

1 Input/Output Systems and Peripheral Devices

7. ATA INTERFACE

 This laboratory work presents several versions of the ATA interface for disk drives

and highlights the enhancements made by these versions to the original ATA interface. In ad-

dition, the laboratory work describes sector addressing, the transfer modes of the interface, the

interface registers, the list of main commands, and command examples.

 7.1. Overview of the ATA Interface

 ATA (AT Attachment) is the most used interface for connecting disk drives to personal

computers. The “AT Attachment” name originates from the fact that the interface was origi-

nally designed to connect a disk drive directly to the bus of an IBM PC/AT (Advanced Tech-

nology) computer, bus called ISA (Industry Standard Architecture) or AT. ATA is a 16-bit

parallel interface. A serial version of this interface, called Serial ATA (SATA), has been intro-

duced in 2000 and is used in computer systems starting from 2002.

 The ATA interface is also called IDE, for the name of the first disk drives with this

interface. The name IDE (Integrated Drive Electronics) refers to disk drives which have the

controller built into the drive and not on a separate board, as with earlier interfaces. The as-

sembly composed of the drive and controller is connected to one of the connectors on the

motherboard of the computer.

 The first disk drives that used the ATA interface have been produced in 1986 by Con-

trol Data Corporation (CDC), Western Digital (WD), and Compaq, which also established the

signal assignment to the ATA connector pins. To eliminate incompatibilities and problems

related to interfacing ATA drives to systems based on the ISA or EISA (Extended ISA) buses,

in 1988 the CAM (Common Access Method) committee of the ANSI organization was formed.

This committee developed the first version of the CAM ATA interface standard, and a draft

version of this standard has been published in 1989.

 Later on, the specifications of the parallel ATA interface have been developed and

updated by an independent group that represented the major computer and disk drive manu-

facturers, the T13 Technical Committee (www.t13.org), which was part of the InterNational

Committee on Information Technology Standards (INCITS). The standards developed by this

committee have been approved and published by the American National Standards Institute

(ANSI). The same committee was in charge with updating the ATAPI (AT Attachment Packet

Interface) standards; this interface enables to connect optical disc drives through the same

physical interface as ATA, but using a different logical protocol. Starting with the fourth ver-

sion of the ATA standard, the ATAPI interface specifications have been included into the ATA

standard. The last version of the ATA standard is AT Attachment 8, which has been released in

2008. For developing and updating the specifications of the SATA standard, a separate work-

ing group was formed, the Serial ATA Workgroup (www.serialata.org).

 The ATA interface enables to connect in series two disk drives to an interface connector

placed on the motherboard through a cable with three connectors: one for connecting to the

motherboard, and two for connecting to the disk drives. Out of the two drives, one is the primary

(master) drive, and the other is the secondary (slave) drive. Each disk drive has its own built-in

controller, but the two drives use the same bus. For a correct operation, a single controller must

respond to a command at a given time. Usually, this is ensured by properly positioning some

jumpers on the two drives.

http://www.t13.org/
http://www.serialata.org/

2 7. ATA Interface

 Personal computers contain two ATA interfaces integrated within the chipset, which

allow connecting a number of up to four disk drives.

 7.2. Evolution of the ATA Standards

 From the introduction of the original version of the ATA standard, as the technology

of the ATA interfaces in the industry improved, several versions of the ATA standards have

been developed, which included the improvements appeared earlier into their specifications.

Each version of the ATA standard is backward-compatible with the previous versions. This

means that an older disk drive can be used with an ATA interface complying with a newer

version of the standard. In general, the newer versions of the ATA standards can be considered

as extensions of the previous versions.

 Next, the main features of the various versions of the ATA standards are described.

 ATA (ATA-1)

 The original version of the ATA standard was officially approved by ANSI in 1994.

This version, as the later versions, specifies a parallel interconnection which originates from

the 16-bit ISA (AT) bus. The standard eliminated various incompatibility problems between

the first generations of ATA/IDE disk drives, especially when two disk drives from different

manufacturers were connected to the same ATA interface.

 The original ATA standard defines the following features of the ATA interface:

• 40-pin or 44-pin connectors;

• A single ATA channel, which can be shared by two disk drives, configured as a master

drive and a slave drive;

• The PIO (Programmed Input/Output) transfer modes 0, 1, and 2, with different timing

characteristics and transfer rates;

• The single-word DMA (Direct Memory Access) transfer modes 0, 1, and 2;

• The multi-word DMA transfer mode 0;

• CHS (Cylinder, Head, Sector) addressing, which specifies the number of cylinder,

head, and sector on the disk drive.

Although the original version of the ATA standard supported a maximum theoretical

drive capacity of 128 GB in binary (137 GB in decimal1), the standard did not specify how to

eliminate the 504 MB (528 MB in decimal) capacity barrier caused by the INT 13h program-

ming interface of the BIOS program, because, at the time, no disk drives larger than 504 MB

existed.

 ATA-2

 ATA-2 represents an extension of the standard for the original ATA interface, exten-

sion developed as a result of the technological improvements of disk drives and the increased

demand for storage capacity. Published in 1996, the standard maintains compatibility with the

original ATA interface and improves it, without the need to change the installed drives or the

existing software.

 The main improvements introduced by the ATA-2 standard are the following:

• Faster PIO transfer modes (PIO 3 and 4);

• Faster DMA transfer modes (DMA multiword 1 and 2);

1 1 GB in binary (also denoted by GiB) equals 230 (1,073,741,824) bytes, while 1 GB in decimal equals

109 (1,000,000,000) bytes.

3 Input/Output Systems and Peripheral Devices

• Additional commands that allow block transfers (multiple words) to increase perfor-

mance;

• Disk drives that support, optionally, logical block addressing (LBA) and BIOS pro-

gramming interfaces that perform CHS parameter translation, in order to increase the

addressable capacity of the disk drives up to 7.88 GB (8.46 GB in decimal);

• Improved Identify Device command, which enables the disk drive to report additional

information required for “Plug and Play” systems and for compatibility with later re-

visions of the standard.

The ATA-2 standard was known under various names that represented marketing

terms used by various companies, and not real standards. Thus, Seagate and Quantum used

the names Fast ATA and Fast ATA-2 to refer to different portions of the ATA-2 standard. For

instance, Fast ATA included support for PIO mode 3 and multiword DMA mode 1 transfers,

while Fast ATA-2 included in addition support for PIO mode 4 and multiword DMA mode 2

transfers. Both variants supported block transfers and LBA logical addressing.

 Western Digital used the name EIDE (Enhanced IDE) for its proposed extension of

the ATA-2 standard. The main improvements were the introduction of an additional ATA

channel, which uses a different interrupt and different addresses, and the possibility to con-

nect optical discs or tape drives. Out of the enhanced transfer modes specified by the ATA-2

standard, EIDE included support for the PIO mode 3 or mode 4 transfers and for the multi-

word DMA mode 1 transfer.

 ATA-3

 The ATA-3 standard, published in 1997, is a minor revision of the ATA-2 standard.

This revision did not define new high-performance transfer modes. The main changes intro-

duced by the ATA-3 standard are the following:

• Eliminating single-word DMA transfer protocols;

• Adding S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) support

for prediction of disk drive failures;

• Adding a mode that allows protection of the data stored on disk drives with a pass-

word;

• Specifying the LBA addressing mode as being mandatory (this mode was optional in

the ATA-2 standard);

• Recommendations for source and receiver bus termination in order to increase relia-

bility in high-speed transfer modes.

S.M.A.R.T., initially developed by IBM, allows the operating system to monitor the

operational parameters of a disk drive with the aim to detect its performance degradation.

This degradation may progressively aggravate, finally leading to drive failure and data loss.

By using this technology it is possible to predict the drive failure and to notify the user so that

it can copy the data from the drive to another storage device in order to prevent data loss.

However, S.M.A.R.T. does not allow predicting sudden failure of a disk drive.

 ATA/ATAPI-4

 Published in 1998, the ATA/ATAPI-4 standard introduced important changes to the

previous version ATA-3. First, it included the ATAPI (ATA Packet Interface) protocol, which

allows connecting devices such as optical disc drives to an ATA channel. Attaching these pe-

ripherals to the ATA interface was already possible before the ATA/ATAPI-4 version of the

standard, but ATAPI was a separately published standard. A new command was added to the

ATA command set, called Packet, which allows sending a data structure known as command

packet to an ATAPI peripheral. The command set recognized by ATAPI peripherals is different

4 7. ATA Interface

than that used by the ATA interface, and it is derived from the command set of the SCSI inter-

face. The reason is that the ATA command set and register set are not adequate for some

commands specific to optical drives.

 The second important change introduced by the ATA/ATAPI-4 standard was the addi-

tion of a new transfer protocol called Ultra-ATA or Ultra-DMA (UDMA), in which data

transfers take place on both edges of the clock signal. There are several Ultra-DMA transfer

modes, out of which the ATA/ATAPI-4 specifications include modes 0, 1, and 2. For instance,

mode 2 Ultra-DMA allows a maximum transfer rate of 33.3 MB/s, and for that reason this

mode is also called Ultra-ATA/33 or UDMA/33. The possibility to use a particular mode is

conditioned by the disk drive, by the chipset on the motherboard, and by the operating system

or BIOS.

 The main enhancements introduced by the ATA/ATAPI-4 standard are the following:

• Including the Packet command and the corresponding protocol for sending the ATAPI

commands;

• Adding the Ultra-ATA protocol and modes 0, 1, and 2 that use this protocol, the max-

imum transfer rates reaching 33.3 MB/s;

• Increasing the data integrity by using a cyclic redundancy check (CRC);

• Defining an optional 80-conductor cable (out of which 40 are ground wires), which

allows to increase noise immunity;

• Support for using a Compact Flash adapter for portable computers;

• Support for command overlapping (a new command can be sent before execution of

previous commands completed) by implementing queues for storing the commands

by the ATA and ATAPI peripherals.

 ATA/ATAPI-5

 This version of the ATA standard was approved in 2000. The main changes intro-

duced by this version are the following:

• Adding the Ultra-DMA modes 3 and 4; mode 4 allows a maximum transfer rate of 66

MB/s (this mode is also called Ultra-ATA/66 or UDMA/66);

• Use of the 80-conductor cable is mandatory for operation in the UDMA/66 mode;

• Automatic detection of 40-conductor and 80-conductor cables;

• UDMA modes faster than UDMA/33 are enabled only if an 80-conductor cable is de-

tected.

The UDMA/66 mode allows doubling the maximum transfer rate of the interface by

reducing signal setup times and increasing the clock frequency. The higher clock frequency

increases the possibility of interferences between signals when using the 40-conductor ATA

cable. To eliminate interference and noise, the standard specifies that the use of the 80-

conductor cable, defined as optional in the ATA/ATAPI-4 version, is mandatory for transfer

modes starting with UDMA/66. This cable can be used with older disk drives as well, because

it contains the same 40-pin connectors.

 ATA/ATAPI-6

 The development of this version of the ATA standard began in 2000 and the official

standard was published in 2002. The main enhancements or changes compared to the previous

version are the following:

• Adding the Ultra-DMA mode 5, which allows a maximum transfer rate of 100 MB/s

(this mode is also called Ultra-ATA/100 or UDMA/100);

5 Input/Output Systems and Peripheral Devices

• Increasing the size of logical addresses from 28 bits to 48 bits;

• In the 48-bit LBA addressing, the size allocated for the number of sectors transferred

by a single command increased from 8 bits (256 sectors or 128 KB) to 16 bits (65,536

sectors or 32 MB), which allows a more efficient transfer of large files;

• Disk drives must use LBA addressing and CHS addressing is declared obsolete;

• Adding new commands for Audio/Visual (AV) applications.

By extending the size of logical addresses to 48 bits, the number of addressable sec-

tors increased from 228 to 248 (281,474,976,710,656 sectors). Thus, the maximum addressable

capacity of disk drives increased significantly, from 128 GB (137 GB in decimal) to 128 PB

(petabytes) or 144,115,188 GB in decimal. This extension became necessary because disks

with capacity of over 137 GB appeared during 2001, but they were originally available only

with the SCSI interface, which did not have the same limitation as the ATA interface.

 ATA/ATAPI-7

 This version of the ATA was published in 2005. The main enhancement is the addi-

tion of Ultra-DMA mode 6 (Ultra-ATA/133 or UDMA/133), which allows a maximum trans-

fer rate of 133 MB/s. This version of the standard also includes the specifications of the

SATA-150 serial interface, with a maximum transfer rate of 1.5 Gbits/s (150 MB/s).

 AT Attachment 8

 This is the last version of the ATA standard, published in 2008. For the parallel ATA

interface, no enhanced transfer modes are introduced. For the SATA serial interface, this ver-

sion includes the specifications of the SATA-300 interface, with a maximum transfer rate of 3

Gbits/s (300 MB/s).

 7.3. Sector Addressing on ATA Disk Drives

 There are two main methods to address sectors on an ATA disk drive. The first meth-

od is CHS addressing, in which three components are specified to address a sector: cylinder

(track) number, read/write head number, and sector number. The second method is LBA ad-

dressing, in which a single logical address that is specific to the sector to be addressed is indi-

cated. Starting with the ATA/ATAPI-6 version of the ATA/ATAPI interface, disk drives must

use the LBA addressing.

 Note

• Both CHS and LBA addresses represent logical addresses of the sectors. The disk

drive will perform the conversion of the logical address into a physical address

through a translation operation, which is specific to the drive.

 CHS addressing was conceived based on the physical parameters of a disk drive, alt-

hough a CHS address represents a logical address of the sector. Such an address is composed

of three fields: cylinder number, head number, and sector number. Cylinders are numbered

from 0 up to the maximum number allowed by the current translation mode, but the maximum

number could not exceed 65,535. Heads are numbered from 0 to the maximum number al-

lowed by the current translation mode, but the maximum number could not exceed 15. Sectors

are numbered from 1 to the maximum number allowed by the current translation mode, but

the maximum number could not exceed 255. These maximum values have been chosen some-

how arbitrarily when the CHS addressing method has been developed, considering that they

are enough for the disk drives at that time and for those of future generations.

 When reading a disk drive sequentially in CHS mode, the process starts with cylinder

0, head 0, and sector 1. Next, all the remaining sectors on the same track are read; then, head

1 is selected and all the sectors on that track are read. Reading from cylinder 0 continues by

6 7. ATA Interface

selecting the remaining heads, until the last one. Then, the next cylinder is selected and the

process is repeated.

 With LBA addressing, each sector on the disk drive is assigned a unique logical ad-

dress. The logical sectors of the drive are allocated linearly; the first sector addressed in LBA

mode (sector 0) is the same as the first logical sector addressed in CHS mode (cylinder 0,

head 0, and sector 1). The allocation continues up to the last physical sector. Regardless of the

current CHS translation mode, the LBA address of a given logical sector does not change.

The following equation can be used for converting the CHS parameters into an LBA address:

 LBA = ((C  heads_per_cylinder + H)  sectors_per_track) + S - 1

where C, H, and S represent the cylinder number, head number, and sector number, respec-

tively, while heads_per_cylinder and sectors_per_track represent the values for the current

translation mode.

 7.4. Data Transfer Modes

 The ATA/ATAPI interface specifications define two categories of data transfers: pro-

grammed transfers (PIO – Programmed Input/Output) and direct memory access transfers

(DMA – Direct Memory Access). For each category, several transfer modes are defined, and

each mode is characterized by a particular cycle time. These cycle times determine the maxi-

mum transfer rates that can be achieved.

 7.4.1. PIO Transfer Modes

 PIO transfer modes are less efficient, because for each word transferred the processor

has to execute a program sequence. There are five PIO transfer modes, numbered 0 through 4.

Depending on the protocol used, there are two types of PIO transfers: with no acknowledge-

ment and with acknowledgement.

 In the case of PIO transfers with no acknowledgement, the ATA/ATAPI interface does

not have the confirmation that the computer’s processor can accept the data from the disk

drive. To minimize the risk of losing data when the processor is busy with other activities

during the transfer of a data block, these transfers are executed at a low speed, irrespective of

the capabilities of the computer. PIO modes 0, 1, and 2 use transfers with no acknowledge-

ment.

 In the case of PIO transfers with acknowledgement, the IORDY interface control sig-

nal is used. If necessary, the disk drive may assert this signal to extend the transfer cycle time

and to delay the interface. Without using this signal, the transfer may be incorrect in the fast

PIO modes. PIO modes 3 and 4 use transfers with acknowledgement.

 In the slowest PIO transfer mode (mode 0), the cycle time cannot exceed 600 ns. In a

single cycle, 16 bits (2 bytes) are transferred. Hence, in a second 2/600 109 bytes are trans-

ferred, and the maximum theoretical transfer rate is 3.33 MB/s. Table 7.1 presents the PIO

modes and the maximum transfer rates allowed by these modes.

Table 7.1. PIO transfer modes of the ATA/ATAPI interface.

Mode Cycle Time (ns) Transfer Rate (MB/s) Standard

PIO 0 600 3.33 ATA

PIO 1 383 5.22 ATA

PIO 2 240 8.33 ATA

PIO 3 180 11.11 ATA-2, IORDY required

PIO 4 120 16.67 ATA-2, IORDY required

 The first three modes (0, 1, and 2) are also present in the original ATA standard. PIO

modes 3 and 4 are specific to the ATA-2 and later standards. These modes use the IORDY

signal for controlling the transfer.

7 Input/Output Systems and Peripheral Devices

 To increase efficiency, block PIO transfers are used, which are initiated with the

Read/Write Multiple commands. By using these commands, the number of interrupt requests

to the host computer is decreased.

 When interrogating a disk drive controller with the Identify Device command, it also

returns information about the PIO and DMA modes supported. For example, bits 7..0 of word

64 indicates the advanced PIO modes that can be used. If bit 0 of this word is set to 1, the

drive supports PIO mode 3, and if bit 1 is set to 1, the drive supports PIO mode 4. Bits 7..2 are

reserved.

 7.4.2. DMA Transfer Modes

 Data transfers that are initiated through DMA commands, such as Read DMA and

Write DMA, differ from PIO transfers in two aspects:

• Data transfers are performed via a DMA channel;

• A single interrupt request is generated at command completion.

Transfers performed through direct memory access are much more efficient than PIO

transfers, because the processor is released from the burden to execute a program sequence

for each word transferred. In addition, the processor can perform other operations while the

data are transferred directly between the disk drive and main memory.

 The ATA/ATAPI interface allows two types of DMA transfers: single-word and mul-

tiword. With single-word transfers, the computer initiates a transfer, selects the word to be

transferred, and then the drive controller transfers that word. These operations must be repeat-

ed for each of the following words. These transfers have low efficiency, and for this reason

they are no longer used.

 The single-word DMA transfers are presented in Table 7.2.

Table 7.2. Single-word DMA transfers of the ATA/ATAPI interface.

Mode Cycle Time (ns) Transfer Rate (MB/s) Standard

Single-word DMA 0 960 2.08 ATA

Single-word DMA 1 480 4.17 ATA

Single-word DMA 2 240 8.33 ATA

 Note

• Single-word DMA transfers were removed from the ATA-3 and later standards.

Multiword DMA transfers enable to achieve higher performance. After the computer

initiates a transfer, it selects the first word and the last word of the block to be transferred, and

then the drive controller transfers all the block words. Table 7.3 presents the multiword DMA

transfers.

Table 7.3. Multiword DMA transfers of the ATA/ATAPI interface.

Mode Cycle Time (ns) Transfer Rate (MB/s) Standard

Multiword DMA 0 480 4.17 ATA

Multiword DMA 1 150 13.33 ATA-2

Multiword DMA 2 120 16.67 ATA-2

 Depending on the control of the transfer operations, there are two types of DMA

transfers: normal and bus-mastering. Normal transfers are performed by the system DMA

controller. DMA transfers of the ATA/ATAPI interface are bus-mastering transfers; they are

performed by the interface logic, which takes control of the bus and performs the transfer.

 Word 63 of the data block returned by the Identify Device command indicates the

multiword DMA transfer modes that are supported by the disk drive and the mode selected.

Bits 0, 1, and 2 of this word indicate by value 1 that mode 0, 1, and 2 is supported, respective-

ly. Bits 8, 9, and 10 of word 63 indicate by value 1 that mode 0, 1, and 2 is selected, respec-

tively.

8 7. ATA Interface

 Starting with the ATA/ATAPI-4 version of the ATA standard, higher-performance

DMA transfer modes have been introduced, called Ultra-DMA or Ultra-ATA. In these modes,

data are transferred on both edges (rising and falling) of the clock signal used to control the

data bus, so that the transfer rate is doubled. In addition, in the higher-performance variants of

the Ultra-DMA modes, the frequency of the clock signal is higher compared to that of multi-

word DMA modes.

 To increase the reliability of transfers in Ultra-DMA modes, synchronous transfers

are used instead of asynchronous transfers. The equipment that sends the data (the computer

on writing, the disk drive on reading) generates the clock signal and synchronizes the data

transfers with the clock signal. Since a single equipment controls both the clock signal and the

data lines, the synchronization of the transfers is more precise.

 The Ultra-DMA modes that have been introduced by the various versions of the

ATA/ATAPI standard are presented in Table 7.4.

Table 7.4. Ultra-DMA transfer modes of the ATA/ATAPI interface.

Mode Cycle Time (ns) Transfer Rate (MB/s) Standard

Ultra-DMA 0 240 16.67 ATA/ATAPI-4

Ultra-DMA 1 160 25 ATA/ATAPI-4

Ultra-DMA 2 120 33.33 ATA/ATAPI-4

Ultra-DMA 3 90 44.44 ATA/ATAPI-5

Ultra-DMA 4 60 66.67 ATA/ATAPI-5

Ultra-DMA 5 40 100 ATA/ATAPI-6

Ultra-DMA 6 30 133 ATA/ATAPI-7

 Word 88 of the data block returned by the Identify Device command indicates the

Ultra-DMA modes that are supported by the disk drive and the mode selected. Bits 0..6 of this

word indicate by value 1 that the mode with the number corresponding to the particular bit

position is supported (mode 0 for bit 0, up to mode 6 for bit 6). Bits 8..14 of word 88 indicate

by value 1 that the mode with the number corresponding to the particular bit position minus 8

is selected (mode 0 for bit 8, up to mode 6 for bit 14).

 7.5. Serial ATA Interface

 7.5.1. Overview

 Since the release of the first draft version of the ATA standard in 1989, the ATA inter-

face has been continuously improved, so that its speed increased more than 25 times com-

pared to the speed of the original version. Nevertheless, further improvement of the parallel

ATA interface performance is difficult because of the problems specific to a parallel interface,

such as the electromagnetic interference between signals or the difficulty of signal timing.

The solution to these problems consists in using a serial interface, whose performance could

be improved in a much simple manner by increasing the frequency of the clock signal.

 In 2000, Intel and several manufacturers of disk drives (APT Technologies, Dell,

IBM, Maxtor, Quantum, and Seagate Technology) started the development of a serial ATA

interface, referred to as Serial ATA (SATA). For developing the specification of this interface,

the Serial ATA Working Group has been formed. The first version (1.0) of the SATA specifi-

cation has been released in 2001. For improving this specification, in 2002 the Serial ATA II

Working Group has been formed, and it developed version 2.0 of the SATA specification.

Later on, for updating the SATA specification and for promoting this interface, a new indus-

trial association has been set up, called Serial ATA International Organization (SATA-IO).

Information about the activity of this organization is available at https://sata-io.org. Version

3.0 of the SATA specification has been published in 2009, and version 3.1 in 2011.

 Version 3.2 of the SATA standard has been released in 2013. This version contains

the specification of the SATA Express interface, which enables to connect one or two disk

drives with SATA interface or one disk drive with PCI Express interface. The PCI Express

interface may use one or two PCI Express lanes. The increased speed of the PCI Express bus

https://sata-io.org/

9 Input/Output Systems and Peripheral Devices

allows optimizing the performance of Solid-State Drives (SSDs) and Solid-State Hybrid

Drives (SSHDs), which incorporate NAND flash memories into magnetic disk drives. Ver-

sion 3.2 also includes the specification of a card referred to as M.2, with small size (width of

22 mm, length of 30, 42, 60, 80, or 110 mm), which may be used as a solid-state drive for

tablets or Ultrabook computers. In addition, version 3.2 contains the microSSD specification,

which eliminates the connector from a solid-state drive, enabling to implement such a drive as

a single chip placed directly to the motherboard.

 Version 3.3 of the SATA standard, released in 2016, includes the specification of

SMR (Shingled Magnetic Recording) technology, which enables to increase disk drive capaci-

ties by about 25%. With this technology, when a new track is written, it will partially overlap

a previously written track, so that the previous track will be narrower and track density will

increase. This approach was chosen because recording magnetic heads cannot be made as

narrow as reading heads due to physical limitations. Version 3.3 also includes a feature called

Power Disable, which enables the host computer to power-down a SATA disk drive. Version

3.4 of the SATA standard has been released in June 2018, and version 3.5 in July 2020. The

current version of the SATA standard is 3.5a, released in March 2021.

 Although the serial ATA interface differs physically from the parallel ATA interface

by the cable and connector used, the two interfaces are software-compatible between them.

Therefore, the existing BIOS programs, operating systems, and software that use the parallel

ATA interface can be used without any changes with the serial ATA interface. Also, this inter-

face allows connecting the existing ATA and ATAPI peripheral devices, including CD-ROM,

CD-RW, and DVD drives, and other devices that can be connected to the parallel ATA inter-

face.

 Figure 7.1 shows the logo of the SATA interface.

Figure 7.1. Serial ATA interface logo.

 While the parallel ATA interface transfers the data via a 16-bit channel, the serial ATA

interface uses only two unidirectional serial channels, one for transmit and one for receive.

Even though the data are sent serially bit by bit, the frequency of the clock signal used for the

transfer is much higher than that of the parallel ATA interface. For instance, with the

UDMA/133 transfer mode of the parallel ATA interface, the clock frequency is 33 MHz, and

two words (four bytes) are transferred in each clock cycle, which results in a maximum

transfer rate of 133 MB/s. With the first version of the SATA interface, the clock frequency is

1500 MHz (1.5 GHz). Because a byte is encoded on 10 bits, the transfer rate corresponding to

this frequency is 150 MB/s, which is 12% higher than that of the last version of the parallel

ATA interface. Whereas doubling the transfer rate for the parallel ATA interface in the near

future is not probable, the transfer rate of the SATA-600 interface increased four times

compared to the initial version, since this interface is available with a clock frequency of 6

GHz and a maximum transfer rate of 600 MB/s.

 Table 7.5 presents the types of SATA interfaces.

Table 7.5. Types of SATA interfaces.

Interface Type Frequency (GHz) Transfer Rate

SATA-150 1.5 1.5 Gbits/s, 150 MB/s

SATA-300 3 3 Gbits /s, 300 MB/s

SATA-600 6 6 Gbits /s, 600 MB/s

SATA Express 8 2x8 Gbits/s, 2 GB/s

 With the SATA interface, data bits are represented on the transmission line using the

NRZ (No Return to Zero) coding. With this coding, a bit is represented by a change in the

10 7. ATA Interface

electrical voltage of the line, and not by a certain voltage level. Two voltage levels are used,

and for each bit of 1 in the data stream there is a transition from the current voltage level to

the other level. The voltage level then remains unchanged until the next bit of 1, without re-

turning to zero voltage.

 The SATA interface uses the 8b/10b encoding for the data sent along the serial line,

through which each data byte is represented by a particular combination of 10 bits. This en-

coding was originally developed by IBM in the early 1980’s for high-speed data communica-

tions. The same encoding is used by many high-performance serial communication interfaces,

including Gigabit Ethernet, Fibre Channel, IEEE 1394, and others. One of the purposes of the

8b/10b encoding is to ensure that there are never more than four 0 bits (or 1 bits) transmitted

consecutively. This is actually a variant of RLL (Run Length Limited) encoding, which uses

two parameters to define the encoding form. These parameters are the minimum number (the

run length) and the maximum number (the run limit) of identical consecutive bits in each

encoded byte. The variant used is RLL 0,4, where 0 represents the minimum number and 4

represents the maximum number of identical consecutive bits in each byte.

 The 8b/10b encoding also ensures that there are never more than six or less than four

bits of 0 (or bits of 1) in a single encoded byte. Because bits of 0 and 1 are represented on the

transmission line as voltage changes on the line, the previous constraint ensures that the spac-

ing between the voltage transitions on the line are balanced. This way a more balanced load

on the circuits is achieved, increasing reliability.

 The signals are sent on two pairs of wires, differentially. One pair represents the

transmit channel, and the other pair represents the receive channel. Low voltage levels are

used, of 0.25 V. The signals of a channel are differential in the sense that, if on one wire of

the channel the voltage level is 0.25 V, on the other wire the voltage level is –0.25V. At every

instant, the voltages on the two wires of a channel are opposite, and the voltage difference

between the two wires is 0.5 V. This voltage difference is not affected by noise or other ex-

ternal perturbations, which represents an important advantage of differential signaling.

 The SATA interface uses a point-to-point connection. Therefore, unlike with the par-

allel ATA interface, a single device is connected to each SATA port. This way, there are no

daisy-chained devices and no settings are required to designate the master and the slave de-

vice. To connect several devices, multiple SATA ports are needed. Usually, motherboards are

equipped with four SATA ports, two primary ports and two secondary ports.

 The main advantages of the SATA interface compared to the parallel ATA interface

are high speed, small connector and cable sizes, increased cable length, and the capability to

connect and disconnect the devices without removing the supply voltage (hot plug). In addi-

tion, the SATA standards describe the possibility to connect several devices to the same SATA

port by using a port extender. This way, the connections are simplified and the SATA ports on

the motherboard are used more efficiently, because they may ensure a transfer rate that is

enough for several devices. Furthermore, it is possible to set up more complex storage sys-

tems, such as RAID (Redundant Array of Independent Disks) disk arrays, especially if a PCI

Express bus is available, which could provide the required transfer rate. Due to these ad-

vantages, the SATA interface gradually replaced the parallel ATA interface.

 7.5.2. Connectors and Cables

 The SATA interface requires a data connector and a power connector. In many cases,

combo connectors are used, which contain both the data connector and the power connector. The

data connector contains seven pins and it has small size, as its width is 14 mm. Four pins are used

for the transmit and receive differential channels, and three pins are used for ground connections.

By using multiple ground connections, which separate the two differential data channels, the

electrical interferences between these channels are reduced.

11 Input/Output Systems and Peripheral Devices

Table 7.6. SATA interface data connector pins.

Pin Signal Description

S1 GND Ground

S2 A+ Host transmit +

S3 A– Host transmit –

S4 GND Ground

S5 B– Host receive –

S6 B+ Host receive +

S7 GND Ground

 Table 7.6 presents the SATA interface data signals and their assignment to the data

connector pins. All of the ground pins are longer than the other pins, so that they will make

the connection before the signal pins. This enables to connect and disconnect the SATA disk

drives without switching off the computer.

 The power connector may have a standard size or a smaller size (mini-SATA or micro-

SATA). The standard power connector contains 15 pins and it supplies the voltages of 5 V, 12 V,

and 3.3 V (although the 3.3 V voltage is used by very few disk drives). Each voltage is supplied

by three pins in parallel to reduce the impedance and increase the current. Each pin can supply a

current of 1.5 A, so that the connector can supply a current of up to 4.5 A for each of the three

voltages. The power connector contains five ground pins instead of a single ground pin, which

provide a low-impedance ground connection. One pin of the power connector can be used for

staggered spin-up of the disk drives and/or to indicate drive activity. If this pin is connected to the

ground at the connector, the drive motor spins up as soon as power is applied. If left unconnect-

ed, the drive waits until it receives a command. This prevents several drives to spin up simulta-

neously, which might overload the power supply. The pin is pulled low by the drive when it exe-

cutes a command, so it can be connected to an LED to indicate drive activity.

 Figure 7.2 illustrates a standard combo SATA connector. The 7-pin data connector is on

the left, and the 15-pin power connector is on the right.

Figure 7.2. Standard combo SATA connector of a disk drive.

 A mini-SATA (mSATA or slimline) combo connector is intended for smaller devices,

such as notebook optical drives. In this combo connector, the data connector is identical to the

data connector of the standard version, while the power connector is reduced to six pins. One pin

is provided to signal device presence, two pins supply in parallel 5 V, two pins are used for

ground connection, and one pin is used for diagnostic during manufacturing. Passive adapters

exist to convert between a standard SATA connector and a mini-SATA connector. Figure 7.3

illustrates the connectors of a mini-SATA cable.

Figure 7.3. Mini-SATA combo connectors of a SATA cable.

12 7. ATA Interface

 A micro-SATA (uSATA) combo connector is intended for 1.8 inch (46 mm) disk drives.

The data connector of this combo connector is similar in appearance to the standard data con-

nector, but is slightly thinner. The power connector contains nine pins, including two pins for the

supply voltage of 3.3 V, two pins for the supply voltage of 5 V, and two ground pins. Two pins

are defined as vendor specific. Figure 7.4 illustrates the connectors of a micro-SATA cable.

 The maximum length of the SATA cable is 1 m, unlike the parallel ATA interface cable,

for which the maximum length is only 0.45 m. A separate cable is needed to connect each device

to a SATA port of the motherboard.

Figure 7.4. Micro-SATA combo connectors of a SATA cable.

 7.5.3. Differences between the SATA and SAS Interfaces

 The main differences between the SATA and SAS (Serial Attached SCSI) interfaces

are the following:

• SATA disk drives are identified by their port number connected to the host adapter,

while SAS devices are identified by their SAS address or World Wide Name.

• Unlike the SATA protocol, the SAS protocol supports multiple initiators in a SAS

domain.

• The SATA interface only supports magnetic disk drives and optical drives. The SAS

interface also supports other types of devices, such as scanners and printers. However,

these devices usually have other interfaces than SAS, such as USB, IEEE 1394,

Ethernet, or Wi-Fi.

• The SATA interface uses lower voltage levels (0.4 – 0.6 V) than the SAS interface

(0.8 – 1.6 V).

• Because of the higher signaling voltages used by the SAS interface, longer cables (up

to 8 m) can be used with this interface, compared to the SATA interface for which the

maximum cable length can be 1 m.

• A difference between a SATA drive connector and a SAS drive connector is that the

latter has a second set of pins underside. These additional pins are provided for the

second port of the drive. SATA drives, which are single-ported, do not have these

pins.

• SATA drives are less expensive than SAS drives and they usually have higher capaci-

ties than that of SAS drives.

13 Input/Output Systems and Peripheral Devices

 7.6. ATA/ATAPI Interface Registers

 Communication with disk drive controllers is achieved via I/O registers. Unlike with

other interfaces, in which only the selected controller receives commands from the computer,

with the ATA/ATAPI interface the contents of registers are sent to both drives and their em-

bedded controllers. The computer makes the distinction between the two drives through the

DEV bit of the Device register. If the DEV bit is 0, drive 0 (master) is selected, otherwise drive

1 (slave) is selected. If there is a single drive, this should be configured as master.

 Table 7.7 presents the ATA/ATAPI interface registers and their offsets relative to the base

address of command block registers and the base address of control block registers.

Table 7.7. ATA/ATAPI interface registers.

Offset

ATA ATAPI

Command Block Registers Command Block Registers

When Read When Written When Read When Written

0 Data Data Data Data

1 Error Features Error Features

2 Sector Count Sector Count Interrupt Reason Sector Count

3 LBA Low LBA Low LBA Low LBA Low

4 LBA Mid LBA Mid Byte Count Low Byte Count Low

5 LBA High LBA High Byte Count High Byte Count High

6 Device Device Device Device

7 Status Command Status Command

 Control Block Registers Control Block Registers

6 Alternate Status Device Control Alternate Status Device Control

 Data are transferred in parallel (on 16 bits) between the computer memory and the disk

drive buffer under the control of commands sent previously from the computer. Data read from

the medium are stored in the drive buffer, to be transferred to the computer, and data transferred

from the computer memory are stored in the drive buffer, to be written to the medium. If two

drives are daisy-chained, the commands are sent to both drives and, except for the device

diagnostic command, only the selected drive will execute the command.

 When the ATA interface implements the 48-bit LBA addressing, defined starting with the

ATA/ATAPI-6 version of the standard, the following registers operate as two byte deep FIFO

memories: the Features register, the Sector Count register, and the LBA address registers (Low,

Mid, and High). Each time one of these registers is written, the new content written is placed into

the “most recently written” location, and the previous content is moved to the “previous content”

location. For instance, when a command code that uses the 48-bit LBA addressing, such as the

Read Sector(s) Ext command, is written to the Command register, the address used by this

command and the sector count are indicated in Table 7.8.

Table 7.8. The LBA address and sector count when using 48-bit LBA addressing.

Register
“Most Recently Written”

Location
“Previous Content”

Location

LBA Low LBA address, bits 7..0 LBA address, bits 31..24

LBA Mid LBA address, bits 15..8 LBA address, bits 39..32

LBA High LBA address, bits 23..16 LBA address, bits 47..40

Sector Count Sector count, bits 7..0 Sector count, bits 15..8

 The host computer may read the “previous content” location of the Features register,

Sector Count register, and LBA address registers by setting to 1 bit 7 (HOB – High Order Bit) of

the Device Control register and then reading the desired register. If the HOB bit is 0, when

reading one of the registers mentioned, the “most recently written” location is read. Writing is

always performed to the “most recently written” location, regardless of the state of HOB bit of

the Device Control register.

14 7. ATA Interface

 7.6.1. Status Register

 This register contains the current status of the drive. If the BSY bit is 0, the other bits

of the register contain valid information; otherwise the other bits do not contain valid infor-

mation. If this register is read by the host computer during a pending interrupt, the interrupt

condition is cleared.

 7 6 5 4 3 2 1 0

BSY DRDY DF # DRQ X X ERR/CHK

• Bit 7 (BSY – Busy) is set to 1 whenever the disk drive has control of the Command

Block registers. If the BSY bit is 1, a write to any Command Block register by the

host computer will be ignored by the drive. The BSY bit is cleared to 0 by the drive at

command completion and after setting the DRQ status bit to 1 to indicate the device is

ready to transfer data.

• Bit 6 (DRDY – Device Ready) is set to 1 to indicate that the disk drive accepts com-

mands. If the DRDY bit is 0, the drive will accept and attempt to execute the Device

Reset and Execute Device Diagnostic commands. Other commands will not be ac-

cepted, and the drive will set the ABRT bit in the Error register and the ERR/CHK bit

in the Status register, before resetting the BSY bit to indicate completion of the com-

mand.

• Bit 5 (DF – Device Fault) indicates by value 1 that a device fault has been detected. A

device fault is any event that prevents the device from completing a command, event

which is not the result of an error described in the Error register.

• Bit 4 is command specific.

• Bit 3 (DRQ – Data Request) indicates by value 1 that the disk drive is ready to trans-

fer data between the host computer and the drive. After the computer writes a com-

mand code to the Command register, the drive sets the BSY bit or the DRQ bit to 1

until command completion.

• Bits 2..1 are undefined.

• Bit 0 (ERR/CHK – Error/Check) is defined as ERR for all commands except for the

Packet and Service commands, for which this bit is defined as CHK. The ERR bit in-

dicates by value 1 that an error occurred during execution of the previous command.

The bits in the Error register contain additional information about the error. The CHK

bit indicates by value 1 that an exception condition occurred.

 7.6.2. Data Register

 This is a 16-bit register and is used for reading or writing the data during data transfers.

This register shall be accessed for data transfers in PIO mode only when the DRQ bit of the

Status register is set to 1.

 7.6.3. Error Register

 This register contains the status of the last command executed by the disk drive or a

diagnostic code. At completion of any command except the Execute Device Diagnostic and

Device Reset commands, the contents of this register are valid when the BSY and DRQ bits of

the Status register are cleared to 0 and the ERR/CHK bit in the same register is set to 1. At

completion of an Execute Device Diagnostic or Device Reset command and after a hardware

or software reset, this register contains a diagnostic code.

 Except for bit 2 (ABRT), the meaning of other bits of the Error register varies depend-

ing on the command that has been executed.

15 Input/Output Systems and Peripheral Devices

 7 6 5 4 3 2 1 0

ABRT # #

• Bit 2 (ABRT – Command Aborted) indicates by value 1 that the requested command

has been aborted because the command code or a command parameter is invalid, the

command is not implemented, or some other error has occurred.

 7.6.4. Features Register

 This register can be used to set various features of the interface, e.g., to validate or

invalidate the cache memory through the Set Features command. The register shall be written

only when the BSY and DRQ bits of the Status register are both 0. The content of this register

becomes a command parameter when the command code is written into the Command regis-

ter.

 The structure of this register is command specific. For commands that use 48-bit LBA

addressing, the Features register operates as a two byte deep FIFO memory.

 7.6.5. Sector Count / Interrupt Reason Register

 For the ATA interface, this register is called the Sector Count register. For the ATAPI

interface, this register is called the Interrupt Reason register. The register shall be written only

when the BSY and DRQ bits of the Status register are both 0. The contents of this register are

valid only when the BSY and DRQ bits of the Status register are both 0. The contents of this

register become a command parameter when the command code is written into the Command

register.

 The structure of this register is command specific. In general, this register is written

with the number of data sectors to be transferred in a read or write operation between the host

computer and the disk drive. For some commands, this register has a function different than a

count register. For media access commands, this register contains the value 0 at command

completion if no errors were indicated in the Status register. When errors occurred, this regis-

ter contains the number of sectors that should be transferred in order to complete the opera-

tion.

 For read and write commands that use 28-bit LBA addressing, if the Sector Count

register contains the value 0x00, this specifies a number of 256 sectors to be transferred. For

commands that use 48-bit LBA addressing, this register operates as a two byte deep FIFO

memory. For these commands, if the register contains the value 0x0000, this specifies a num-

ber of 65,536 sectors to be transferred.

 7.6.6. LBA Low Register

 This register allows writing part of the sector address for read and write commands

that use LBA addressing. The register shall be written only when the BSY and DRQ bits of the

Status register are both 0. The contents of this register are valid only when the BSY and DRQ

bits of the Status register are both 0. The contents of this register become a command parame-

ter when the command code is written into the Command register.

 For commands that use 28-bit LBA addressing, the LBA Low register should be writ-

ten with bits 7..0 of the LBA address. For commands that use 48-bit LBA addressing, the

LBA Low register operates as a two byte deep FIFO memory, as described in Section 7.6.

 7.6.7. LBA Mid / Byte Count Low Register

 For the ATA interface, this register is called LBA Mid register. For the ATAPI inter-

face, this register is called the Byte Count Low register. The register shall be written only

when the BSY and DRQ bits of the Status register are both 0. The contents of this register are

valid only when the BSY and DRQ bits of the Status register are both 0. The contents of the

register become a command parameter when the command code is written into the Command

register.

16 7. ATA Interface

 For commands that use 28-bit LBA addressing, the LBA Mid register should be writ-

ten with bits 15..8 of the LBA address. For commands that use 48-bit LBA addressing, the

LBA Mid register operates as a two byte deep FIFO memory.

 7.6.8. LBA High / Byte Count High Register

 For the ATA interface, this register is called the LBA High register. For the ATAPI

interface, this register is called the Byte Count High register. The register shall be written

only when the BSY and DRQ bits of the Status register are both 0. The contents of this regis-

ter are valid only when the BSY and DRQ bits of the Status register are both 0. The contents

of the register become a command parameter when the command code is written into the

Command register.

 For commands that use 28-bit LBA addressing, the LBA High register should be writ-

ten with bits 23..16 of the LBA address. For commands that use 48-bit LBA addressing, the

LBA High register operates as a two byte deep FIFO memory.

 7.6.9. Device Register

 This register is used for selecting the disk drive. The register shall be written only

when the BSY and DRQ bits of the Status register are both 0. The contents of this register are

valid only when the BSY bit of the Status register is 0. Except the DEV bit, all other bits of

this register become a command parameter when the command code is written into the Com-

mand register.

 7 6 5 4 3 2 1 0

X LBA X DEV # # # #

• Bit 7 and bit 5 are undefined.

• Bit 6 (LBA) selects the sector addressing mode. Some commands require to set this bit

to 1 to select LBA addressing. If this bit is cleared to 0, the CHS addressing is select-

ed; this addressing has been used only up to the ATA/ATAPI-5 version of the standard.

• Bits 3..0 are command specific.

• Bit 4 (DEV – Device Select) selects by value 0 the drive 0, and by value 1 the drive 1.

 7.6.10. Command Register

 This register contains the command code to be sent to the disk drive. Command execu-

tion begins immediately after the command code is written into the Command register. The con-

tents of the Command Block registers become parameters of the command when this register is

written. Writing this register clears any pending interrupt condition.

 Except for the Device Reset command, this register shall be written only when the

BSY and DRQ bits of the Status register are both 0.

 7.6.11. Alternate Status Register

 This register contains the same information as the Status register. The only difference

is that reading the Alternate Status register does not imply an interrupt acknowledgement or

clearing of the interrupt condition.

 7.6.12. Device Control Register

 This register allows the host computer to perform a software reset of the disk drives and

to enable or disable the assertion of the INTRQ interrupt signal by the selected drive. When the

Device Control register is written, both drives respond to the write regardless of which drive is

selected.

17 Input/Output Systems and Peripheral Devices

 7 6 5 4 3 2 1 0

HOB X X X X SRST nIEN 0

• Bit 7 (HOB – High Order Byte) is defined only when the 48-bit LBA addressing is

implemented. If this bit is set to 1, reading of the Features register, the Sector Count

register, and the LBA address registers is performed from the “previous content” lo-

cation. If the HOB bit is set to 0, reading is performed from the “most recently writ-

ten” location. Writing to any Command Block register has the effect of resetting the

HOB bit to 0.

• Bits 6..3 are reserved.

• Bit 2 (SRST – Software Reset) is the software reset bit of the disk drives. If there are

two daisy-chained drives, by setting this bit to 1 both drives are reset.

• Bit 1 (nIEN – INTRQ Enable) enables by value 0 the assertion of the INTRQ interrupt

request signal by the disk drive.

• Bit 0 shall be cleared to 0.

 7.7. Protocols Used for ATA Commands

 The ATA/ATAPI standards define the protocols used for data transfers between the

host computer and the disk drive and the read/write cycle times. This section presents exam-

ple protocols used for executing ATA commands: the protocol for commands that do not

transfer data, the protocol for input in PIO mode, and the protocol for the Execute Device

Diagnostic command.

 7.7.1. ATA Protocol for Non-Data Commands

 This protocol is used for commands such as Check Power Mode, Flush Cache, Read

Native Max Address Ext, Read Verify Sector(s) Ext, SMART Enable Operations, or SMART

Return Status. Assuming that interrupt generation is not enabled, the ATA protocol for non-data

commands is the following:

1. Software reads the Status register and waits until the BSY and DRQ bits become 0. If

these bits do not become 0 in a certain time (e.g., 1 second), software may assume

that the drive does not respond or it does not exist and should abandon the execution

of the protocol.

2. Software clears the DEV bit of the Device register to 0 if drive 0 should be selected,

or sets it to 1 if drive 1 should be selected.

3. Software initializes the registers with the command parameters. These registers may

include the Features register, the Sector Count register, and the LBA registers. The

registers that should be initialized depend on the specific command. Example com-

mands are described in Sections 7.8.2-7.8.4.

4. Software writes the command code to the Command register. The drive will start exe-

cuting the requested command.

5. Software reads the Status register and waits until the BSY bit becomes 0, which indi-

cates that command execution is completed. If the BSY bit does not become 0 in a

certain time (e.g., 1 second), software should abandon the execution of the protocol.

6. Software checks the ERR/CHK bit in the Status register. If this bit is 1, the command

completed with an error; otherwise, the command completed successfully.

18 7. ATA Interface

 7.7.2. ATA Protocol for Input in PIO Mode

 This protocol is used for commands such as Identify Device, Identify Packet Device,

Read Buffer, Read Sector(s) Ext, or SMART Read Log. Assuming that interrupt generation is not

enabled, the ATA protocol for an input operation in PIO mode is the following:

1. Software reads the Status register and waits until the BSY and DRQ bits become 0. If

these bits do not become 0 in a certain time (e.g., 1 second), software may assume

that the drive does not respond or it does not exist and should abandon the execution

of the protocol.

2. Software clears the DEV bit of the Device register to 0 if drive 0 should be selected,

or sets it to 1 if drive 1 should be selected.

3. Software initializes the registers with the command parameters. These registers may

include the Features register, the Sector Count register, and the LBA registers. The

registers that should be initialized depend on the specific command. Example com-

mands are described in Sections 7.8.2-7.8.4.

4. Software writes the command code to the Command register. The drive will prepare

the requested data for transfer to the host computer.

5. Software reads the Status register and waits until the BSY bit becomes 0. If the BSY

bit does not become 0 in a certain time (e.g., 1 second), software should abandon the

execution of the protocol.

6. Software checks the DRQ bit of the Status register. If this bit is 0, the drive has com-

pleted the command with an error. In this case, the protocol is completed; software

may read the Error register for more information about the error occurred. If the DRQ

bit is 1, software continues with Step 7.

7. Software transfers a data block by reading the Data register word by word. The num-

ber of words that should be transferred depends on the particular command. For in-

stance, the Identify Device and Identify Packet Device commands require to transfer a

number of 256 data words.

8. If all data blocks for the particular command have been transferred, the command

completed successfully. Otherwise (if there are more data blocks to be transferred),

software continues with Step 9.

9. Software waits for a time corresponding to a PIO transfer cycle. For instance, it may

read the Alternate Status register, ignoring the result.

10. Software continues with the transfer of a new data block, from Step 5.

 7.7.3. ATA Protocol for Execute Device Diagnostic Command

 Assuming that interrupt generation is not enabled, the ATA protocol for the Execute

Device Diagnostic command is the following:

1. Software reads the Status register and waits until the BSY and DRQ bits become 0. If

these bits do not become 0 in a certain time (e.g., 1 second), software may assume

that the drive does not respond or it does not exist and should abandon the execution

of the protocol.

2. Software clears the DEV bit of the Device register to 0.

3. Software writes the command code to the Command register. The drive (or both

drives, 0 and 1, if present) will begin performing the self-diagnostic testing.

4. Software waits for at least 2 ms.

19 Input/Output Systems and Peripheral Devices

5. Software reads the Status register and waits until the BSY bit becomes 0, which indi-

cates that command execution is completed. If the BSY bit does not become 0 in a

time of 6 seconds, software should abandon the execution of the protocol.

6. Software checks the results of the command execution. The Error register contains a

diagnostic code. The LBA registers and the Sector Count register contain a signature

that can be used to identify ATA and ATAPI drives.

 Note

• The diagnostic codes returned by the Execute Device Diagnostic command are listed in

Table 7.10, and the signatures specific to ATA and ATAPI drives are listed in Table 7.11.

 7.8. ATA Commands

 7.8.1. ATA Command List

 Table 7.9 presents a list of the main ATA commands and the registers that should be

loaded with the command parameters. The meaning of the registers is described next.

 FR: Features register;

 SCR: Sector Count register;

 LBA: LBA registers;

 DR: Device register.

 V indicates a valid parameter for the corresponding register. For the Device register

(DR), V indicates the use of both the DEV bit for the drive number and bits 27..24 of the LBA

address, while D indicates that only the parameter for the drive number is valid.

Table 7.9. List of ATA commands.

Command Code FR SCR LBA DR

Check Power Mode 0xE5 D

Device Configuration Freeze Lock 0xB1 0xC1 D

Device Configuration Identify 0xB1 0xC2 D

Device Configuration Restore 0xB1 0xC0 D

Device Configuration Set 0xB1 0xC3 D

Device Reset 0x08 D

Download Microcode 0x92 V V V V

Execute Device Diagnostic 0x90

Flush Cache 0xE7 D

Flush Cache Ext 0xEA D

Identify Device 0xEC D

Identify Packet Device 0xA1 D

Idle 0xE3 V D

Idle Immediate 0xE1 D

NOP 0x00 V D

Packet 0xA0 V V V D

Read Buffer 0xE4 D

Read DMA 0xC8 V V V

Read DMA Ext 0x25 V V D

Read DMA Queued 0xC7 V V V V

Read DMA Queued Ext 0x26 V V V D

Read Multiple 0xC4 V V V

Read Multiple Ext 0x29 V V D

Read Native Max Address 0xF8 D

Read Native Max Address Ext 0x27 D

Read Sector(s) 0x20 V V V

Read Sector(s) Ext 0x24 V V D

Read Verify Sector(s) 0x40 V V V

Read Verify Sector(s) Ext 0x42 V V D

Security Disable Password 0xF6 D

Security Erase Prepare 0xF3 D

Security Erase Unit 0xF4 D

20 7. ATA Interface

Command Code FR SCR LBA DR

Security Freeze Lock 0xF5 D

Security Set Password 0xF1 D

Security Unlock 0xF2 D

Service 0xA2 D

Set Features 0xEF V V V D

Set Max Address 0xF9 V V

Set Max Address Ext 0x37 V D

Set Multiple Mode 0xC6 V D

Sleep 0xE6 D

SMART Disable Operations 0xB0 0xD9 V D

SMART Enable Operations 0xB0 0xD8 V D

SMART Execute Off-Line 0xB0 0xD4 V D

SMART Read Log 0xB0 0xD5 V V D

SMART Return Status 0xB0 0xDA V D

SMART Write Log 0xB0 0xD6 V V D

Standby 0xE2 V D

Standby Immediate 0xE0 D

Write Buffer 0xE8 D

Write DMA 0xCA V V V

Write DMA Ext 0x35 V V D

Write DMA Queued 0xCC V V V V

Write DMA Queued Ext 0x36 V V V D

Write Log Ext 0x3F V V D

Write Multiple 0xC5 V V V

Write Multiple Ext 0x39 V V D

Write Sector(s) 0x30 V V V

Write Sector(s) Ext 0x34 V V D

 7.8.2. Execute Device Diagnostic Command

 This command causes the drives to perform the internal diagnostic tests. If present,

both drives connected to an ATA channel will execute the command regardless of which de-

vice is selected. The protocol for this command is described in Section 7.7.3. No registers

have to be initialized before writing the command code into the Command register.

 After command execution, the ERR bit of the Status register will be cleared to 0. The

Error register will contain an 8-bit diagnostic code. The meaning of the diagnostic codes is

presented in Table 7.10. Codes other than 0x01 and 0x81 may indicate additional information

about a drive’s failure.

Table 7.10. Diagnostic codes returned by the Execute Device Diagnostic command.

Diagnostic Code Description

0x01 Drive 0 passed, Drive 1 passed or not present

0x00, 0x02-0x7F Drive 0 failed, Drive 1 passed or not present

0x81 Drive 0 passed, Drive 1 failed

0x80, 0x82-0xFF Drive 0 failed, Drive 1 failed

 The Sector Count, LBA Low, LBA Mid, and LBA High registers will contain a sig-

nature that is specific to ATA drives. When the Execute Device Diagnostic command is sent to

an ATAPI drive, the drive will also return a signature in the corresponding registers of the

ATAPI interface, signature that is specific to ATAPI drives. Table 7.11 shows the signatures

returned by ATA drives and ATAPI drives.

Table 7.11. Signatures of ATA and ATAPI drives.

ATA Register ATA Signature ATAPI Register ATAPI Signature

Sector Count 0x01 Interrupt Reason 0x01

LBA Low 0x01 LBA Low 0x01

LBA Mid 0x00 Byte Count Low 0x14

LBA High 0x00 Byte Count High 0xEB

21 Input/Output Systems and Peripheral Devices

 7.8.3. Identify Device Command

 This command allows the host computer to receive the parameters of the disk drive.

When receives this command, the drive prepares a block of 256 words with information about

the drive: operating parameters, manufacturer, model, revision number, serial number, etc.

The host computer may transfer the data block by reading successively the Data register. The

protocol for this command is the protocol for input in PIO mode (Section 7.7.2). Except for

the DEV bit that should be cleared or set in the Device register, no other registers have to be

initialized before writing the command code into the Command register.

 ATA drives will not report an error after executing this command. ATAPI drives will

set the ABRT bit in the Error register and will place the signature of ATAPI drives in the Inter-

rupt Reason, LBA Low, Byte Count Low, and Byte Count High registers (Table 7.11).

 Table 7.12 presents the meaning of part of the 16-bit words that are returned by the

Identify Device command. Some parameters of the disk drive are defined as strings of ASCII

characters. Each word contains two ASCII characters: the first character is contained in the

most significant byte of the word, and the second character is contained in the least significant

byte of the word. Some parameters are defined as two or four consecutive words. For these

parameters, the least significant part is contained in the first word.

Table 7.12. Meaning of words returned by the Identify Device command.

Word Meaning

0 General configuration information

1 Number of logical cylinders in the default CHS translation

3 Number of logical heads in the default CHS translation

6 Number of logical sectors per track in the default CHS translation

10-19 Serial number (20 ASCII characters)

23-26 Firmware revision (8 ASCII characters)

27-46 Model number (40 ASCII characters)

54 Number of logical cylinders in the current CHS translation

55 Number of current logical heads in the current CHS translation

56 Number of current logical sectors per track in the current CHS translation

57-58 Capacity in sectors in the current CHS translation

60-61 Total number of addressable sectors (28-bit LBA addressing)

100-103 Total number of addressable sectors (48-bit LBA addressing)

 7.8.4. Read Native Max Address Ext Command

 This command is implemented by disk drives that support 48-bit LBA addressing.

The command returns the native maximum LBA address of the disk drive. This address is the

highest address accepted by the drive in the factory default condition. For this command, the

protocol for non-data commands should be used (Section 7.7.1). Before writing the command

code into the Command register, the LBA bit in the Device register should be set to 1 to speci-

fy LBA addressing, and the DEV bit in the same register should be cleared or set to specify

the selected drive.

 The 48-bit native maximum address is returned in the LBA Low, LBA Mid, and LBA

High registers. When 48-bit LBA addressing is used, the LBA registers operate as two byte

deep FIFO memories. The two bytes of each LBA register are selected individually by clear-

ing to 0 or setting to 1 the HOB bit of the Device Control register. Table 7.13 shows the con-

tents of the LBA registers after the execution of this command.

Table 7.13. Contents of LBA registers after executing the Read Native Max Address Ext command.

Register Contents

LBA Low
HOB = 0 Native max LBA address (7..0)

HOB = 1 Native max LBA address (31..24)

LBA Mid
HOB = 0 Native max LBA address (15..8)

HOB = 1 Native max LBA address (39..32)

LBA High
HOB = 0 Native max LBA address (23..16)

HOB = 1 Native max LBA address (47..40)

22 7. ATA Interface

 If this command is not implemented, the drive will set to 1 the ABRT bit in the Error

register. In this case, the ERR bit of the Status register will also be set to 1.

 7.8.5. SMART Return Status Command

 This command allows the host computer to receive the S.M.A.R.T. reliability status

of the disk drive. For this command, the protocol for non-data commands should be used

(Section 7.7.1). Before writing the command code into the Command register, the DEV bit in

the Device register should be cleared or set to specify the selected drive. In addition, the fol-

lowing registers should be initialized: the Features register should be set to 0xDA; the LBA

Mid register should be set to 0x4F; the LBA High register should be set to 0xC2.

 For drives that implement the S.M.A.R.T. technology, each manufacturer defines a

set of attributes or operational parameters of the drive, and sets threshold values beyond

which these attributes do not pass under normal operation. Examples of attributes are: count

of reallocated sectors (when a bad sector is found, its contents are transferred to a spare sec-

tor); number of data blocks with uncorrectable errors; count of attempts to reach the nominal

spin speed of the drive (if a first attempt was unsuccessful). A threshold exceeded condition

means that at least one attribute passed the threshold value. As response to the SMART Return

Status command, the drive will indicate whether it has detected a threshold exceeded condi-

tion.

 If the drive has not detected a threshold exceeded condition, it sets the LBA Mid reg-

ister to 0x4F and the LBA High register to 0xC2. If the drive has detected a threshold exceed-

ed condition, it sets the LBA Mid register to 0xF4 and the LBA High register to 0x2C. If the

drive does not support this command, if S.M.A.R.T. operation is disabled, or if the input reg-

ister values are invalid, the drive will set to 1 the ABRT bit in the Error register. In this case,

the ERR bit of the Status register will also be set to 1.

 7.9. Intel SATA Controllers

 The Platform Controller Hub (PCH) component of current Intel chipsets contains two

SATA controllers, both on PCIe bus 0. The first controller represents the PCIe device 31,

function 2, and the second controller represents the PCIe device 31, function 5 (the device and

function number may depend on the chipset). Depending on the system configuration, only

the first controller may be enabled, or both controllers may be enabled. The controllers inter-

act with the disk drives through a register interface that is equivalent to that of a traditional

ATA (IDE) host adapter. The two controllers support up to six SATA ports. Each port can be

independently enabled or disabled and has a separate DMA controller.

 The features of the SATA controllers depend on the chipset series. For instance, the

SATA controllers of the Intel 8 Series chipset used in the laboratory computers support trans-

fer rates of 6 Gbits/s, 48-bit LBA addressing, and three modes of operation: ATA (IDE),

AHCI (Advanced Host Controller Interface), and RAID (Redundant Array of Independent

Disks).

 For the ATA (IDE) mode of operation, each SATA controller contains a set of registers

that hold copies of the ATA interface registers. The SATA controllers emulate the behavior of

Command Block registers, Control Block registers, PIO data transfers, DMA data transfers,

and interrupts.

 The SATA controllers provide hardware support for the AHCI programming interface,

which has been developed by Intel and other companies. This programming interface defines

memory structures for performing transactions between a SATA controller and a software

driver, and enables advanced performance and features. Examples of advanced features ena-

bled by the AHCI programming interface are no master/slave designation for SATA drives

(each drive is treated as a master drive), hardware assisted native command queuing (the drive

may reorder commands in order to increase the efficiency of data transfers), and hot-plug

support (disk drives can be connected and disconnected without prior notification to the sys-

tem).

23 Input/Output Systems and Peripheral Devices

 The PCI configuration registers of the Intel SATA controllers include the PCI config-

uration header registers and a number of PCI device-specific registers. These registers can be

accessed using either the PCI-compatible configuration mechanism or the PCIe enhanced

configuration mechanism. The PCI configuration header registers are listed in Table 7.14. The

offset indicated in the table is relative to the base address of the configuration space allocated

for a specific controller (device 31, function 2 for the first SATA controller, or device 31,

function 5 for the second SATA controller).

Table 7.14. The PCI configuration header registers of Intel SATA controllers.

Offset Mnemonic Register Name Size (Bits)

0x00 VID Vendor Identification 16

0x02 DID Device Identification 16

0x04 PCICMD PCI Command 16

0x06 PCISTS PCI Status 16

0x08 RID Revision Identification 8

0x09 PI Programming Interface 8

0x0A SCC Sub-Class Code 8

0x0B BCC Base Class Code 8

0x0D PMLT Primary Master Latency Timer 8

0x0E HTYPE Header Type 8

0x10 PCMD_BAR Primary Command Block Base Address 32

0x14 PCNL_BAR Primary Control Block Base Address 32

0x18 SCMD_BAR Secondary Command Block Base Address 32

0x1C SCNL_BAR Secondary Control Block Base Address 32

0x20 BAR Legacy Bus Master Base Address 32

0x24 ABAR/SIDPBA
AHCI Base Address / SATA Index Data Pair
Base Address

32

0x2C SVID Subsystem Vendor Identification 16

0x2E SID Subsystem Identification 16

0x34 CAP Capabilities Pointer 8

0x3C INT_LN Interrupt Line 8

0x3D INT_PN Interrupt Pin 8

 The PCI configuration header registers of the SATA controllers have the same func-

tions as the general PCI configuration header registers described in the laboratory work PCI

Express Bus. The PCMD_BAR register contains on bit positions 15..3 the base address of the

I/O space allocated to the Command Block registers of the primary ATA channel, and the

SCMD_BAR register contains on bit positions 15..3 the base address of the I/O space allocated

to the Command Block registers of the secondary ATA channel. The PCNL_BAR register con-

tains on bit positions 15..2 the base address of the I/O space allocated to the Control Block

registers of the primary ATA channel, and the SCNL_BAR register contains on bit positions

15..2 the base address of the I/O space allocated to the Control Block registers of the second-

ary ATA channel.

 7.10. Applications

 7.10.1. Answer the following questions:

a. What is the aim of the S.M.A.R.T. technology?

b. What are the enhancements introduced by the ATA/ATAPI-6 version of the ATA

standard?

c. What are the advantages of the serial ATA interface compared to the parallel ATA

interface?

d. What are the enhancements introduced by the 3.2 and 3.3 versions of the SATA

standard?

 7.10.2. Create a Windows application for determining the base addresses of the I/O

registers for the first SATA controller of the computer. As model for the Windows application,

24 7. ATA Interface

use the AppScroll-e application available on the laboratory web page in the AppScroll-e.zip ar-

chive. Perform the following operations to create the application project:

1. In the Visual Studio 2022 programming environment, create a new empty Windows

Desktop project with the Windows Desktop Wizard.

2. Verify that the active solution platform is set to x64.

3. Change the Character Set project property to Not Set.

4. Copy to the project folder the files contained in the AppScroll-e.zip archive and add to

the project these files.

5. Copy to the project folder the Hw.h and Hw64.lib files from a previously created pro-

ject. Copy to the project folder the PciBaseAddressUEFI-e.cpp and ATA-ATAPI-e.h

files, available on the laboratory page in the ATA-ATAPI-e.zip archive.

6. Add to the project the Hw.h, ATA-ATAPI-e.h, and PciBaseAddressUEFI-e.cpp files.

7. Specify the Hw64.lib file as an additional dependency for the linker.

8. Open the AppScroll-e.cpp source file and add an #include directive to include the

ATA-ATAPI-e.h header file. Declare PciBaseAddressUEFI() as a function that has

no parameters and returns a DWORD64 value.

9. Select Build → Build Solution and make sure that the application builds correctly.

 In the AppScroll-e.cpp source file, first call the PciBaseAddressUEFI() function to

determine the base address of the PCIe extended configuration space and store the base ad-

dress in a global variable. If the function returns 0, the base address cannot be successfully

determined, and in this case the application should return with an error code. Then, write a

function that returns in a double-word (DWORD) the base address of the Command Block regis-

ters and the base address of the Control Block registers for a SATA controller of the computer.

The function has four input parameters; the first three parameters are the bus number, device

number, and PCIe function number of the SATA controller. The last parameter specifies the

ATA channel for which the base addresses should be returned: if this parameter is 0, the func-

tion should return the base addresses for the primary ATA channel (channel 0) of the SATA

controller, and if the parameter is 1, it should return the base addresses for the secondary ATA

channel (channel 1) of the SATA controller. In this function, call the function that returns a

pointer to a PCIe function’s configuration header, written for Application 2.7.2 of the labora-

tory work PCI Express Bus, and access the base address registers through this pointer. The

function returns a double word containing the base address of the Command Block registers

in the low word and the base address of the Control Block registers in the high word.

 Notes

• In the PCMD_BAR and SCMD_BAR registers, the base addresses of the Command

Block registers are in the low words of these registers; bits 2..0 of these words should

be cleared to 0 before returning the base addresses.

• In the PCNL_BAR and SCNL_BAR registers, the base addresses of the Control Block

registers are in the low words of these registers; bits 1..0 of these words should be

cleared to 0 before returning the base addresses.

 After writing the function, include a call to this function in the AppScroll() func-

tion to determine the base addresses for the primary ATA channel of the first SATA controller,

and another call to determine the base addresses for the secondary ATA channel of the same

controller. For each channel, display the base address of the Command Block registers and the

base address of the Control Block registers.

 7.10.3. In the AppScroll-e.cpp source file, write a function for sending the Execute

Device Diagnostic command to a disk drive. The input parameter of the function is the base

25 Input/Output Systems and Peripheral Devices

address (of type WORD) of the Command Block registers for an ATA channel; the function does

not return any value. This command is described in Section 7.8.2, and the protocol for this

command is described in Section 7.7.3. The function displays messages if the drive does not

respond (if the BSY and DRQ bits do not become 0 in a time of around 1 s) or the command

execution does not complete in a time of 6 s. If the command completes successfully, the

function reads the Error register and displays the diagnostic code returned by the drive. In

addition, the function reads the registers containing the signature of the drive (Table 7.11) and

displays whether the drive is an ATAPI drive.

 After writing the function, include a call to this function in the AppScroll() func-

tion using as parameter the base address of the Command Block registers for the primary ATA

channel, and then another call using as parameter the base address of the Command Block

registers for the secondary ATA channel.

 Notes

• Define symbolically the offsets of the registers used in the function and the bitmasks

needed for these registers with #define directives at the beginning of the source file.

• The address of a register is formed by adding its offset to the base address transmitted

as parameter to the function.

 7.10.4. Extend Application 7.10.3 by writing a function for sending the Read Native

Max Address Ext command to a disk drive. The input parameters of the function are the fol-

lowing: the base address (of type WORD) of the Command Block registers for the ATA channel

the drive is connected to; the base address (of type WORD) of the Control Block registers for

the ATA channel the drive is connected to; the drive number (0 or 1). The function does not

return any value. This command is described in Section 7.8.4, and the protocol for this com-

mand is described in Section 7.7.1. The function displays messages if the drive does not re-

spond (if the BSY and DRQ bits do not become 0 in a time of around 1 s) or the command

execution does not complete in a time of around 1 s. If the command completes successfully,

the function clears to 0 the HOB bit of the Device Control register, reads the contents of the

LBA registers, and stores them in local variables. Then the function sets to 1 the HOB bit of

the Device Control register, reads again the contents of the LBA registers, and stores them in

other local variables. Next, the function determines and displays the maximum LBA address

of the disk drive using the contents of the LBA registers stored previously; the contents of the

LBA registers after the command execution are presented in Table 7.13. Finally, the function

computes and displays the maximum capacity in GB of the disk drive, assuming a sector size

of 512 bytes.

 After writing the function, include a call to this function in the AppScroll() func-

tion using as parameters the base addresses of the Command Block registers and Control

Block registers for the primary ATA channel, and the drive number 0.

 7.10.5. Extend Application 7.10.2 by writing a function that sends the Identify Device

command to a disk drive. The input parameters of the function are the base address (of type

WORD) of the Command Block registers for the ATA channel the drive is connected to, and the

drive number (0 or 1). The function does not return any value. This command is described in

Section 7.8.3, and the protocol for this command is described in Section 7.7.2, with a single

data block of 256 words to be transferred. The function displays messages if the drive does

not respond (if the BSY and DRQ bits do not become 0 in a time of around 1 s) or the com-

mand execution does not complete in a time of around 1 s. When the command completes

successfully, the function displays the following information about the disk drive: model

number, serial number, firmware revision, total number of addressable sectors with 28-bit

LBA addressing, and total number of addressable sectors with 48-bit LBA addressing. Next,

using the total number of addressable sectors and assuming that a sector contains 512 bytes,

the function computes and displays the capacity in GB of the disk drive for 28-bit LBA ad-

dressing and for 48-bit LBA addressing.

26 7. ATA Interface

 After writing the function, include a call to this function in the AppScroll() func-

tion using as parameters the base addresses of the Command Block registers for the primary

ATA channel and the drive number 0.

 7.10.6. Extend the function written for Application 7.10.5 by displaying the following

additional information about the disk drive:

• Maximum number of sectors that can be transferred per interrupt when executing the

Read/Write Multiple commands (word 47, bits 7..0) and the current setting for the

number of sectors transferred per interrupt (word 59, bits 7..0);

• Support for multiword DMA mode 2 (word 63, the meaning of the bits is described in

Section 7.4.2);

• Support for PIO mode 4 (bit 1 of word 64 is set to 1 if this mode is supported);

• Minimum cycle time in PIO transfer modes when using the IORDY signal (the value

of word 68 represents the minimum cycle time in nanoseconds);

• Version of the ATA standard the disk drive is compatible with (if one of the bits 4, 5,

6, and 7 of word 80 is set to 1, the drive is compliant with the ATA/ATAPI-4,

ATA/ATAPI-5, ATA/ATAPI-6, and ATA/ATAPI-7 version, respectively);

• Support for 48-bit LBA addressing (bit 10 of word 83 is set to 1 if 48-bit addressing is

supported);

• Support for Ultra-DMA mode 6 and the Ultra-DMA mode selected (word 88, the

meaning of the bits is described in Section 7.4.2).

 Bibliography

[1] American National Standards Institute, Inc., “Information Technology - AT Attachment

8 - ATA/ATAPI Architecture Model (ATA8-AAM)”, T13/1700-D Revision 3, 2006.

[2] American National Standards Institute, Inc., “Information Technology - AT Attachment

8 - ATA/ATAPI Command Set (ATA8-ACS)”, T13/1699-D Revision 4a, 2007.

[3] American National Standards Institute, Inc., “Information Technology - AT Attachment

8 - ATA/ATAPI Parallel Transport (ATA8-APT)”, T13/1698-D Revision 2, 2007.

[4] American National Standards Institute, Inc., “Information Technology - AT Attachment

8 - ATA/ATAPI Serial Transport (ATA8-AST)”, T13/1697-D Revision 1, 2007.

[5] Intel Corporation, “Intel 8 Series/C220 Series Chipset Family Platform Controller Hub

(PCH)”, Datasheet, May 2014.

[6] Serial ATA International Organization, “Fast Just Got Faster: SATA 6 Gb/s”, 2009.

[7] Serial ATA International Organization, “SATA-IO Introduces New Standard for

Embedded SSDs”, 2011.

[8] Serial ATA International Organization, “SATA-IO Unveils Revision 3.2 Specification”,

2013.

[9] Serial ATA International Organization, “What Is SATA Express?”, 2015.

[10] Wikimedia Foundation, Inc., “SATA”, 2024, https://en.wikipedia.org/wiki/SATA.

[11] Wikimedia Foundation, Inc., “SATA Express”, 2024,

https://en.wikipedia.org/wiki/SATA_Express.

https://en.wikipedia.org/wiki/SATA
https://en.wikipedia.org/wiki/SATA_Express

