
Pipelining 251

5.4.6.4. Multiple Prefetching

In this case, the processor fetches instructions from both possible paths.
Once the branch decision is made, the unwanted path is abandoned. By prefetching
both possible paths, the fetch penalty is avoided in the case of an incorrect prediction.

To fetch both paths, two buffers are employed by the pipeline. In normal
execution, the first buffer is loaded with instructions from the next sequential address
of the branch instruction. If a branch occurs, the contents of the first buffer are in-
validated, and the secondary buffer, which has been loaded with instructions from the
target address of the branch instruction, is used as the primary buffer.

This double buffering scheme ensures a constant flow of instructions and
data to the pipeline and reduces the time delays caused by the draining and refilling of
the pipeline. However, some amount of performance degradation is unavoidable any
time the pipeline is drained.

In summary, each of the preceding techniques reduces the degradation of
pipeline throughput. However, the choice of any of these techniques for a particular
design depends on factors such as throughput requirements and cost constraints. In
practice, due to these factors, usually a mixture of these techniques is implemented on
a single processor.

5.4.7. The Intel Architecture Processors Pipeline

Figure 5.17 shows a block diagram of the Intel Architecture processors pipe-
line. The processing units shown in the figure represent stages of the pipeline: the
fetch/decode unit, the dispatch/execute unit, the retire unit, and the instruction pool.
Instructions and data are supplied to these units through the bus interface unit.

5.4.7.1. Fetch/Decode Unit

The fetch/decode unit reads a stream of instructions from the L1 instruction
cache memory and decodes them into a series of microoperations. Microoperations
are primitive instructions that are executed by the processor’s parallel execution units.
The stream of microoperations, which is still in the order of the original instruction
stream, is then sent to the instruction pool.

The instruction fetch unit fetches one 32-byte cache line in each clock cycle
from the instruction cache memory. It marks the beginning and end of the instruc-
tions in the cache memory lines and transmits 16 aligned bytes to the decoder. The
instruction fetch unit computes the instruction pointer, based on inputs from the
branch target buffer, the exception/interrupt status, and branch-prediction indications
from the integer execution units. The most important part of this process is the
branch prediction performed by the branch target buffer. This 512-entry buffer looks
20 to 30 instructions ahead of the program counter. Within this instruction window



Structure of Computer Systems252

there may be numerous branches, procedure calls, and returns that must be correctly
predicted.

Figure 5.17. Conceptual view of the Intel Architecture processors pipeline.

The instruction decoder contains three parallel decoders: two simple instruc-
tion decoders and one complex instruction decoder. Each decoder converts an in-
struction into one or more triadic microoperations, with two logical sources and one
logical destination. The instruction decoders also handle the decoding of instruction
prefixes and looping operations. The decoders can generate up to six microoperations
per clock cycle (one each for the simple instruction decoders and four for the com-
plex instruction decoder).

The processor’s register set can cause execution stalls due to register depend-
encies. To solve this problem, the processor provides 40 internal, general-purpose
registers, which are used for the actual computations. These registers can hold both
integer and floating-point values. To allocate the internal registers, the stream of
microoperations from the instruction decoder is sent to the register alias table, where
references to the logical registers are converted into physical register references.

In the final step of the decoding process, the allocator in the register alias
table adds status bits and flags to the microoperations to prepare them for out-of-
order execution, and sends the resulting microoperations to the instruction pool.



Pipelining 253

5.4.7.2. Instruction Pool

Prior to entering the instruction pool (also known as reorder buffer), the
microoperation stream is in the same order as the instruction stream that was sent to
the instruction decoder. The reorder buffer is an array of content-addressable mem-
ory, organized as 40 registers. It contains microoperations that are waiting to be exe-
cuted, as well as those that have already been executed but not yet affected to machine
state. The dispatch/execute unit can execute microoperations from the reorder buffer
in any order.

5.4.7.3. Dispatch/Execute Unit

The dispatch/execute unit schedules and executes the microoperations stored
in the reorder buffer taking into account data dependencies and resource availability,
and temporarily stores the results of these speculative executions. The scheduling and
dispatching of microoperations from the reorder buffer is handled by the reservation
station. It continuously scans the reorder buffer to find microoperations that are
ready to be executed (that is, all the source operands are available) and dispatches
them to the available execution units. The results of a microoperation execution are
returned to the reorder buffer and stored along with the microoperation until it is re-
tired. The reservation station has five ports, and the multiple resources are accessed as
shown in Figure 5.18.

The Intel Architecture processors can schedule for execution up to 5
microoperations per clock cycle, one to each resource port, but a sustained rate of 3
microoperations per clock cycle is more common. The scheduling and dispatching
process supports out-of-order execution, where microoperations are dispatched to the
execution units strictly according to data-flow constraints and execution resource
availability, without regard to the original ordering of the instructions. When two or
more microoperations of the same type (for example, floating-point operations) are
available at the same time, they are executed in a FIFO order.

Execution of microoperations is handled by two integer execution units, a
floating-point execution unit, two MMX (Multimedia Extensions) execution units, and
one memory-interface unit, containing a load unit and a store unit. There is also a
branch execution unit, which can handle branch microoperations. This unit has the
ability to detect branch mispredictions and signal the branch target buffer to restart
the pipeline. This operation is handled as follows. The instruction decoder tags each
branch microoperation with both branch destination addresses (the target address and
the sequential address). When the branch execution unit executes the branch
microoperation, it is able to determine the destination chosen. If the predicted branch
is taken, then speculatively executed microoperations are marked usable and execution
continues along the predicted path. If the predicted branch is not taken, the branch
execution unit changes the status of all the microoperations on the target path to re-
move them from the instruction pool. It then provides the proper branch destination



Structure of Computer Systems254

to the branch target buffer, which in turn restarts the pipeline from the new target
address.

Figure 5.18. Intel Architecture processors dispatch/execute unit.

The memory interface unit handles load and store microoperations. A load
access only needs to specify the memory address, so it can be encoded in one
microoperation. A store access needs to specify both an address and the data to be
written, so it is encoded in two microoperations. The part of the memory interface
unit that handles store operations has two ports, allowing it to process the address
and the data microoperations in parallel. The memory interface unit can thus execute
in parallel a load and a store operation in one clock cycle.

The MMX execution units use the SIMD (Single Instruction, Multiple Data)
technique to deliver superior performance for data types used in multimedia and
communications applications. The MMX extensions (which include eight new 64-bit
registers, four data types, and a set of 57 general-purpose integer instructions) acceler-
ate the execution of applications such as motion video, graphics combined with video
images, 2D and 3D graphics, image processing, audio synthesis, speech synthesis and
compression, telephony, and video conferencing, which typically perform repetitive
operations on large arrays of simple data elements.

The Intel Pentium III and Pentium 4 processors also contain a separate unit
for streaming SIMD extensions. These extensions include eight new 128-bit floating-
point registers, a packed single-precision floating-point data type, and 70 new instruc-
tions for integer and floating-point data. Applications that benefit from the streaming



Pipelining 255

SIMD extensions include advanced image processing, high quality audio, MPEG-2
video, simultaneous MPEG-2 encoding and decoding, 3D graphics, and speech rec-
ognition.

5.4.7.4. Retirement Unit

The retirement unit writes the results of speculatively executed microopera-
tions into the user-visible registers and removes the microoperations from the reorder
buffer. Like the reservation station, the retirement unit continuously checks the status
of microoperations in the reorder buffer, looking for ones that have been executed
and no longer have any dependencies with other microoperations in the instruction
pool. It then retires completed microoperations in their original program order.

The retirement unit can retire three microoperations per clock cycle. In retir-
ing a microoperation, it writes the results to the processor’s register file and/or mem-
ory. After the results have been written, the microoperation is removed from the re-
order buffer.

5.4.7.5. Bus Interface Unit

The memory subsystem for the Intel Architecture processors consists of
main system memory, the primary cache memory (L1), and the secondary cache
memory (L2). The bus interface unit accesses system memory through the external
system bus. This 64-bit bus is a transaction-oriented bus, meaning that each bus ac-
cess is treated as consisting of separate request and response operations. While the
bus interface unit is waiting for a response to one bus request, it can issue numerous
additional requests.

The bus interface unit accesses the L2 cache memory through a 64-bit cache
memory bus. This bus is also transaction-oriented, supporting up to four concurrent
cache memory accesses, and operates at the full clock speed of the processor. Access
to the L1 cache memories (for instructions and data) is through internal buses, also at
full clock speed. Coherency between the cache memories and system memory is
maintained using the MESI (Modified, Exclusive, Shared, Invalid) protocol.

Memory requests from the processor’s execution units go through the mem-
ory interface unit and the memory order buffer. The L1 data cache memory automati-
cally forwards a cache miss to the L2 cache memory, and then, if necessary, the bus
interface unit forwards an L2 cache miss to system memory. Memory requests to the
L2 cache memory or system memory go through the memory order buffer, which
functions as a scheduling and dispatch station. This buffer keeps track of all memory
requests and is able to reorder some requests to prevent blocking conditions and to
improve throughput. For example, the memory order buffer allows speculative load
operations. Store operations are always executed in order, and speculative store op-
erations are not allowed.


	5.4.6.4. Multiple Prefetching
	5.4.7. The Intel Architecture Processors Pipeline
	5.4.7.1. Fetch/Decode Unit
	5.4.7.2. Instruction Pool
	5.4.7.3. Dispatch/Execute Unit
	5.4.7.4. Retirement Unit
	5.4.7.5. Bus Interface Unit


