram-based methods [23, 34, 29, 32]. 
 The most popular method is the N3 nonparametric 
nonuniform intensity normalization, correction method, 
developed by J. Sled [29]. The N4 method a new variant of 
the N3 algorithm is proposed by N. J. Tustison [32]. Each 
algorithm is based only on assumptions of the bias image 
pixel intensity distribution, without any consideration on 
image information and prior knowledge. 
 

II.3 CORRECTION EVALUATION 
Inhomogeneity correction methods can be tested according 
to different criteria in order to evaluate their effectiveness, 
advantages, disadvantages and application. We can make 
quantitative and quality measurements. Quality evaluation is 
based on the human eye, therefore being based on various 
comparisons. The quality can take into account differences 
between: 
• the intensity of the bias image; 
• hand-marked pixels; 
• the resulting homogeneity; 
• the rendered surface; 
• the segmentation result; 
• the histograms of bias and corrected images. 
The quantitative evaluation is quantified, but remains 
relative because there are no comparison criteria in the form 
of the images adopted. This evaluation is based on specific 
measurements and formulas. The most frequently used 
measurements are the following: 
The difference between the bias images intensities is given 
by the squared error (RMS Root Mean Square) [18]: 

 ( )
2

1 2 1 2( ( ), ( )) ( ) ( )
x

rms b x b x b b x nx
∈Ω

= −∑  (1) 

 The correlation coefficient is a result of direct 
comparisons and, in this case, it is not necessary to 
normalize the images. Unfortunately, however, this does not 
apply to inhomogeneous noisy images, so it is necessary to 
manually mark areas with constant intensity, supposing that 
these are homogeneous. 
 Image inhomogeneity can also be characterized by the 
standard deviation and the mean of pixel intensities. 
Supposing a constant intensity in a certain tissue, the mean 
value does not change, but in the corrected image, both the 

standard deviation and the coefficient of variation decrease. 
The coefficient of variation CV is the ratio between the 
standard deviation and the mean for the same tissue: 

(I) ( )CV Iσ µ=  , where I are pixel intensities of one given 

tissue. The disadvantage of CV is the sensitivity regarding 
the changes in the average value. The CV changes with the 
average value, at a given standard deviation. 
To eliminate this disadvantage, we can use the joint 
variation coefficient JVC, to evaluate the inhomogeneity 
between two classes: 

 ( )1 2 1 2 1 2,S ) (S ) (S ) | (S ) (S ) |JVC S σ σ µ µ= + −  (2) 

where S1 the number of voxels belonging to a given tissue 
and S2 the number of voxels belonging to another tissue. 
Currently, two coefficients, used for segmentation 
evaluation, can be applied in correction evaluation:  
-Jaccard similarity [12]  

 1 2 1 2 1 2( , ) | | | |J S S S S S S= ∩ ∪    (3) 

-Ditze coefficient [21] 

 1 2 1 2 1 2( , ) 2 | | (| | | |)J S S S S S S= ⋅ ∩ +   (4) 

where S1 the number of voxels belonging to a given class 
and S2 the number of voxels belonging to the ideal 
segmentation (gold standard). 
 These evaluations remain relative as long as we do not 
have a completely uniform, perfect image. The segmentation 
could solve the issue of inhomogeneity, but correct 
segmentation is not possible to obtain because it is altered 
by inhomogeneity. One possible solution could be obtained 
by applying digital atlases, which offer the gold standard 
segmentation. In order to use the high-resolution atlases, a 
precise registration of the target images is necessary. 
 

III.  REGISTRATION AND FUNCTIONAL 
LOCALIZATION 

The registration brings the images from a given subject to 
the same form. The registration is a complicated process 
which can be divided into four components [13] (Figure 4). 
• landmarks – anatomically equivalent pair of points must 
be defined on the registered images. The external points are 
determined by the head-fixing equipment or are referred to 
the skull, but these markers have to be detected by the 
registration system. 
• the transformation – it is a (mainly nonlinear) rigid 
transformation [26, 17, 11]. The complexity of the system is 
determined by the number of parameters used. If every 
voxel in a given volume containing N voxels is transformed, 
then a maximum of 9N parameterized transformations can 
be defined.  

 

 
Figure 4. Registration process 
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• optimization – its goal is to maximize the similarity 
between the sample image and the transformed image. The 
quality of the registration is defined by an objective function 
measuring the similarity. 
• interpolation – in general, the destination image is a high-
quality, high-resolution image, and thus the resolution of the 
source image has to be converted to the same quality. This 
can be achieved by resampling and interpolation algorithms. 
In order to evaluate MR images individually or based on a 
population, the convertibility between different image types 
must be ensured (example: PET, SPECT, CT, fMRI, 
BLOOD).  
In case of individual examination, it is sufficient to perform 
motion correction, but in case of population analysis, brain 
atlas techniques are used. 
Brain atlases are usually obtained in two steps: 
• the first is registration – here, a transformation has to be 
defined that allows the records to be put into an 
anatomically similar space, according to the reference 
images. 
• the second is functional localization – here, functional 
labels are added to the voxels. 
Functional localization is classified by the source and result 
images in [13] 
• subject to template; 
• subject to atlas; 
• functional image to atlas.  
Similarly, the registration is also defined by the source and 
result image. Multimodal registration of the same person can 
be achieved by simple affine transformations. For this, a 
rigid transformation [27] defined by 12 parameters (shifting, 
rotating, scaling and distortion) is needed. The 
transformation can be global if it is applied on the whole 
image, or it can be local if it is computed by the sum of local 
linear part-transformations. 
 

IV. DIGITAL BRAIN ATLASES 
Physicians evaluate medical images relatively quickly. They 
are able to see things which can only be discovered by 
medical experts. The diagnosis is the result of a long 
learning process and is supplemented by a lot of practical 
experience. The goal of atlases is the unification of the 
numerous diagnoses and pooling all the experience. 
Discovering RMI brain image registration supplemented 
existing brain atlases with other valuable medical 
information. The digital brain atlas is a complex database 
which stores anatomically precise images and the local 
knowledge associated with them. The atlases store 
anatomical structures mainly in the form of digital images, 
but they can contain functional, temporal, morphological, 
pathological, statistical and genetic information as well.  
Typical applications: 
• diagnostics – the damage to the areas of the brain 
(Alzheimer’s disease, multiple sclerosis, tumor, stroke, 
speech issues, dyslexia etc.); 
• anatomical functional localization – the functional 
images are registered by adding descriptive information to a 
brain atlas;  
• surgery plan – useful information can be gained from the 
possible circumstances and risks of the intervention planned; 
• education – spectacular 3D reconstructions can be 
obtained from the brain images; 
• segmentation algorithms – segmentation based on atlases, 
algorithm testing, benchmarks. 

IV.1 COORDINATE SYSTEMS AND. 
TEMPLATES 

In order to compare different MR images, a well-defined 
coordinate system is needed. A transformation method 
through which the brain images of every subject can be 
transformed into a given coordinate system, enabling the 
comparison of two images, is also necessary. The most 
widespread coordinate system is the Talairach stereo-taxic 
(symmetric) system [31]. In this system, the origin is the 
anterior commissure point. The Oy axis crosses the posterior 
commissure point. The zOy plane is the best plane which 
separates the two hemispheres. Accordingly, the Oz axis is 
perpendicular to the Oy axis and it is oriented downward. 
The Ox axis is defined by a line crossing the origin, which is 
perpendicular to the yOz axis. Thus obtained, coordinate 
axes cross the skull in 6 points. These 6 points and the two 
commissure points define 8 reference points. The planes of 
the coordinate system and the plane parallel to the xOz and 
crossing the posterior commissure point cut the volume of 
the brain into 12 parts. The uniform fitting of the 8 points 
determine the affine transformation of the 12 parts. These 
conditions assure a uniform registration [31].  
 In order to analyze the population, an average brain has 
to be marked. The first such atlas was developed in the 
Brain Imaging Center of the Montreal Neurological Institute 
(MNI) based on 305 T1-weighted MR images [6]. The 
individual MRIs were projected onto the Talairach 
coordinate system by using an interactive software. The 
images recorded were normalized according to the voxel 
intensities, and by computing a mean, they managed to 
obtain the Montreal MNI brain atlas template. Certain 
transformations ensure the interoperability between the 
Talairach system and anatomical MNI space. The most 
important digital brain atlases can be used freely on the 
internet [3, 4, 5]. 
 

IV.2 BRAIN ATLAS TYPES 
Brain atlases consist of several high resolution maps; these 
correspondences to neurological information stored in a 
digital volume, in different ways. The MR multimodal 
images assign to a voxel x a gray-scale image I(x): R

3
 � R

N
 

, where R
3
 the space of voxel coordinates and R

N
 are the 

different N intensity images. 
Based on the information stored, the most well-known brain 
atlas types are: 
• label map: consists of a digital voxel and the 
corresponding description file. The voxel intensity from a 
given volume corresponds to an index which is assigned to a 
neurological entry. The mapping is at a one-one relation. 
• hierarchical label map: more neurological information 
can be assigned to a voxel. More voxel indexes can be 
obtained if all the voxels are retrieved corresponding to a 
given condition. The assignment is not unique, so the 
relation is one to n. If only one type of atlas is used, then the 

intensity values are denoted by ( )i xπ  and the corresponding 

entries are ( )L xπ  , where L  is the set of classes 

{ }1, 2,...,c=L=  and c is the number of classes. The 

topological atlases are defined as: 

  3: ( )i ix xπ π∈ → ∈R R   (5) 

  3: ( )L Lx xπ π∈ → ∈R L   (6) 

• probability map: one voxel contains the probability 
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according to single neurological information. For example, 
the probability map of gray matter determines the 
probability of a voxel being gray matter. 
• the maximum probability map is built from one label 
map and more probability maps. The label map assigns the 
localization to the most probable information, and the 
probability can be obtained from the probability map 
corresponding to that location. The maximum probability 
map determines the most probable neurological information 
and its probability in a particular location [35]. 

In case of probability maps, the density function ( )P
c xπ  

referring to a given class can be defined for every c class, 

assuming ( ) 1
P
c x dxπ =∫ . The probability map is defined by 

the following system: 

  3: ( )i ix xπ π∈ → ∈R R    (7) 

  3
: ( )c c

P P
x xπ π∈ → ∈R R   (8) 

 
V. ATLAS-BASED SEGMENTATION 

Segmentation is the geometrical separation of foreground 
and background points, which in fact means the separation 
of the objects from the background. Prior knowledge 
significantly influences recognition performance. This 
means that digital brain images represent new possibilities in 
brain segmentation. Assuming there was a perfect atlas, 
quality of segmentation would only depend on the 
registration of the image to be segmented. With regard to 
atlas types, there are three segmentation methods: 
• simple label propagation – here, only one template is 
used. The result of the segmentation is simply the 
S(x)=π

L
(τ(x)) relation, where τ is the segmentation 

transformation, which converts the image space to the 

template space 3 3:τ →R R  [8]. 
• voting-based label propagation – in this case, more 
templates are used. A decision algorithm which selects the 
best label based on a given criteria is needed [22]. The 
formulae of the segmentation are the following: 

 ( )( )
1

ˆ( ) arg max ( ) ( ) ,

P
L

i i i
c i

S x w x f x cπ τ
=

= ⋅∑  (9) 

where c represents the classes, P  the number of atlases and 

iw  is the weight of atlas and f is the similarity function: 

 ( )( )
( )

( )

ˆ1,  ha  ( )
ˆ ( ) ,

ˆ0,  ha  ( )

L
i iL

i i L
i i

x c
f x c

x c

π τ
π τ

π τ

 =
= 

≠

 (10) 

• probability-based segmentation: this type of 
segmentation determines the probability of voxels belonging 
to a class. These probabilities can be easily implemented in 
the Bayes model:  

 ( )( ) arg max ( ) | ( )
c

S x p I x c p c= ⋅     (11) 

where ( )( ) |p I x c  is the conditional probability of I(x) with 

respect to class c, and  p(c) is the probability of class c. 
These conditional probabilities can also be applied in 

conditional models ( )( ) arg min d s
c

S x E Eλ= +  , where the 

segmentation is, in fact, an energy minimization: where Ed is 
the energy term, and λ  is the regularization coefficient of 
the smoothed energy ES. Here, segmentation requires the 
p(I(x)|c) and p(c) probabilities, which can be determined by 

the Gaussian Mixture Model or parametric estimation. 
Brain atlases help the early discovery of brain damage and 
more accurate tracking of diseases. 
 

VI. CONCLUSION AND FURTHER 
IMPROVEMENTS 

This paper presents the most important image processing 
methods such as inhomogeneity correction, segmentation 
and registration (Figure 2.). Each one of these methods 
solves a difficult image processing issue on its own. If we 
look at them carefully, important relations can be discovered 
among them. Good segmentation supposes a noiseless 
image; registration supposes accurate segmentation, and the 
noise and inhomogeneity from the registered image can be 
easily filtered. Thus, we have a vicious circle: how do we 
select the initial method? Generally, modern systems 
combine two of these methods iteratively. C. Li 
demonstrates the possibilities to eliminate inhomogeneity by 
using the level set segmentation method [19]. A. Mayer 
creates an adaptive mean shift clustering framework to 
segment and simultaneously correct inhomogeneity in MR 
images [24]. An efficient segmentation with noise and 
inhomogeneity reduction is possible by using c-means fuzzy 
clustering [30]. But in all these works, authors proved their 
method on various images without comparing their result 
with other methods or benchmark segmentation. One 
possibility is offered by registering one set RM images with 
a given atlas or template in order to compare the 
segmentation results. The comparison is even more difficult 
because the prosed methods are not implemented in the 
same framework and these applications are not open source. 
Each method has its own inputs and outputs which have to 
be standardized in order to compare them. Currently we are 
working on the comparison of inhomogeneity reduction of 
the above mentioned methods with the N4 widely accepted 
algorithm [32], available in the ITK package [36]. The 
question is how to improve these methods with apriori 
knowledge offered by digital atlases. The goal is to combine 
the methods optimally and set the correct stop conditions, or 
if possible, combine them in a unique, automated 
framework. This approach is still an open question. The 
MRI helps radiologists to give the right diagnosis and the 
precise image segmentation is indispensable in surgery 
planning. 
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