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 This laboratory work presents several types of electrical interfaces of the Small 

Computer System Interface (SCSI), the SCSI standards that have been developed, the SCSI 

bus, the structure of SCSI commands, the SCSI device configuration, and one of the SCSI 

programming interfaces. 

 6.1. Overview of Small Computer System Interface 

 Small Computer System Interface (SCSI) originates from the Shugart Associates Sys-

tem Interface (SASI), which has been developed by the hard disk drive manufacturer Shugart 

Associates and has been designed for connecting disk drives to a computer. This interface 

used logical addresses instead of physical addresses, and commands of 6 bytes each. The 

X3T9 working committee of the American standards institute ANSI used the SASI specifica-

tions as basis for developing a standard of a parallel interface, standard that has later been 

named SCSI-1 and has been published in 1986. The same X3T9 committee developed the 

SCSI-2 standard, which has been published in its final form in 1994. In 1993, another work-

ing committee, T10, started the activity for developing the SCSI-3 version of the standard. 

The documents of this version have been published separately, during several years, starting 

from 1996. These documents continue to be updated today with new versions. 

 SCSI is not a disk interface, that is, a certain type of controller, but rather a system 

interface composed of a bus to which several devices can be attached. One of these devices, 

the host adapter, operates as a bridge between the SCSI bus and the system bus. The SCSI bus 

does not communicate directly with the peripheral devices, such as disk drives, but rather with 

the controller that is included into these drives. 

 A single SCSI bus can accept up to 8 or 16 physical units, called SCSI units, out of 

which one is the SCSI adapter. The physical units can be magnetic disk drives, optical drives, 

scanners, printers. Most systems can support up to four SCSI adapters. 

 One of the reasons that delayed acceptance of the SCSI interface in the personal com-

puter market was the lack of a standard for the host adapter, interface drivers, and BIOS. Due 

to the lack of an interface standard, several problems occurred, such as the impossibility to 

use the disk drives outside the SCSI bus, the impossibility to boot the operating system from 

these drives, and to use some operating systems. These problems were solved by developing 

the SCSI standards. 

 SCSI is an interface designed especially for workstations and high-performance serv-

ers. In the first version of the SCSI interface, the bus clock frequency was 5 MHz, and the 

maximum transfer rate was 5 MB/s. In later versions of this interface, the bus clock frequency 

is 80 MHz or 160 MHz, and the maximum transfer rates are of 320 MB/s and 640 MB/s, re-

spectively. 

 Besides these parallel versions of the SCSI interface, a serial version of the interface 

has also been developed. This serial SCSI interface, called Serial Attached SCSI, gradually 

replaced the parallel SCSI interface. Both the parallel and the serial SCSI technologies are 

promoted by the SCSI Trade Association (www.scsita.org). 

 6.2. Types of SCSI Electrical Interfaces 

 There are two main types of SCSI electrical interfaces: normal and differential. In 

case of a normal SCSI interface (also called Single-Ended – SE), for each signal transmitted 

http://www.scsita.org/
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on the bus there is a single wire. The receiver circuits at the other end of the cable detect the 

electrical voltages on the bus lines. The cost of such an interface is low, but the signals trans-

mitted are affected by noise and electromagnetic interference. 

 With differential SCSI interfaces, for each signal there is a pair of wires. One of the 

wires carries the same type of signal that is carried by normal SCSI interfaces. The second 

wire carries a signal that is obtained by the logical inversion of the original signal. The re-

ceiver circuits do not have to detect the absolute value of the voltage, but only the difference 

between the signals received on the two wires. Differential interfaces have several ad-

vantages: increased immunity to noise, the possibility of transfers with higher speeds, and 

greater cable length. With normal SCSI interfaces, the cable length can be up to 6 m for low 

frequencies of the SCSI bus, or up to 3 m for higher frequencies. With differential SCSI inter-

faces, the cable length can be up to 25 m or 12 m, depending on the bus frequency. 

 In the early differential SCSI interfaces, called High Voltage Differential (HVD), rela-

tively high voltages were used for signal transmission. For this reason, low-power and small-

sized interface chips could not be developed. For implementing the interface, circuits using 

several chips were required, which increased the cost of the interface. Another problem of this 

differential interface was that devices with differential interface could not be attached to the 

same bus to which devices with normal interface were attached, because the higher voltages 

of the differential interface could destroy the receiver circuits of the devices with normal in-

terface. Because of the high cost and the incompatibility with devices having normal inter-

face, the HVD differential interface was very rarely used, and its specifications were removed 

from the latest version of the SCSI standard. 

 Instead of the HVD electrical interface, a new differential interface has been devel-

oped, called LVD (Low Voltage Differential), which uses low voltages. This interface can be 

implemented with low-power and inexpensive circuits. Another advantage of this interface is 

that it allows connecting LVD devices to a normal SE SCSI bus, without the risk of damaging 

the devices’ interface circuits. Optionally, devices with LVD interface can be designed so that 

they can be connected to both LVD and SE buses. These multimode devices detect if they are 

connected to an SE bus and will operate in the SE mode that is compatible with this bus. 

When there is even a single SE device connected to a SCSI bus, all LVD devices connected to 

the same bus will run in SE mode, at a reduced frequency of the bus (up to 20 MHz). 

 Because the SCSI connectors are the same for various types of the electrical interface, 

and connecting a device with HVD interface to a bus with SE or LVD devices may cause dam-

ages to these devices, it is necessary to differentiate between various types of interfaces. De-

vices with normal interface can be distinguished from those with HVD or LVD differential 

interfaces by the symbols labeled on them. Different symbols have been adopted in the indus-

try for the normal and differential SCSI interfaces (Figure 6.1). 

 

Figure 6.1. Symbols for the SCSI electrical interfaces: (a) SE normal interface; (b) HVD differential interface; 

(c) LVD differential interface; (d) LVD/SE multimode interface. 
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 6.3. SCSI Standards 

 The SCSI interface standards have been developed by several working groups within 

the ANSI institute, which functioned or function as accredited committees for standardization. 

The SCSI standards define the physical and electrical parameters of an I/O bus, which is used 

for daisy-chaining the peripheral devices. 

 6.3.1. SCSI-1 

 The first standard of the SCSI interface, SCSI-1 (ANSI X3.131-1986), has been ap-

proved by the ANSI institute in 1986. Even before the approval of this standard, the hard disk 

manufacturers were worried that many of the commands and features specified by the stand-

ard were optional. For that reason, no guarantee existed that a particular peripheral will sup-

port all these commands. To solve this problem, the industry requested the X3T9 committee 

that developed the SCSI-1 specifications to extend the mandatory commands and features of 

these specifications. Because the specifications were nearly finished, the ANSI institute has 

approved the standard in the existing form and established a new working group to develop a 

set of 18 basic SCSI commands. This set has been called CCS (Common Command Set) and 

will become the minimum set of commands supported by all peripherals. This command set 

became the basis of the SCSI-2 standard. 

 6.3.2. SCSI-2 

 The SCSI-2 standard is an improved version of the SCSI-1 standard, with new fea-

tures and options added. Normally, SCSI-1 and SCSI-2 devices are compatible, but devices 

conforming to the SCSI-1 standard do not support the additional features introduced in the 

SCSI-2 standard. 

 The X3T9 working committee finalized the SCSI-2 standard in 1990, but the docu-

ment has been withdrawn at the end of the same year for some changes, to be made before the 

final publishing by the ANSI institute. The final version has been approved only at the begin-

ning of 1994, although this document (ANSI X3.131-1994) contains very few changes com-

pared to the initial version from 1990. Basically, all the specifications of the SCSI-1 standard 

can also be found in the SCSI-2 standard. 

 In addition to supporting the set of 18 basic SCSI commands, the SCSI-2 standard 

also contains new specifications, such as new commands for CD-ROM drives (including the 

possibility to use CD audio discs), tape drives, and other peripherals. Likewise, a faster ver-

sion of the interface has been defined, called Fast SCSI-2, and a 16-bit version, called Wide 
SCSI-2. Another improvement defined by the SCSI-2 standard is the possibility to write the 

commands into a command queue, which allows a peripheral to accept several commands and 

to execute them in an order that is considered the most efficient. This possibility is important 

for multitasking operating systems. 

 Some of the changes specified by the SCSI-2 standard are minor. For instance, in the 

SCSI-1 standard the parity on the SCSI bus was optional, while in the SCSI-2 standard it is 

mandatory to use a parity bit. Another requirement is that initiator devices, such as host 

adapters, have to provide power to the terminator devices of the interface. However, most 

devices already fulfilled this requirement. 

 The SCSI-2 standard defines the following optional features: 

• Fast SCSI; 

• Wide SCSI; 

• Command queuing; 

• New commands; 

• Improved terminators. 

 Fast SCSI refers to the capability to perform synchronous transfers at higher speeds. 

With this version, transfer rates of 10 MB/s can be achieved on the standard 8-bit SCSI bus. 
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When combined with a 16-bit Wide SCSI interface, this configuration allows transfer rates of 

20 MB/s. 

 Wide SCSI enables data transfers on 16-bit or 32-bit buses. For these variants other 

cables are required than for the 8-bit variant. The standard 50-conductor cable used for 8-bit 

transfers is called the A cable. For the 16-bit Wide SCSI variant a 68-conductor P cable is 

required. For the 32-bit Wide SCSI variant, which was never actually implemented, two ca-

bles are required: the 68-conductor P cable and the 68-conductor Q cable. 

 According to the SCSI-1 standard, an initiator device, such as a host adapter, can send 

a single command per device. According to the SCSI-2 standard, the host adapter can send up 

to 256 commands to a single device, which will store the commands in a command queue and 

will process them before sending a response on the SCSI bus. The device can even change the 

order of commands to enable the most efficient execution possible. 

 The commands from the Common Command Set (CCS), which were already used in 

the industry, have been included officially into the SCSI-2 standard. The common command 

set was defined especially for disk drives and did not include specific commands for other 

types of devices. Many of the old commands have been changed and new commands have 

been added. For instance, new command sets have been added for CD-ROM drives, other 

optical drives, scanners, communication devices etc. 

 For correct operation of the single-ended SCSI bus, termination resistors with tight 

tolerances are needed. The 132- passive terminators, defined in the SCSI-1 standard, are not 

adequate for the higher transfer speeds allowed by the SCSI-2 standard. These passive termi-

nators can cause signal reflections, and errors can occur when transfer rates increase or when 

more devices are attached to the bus. According to the SCSI-2 standard, active components 

should be used as terminators, which ensure an impedance of 110  and improve system in-

tegrity. 

 6.3.3. SCSI-3 

 SCSI-3 represents a collection of standards that were developed and published sepa-

rately. These standards have been divided into categories that include: standards for primary 

commands, standards for commands that are specific to various device classes, standards for 

the communication protocols, and standards for the physical interconnects. In addition, a 

SCSI Architectural Model (SAM) exists for the physical and electrical interfaces. The SCSI-3 

standards have been developed and are updated by the T10 technical committee within the 

InterNational Committee on Information Technology Standards (INCITS) that is accredited by 

ANSI. The working documents of the T10 committee are available at www.t10.org. 

 The main improvements introduced by the SCSI-3 standard include the following: 

• Ultra2 (Fast-40) SCSI; 

• Ultra3 (Fast-80DT) SCSI; 

• Ultra4 (Fast-160DT) SCSI; 

• Ultra5 (Fast-320DT) SCSI; 

• New Low Voltage Differential signaling; 

• Elimination of High Voltage Differential signaling. 

 Figure 6.2 presents the main components of the SCSI-3 collection of standards. Most 

of the individual standards have several versions, which are indicated in the figure. 

 The main components of the SCSI-3 family of standards are described next. 

 SCSI Architecture Model (SAM) defines the model of SCSI systems, the functional 

partitioning of the SCSI-3 set of standards, and the requirements applicable to all SCSI-3 im-

plementations. 

http://www.t10.org/
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Figure 6.2. Main components of the SCSI-3 collection of standards. 

 Commands represent specifications that define the classes of devices and a device 

model for each class. These specifications define the commands that must be implemented by 

all devices or those that are specific to various classes of devices, and describe the rules that 

must be followed by an initiator device when it sends commands to another device. The main 

standards related to the commands are the following: 

• Primary Commands (SPC): basic commands for all SCSI devices; 

• Block Commands (SBC): commands for direct-access devices such as magnetic disk 

drives; 

• Stream Commands (SSC): commands for sequential-access devices such as magnetic 

tape drives; 

• Medium Changer Commands (SMC): commands for medium changer devices such as 

jukeboxes for audio discs; 

• Multimedia Commands (MMC): commands for optical disc drives such as CD-ROM, 

CD-R/E (Recordable/Erasable), DVD; 

• Controller Commands (SCC): commands for I/O controllers, e.g., for RAID (Redun-

dant Array of Independent Disks) disk drive sets. 

 Protocols represent specifications that define the communication rules between vari-

ous SCSI devices. 

 Interconnects contain specifications that define various physical interfaces. The 

SCSI-3 collection of standards defines several types of interfaces. For a long time, the most 

used was the SCSI Parallel Interface (SPI), until it begun to be replaced with the Serial At-

tached SCSI (SAS) serial interface. Another serial interface is IEEE 1394, especially used for 

video applications. Fibre Channel is a high-performance serial interface, which allows com-

munication over optical fiber. The Serial Storage Architecture (SSA) serial interface is de-

signed to connect disk drives or RAID disk arrays to servers. InfiniBand is another high-

performance serial interface, intended for the connection of processors with high-speed pe-

ripherals such as storage devices. iSCSI (Internet SCSI) allows server computers to access 

remote disk volumes using the existing network infrastructure and the TCP/IP protocol. 

 We consider the parallel SCSI interface. Several versions of this interface have been 

developed, as the electrical protocol has been improved. The various types of the SCSI parallel 

interface are presented in Table 6.1. 
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Table 6.1. Types of parallel SCSI interfaces specified in the SCSI-3 standards. 

Standard Technology Alternate Name 
Clock 

Frequency 
(MHz) 

Width 
Maximum 

Transfer Rate 
(MB/s) 

SPI Fast-20 Ultra 20 8 20 

SPI Fast-20/Wide Ultra/Wide 20 16 40 

SPI-2 Fast-40 Ultra2 40 8 40 

SPI-2 Fast-40/Wide Ultra2/Wide 40 16 80 

SPI-3 Fast-80DT Ultra3 (Ultra160) 80 16 160 

SPI-4 Fast-160DT Ultra4 (Ultra320) 80 16 320 

SPI-5 Fast-320DT Ultra5 (Ultra640) 160 16 640 

 In Table 6.1, DT (Double Transition) indicates two transfers performed in each clock 

cycle, one at each edge of the clock signal. For the SPI-3, SPI-4, and SPI-5 interfaces, the SCSI 

bus width is 16 bits. Starting with the SPI-2 interface, only the LVD differential signaling is used. 

 6.4. The SCSI Bus 

 6.4.1. Communication on the SCSI Bus 

 Communication on the SCSI bus takes place between a device that initiates the trans-

fer and a destination device. At any time, communication is performed only between two 

devices, one initiator that selects and controls the target device that performs the requested 

operation. Usually, a SCSI device has a fixed role of initiator or target, but some devices can 

fulfill both roles. 

 An initiator device can address up to eight logical units attached to a target device. 

For each data block logical addresses rather than physical addresses are used. For devices 

with direct addressing, each logical unit can be interrogated to determine the number of data 

blocks it contains. A logical unit may coincide with a peripheral device or it may be part of 

that device. 

 The SCSI standards define the signal levels on the bus, their logical function, the 

communication protocol, and the command sequences. All devices must allow to use the 

asynchronous protocol defined by the standards for data transfers. In addition, an optional 

protocol is defined for synchronous transfers. Similarly, a protocol is specified for sending 

messages in order to control the interface. 

 The SCSI bus uses a distributed arbitration system to support multiple initiators and 

the concurrent execution of I/O operations. A priority system allows granting the bus to the 

SCSI device with the highest priority out of those that request the bus. The time required to 

perform the arbitration is independent of the number of devices that request the bus and is 

lower than 10 s. 

 The initiator may request the SCSI bus and may select a certain target device. The 

target may request the transfer of data, command, or status information on the data bus, and in 

some cases it may request the bus and it may reselect the initiator in order to continue an op-

eration. 

 6.4.2. Asynchronous and Synchronous SCSI Protocol 

 The SCSI interface allows to use either the asynchronous or synchronous protocol for 

data transfers. By using the synchronous protocol faster data transfers can be achieved. Im-

plementation of the asynchronous protocol is mandatory for all devices, while implementation 

of the synchronous protocol is optional. 

 In the asynchronous SCSI protocol, a device first issues a request (by asserting the 

REQ signal) and then waits for an acknowledgement from the initiator. The initiator places a 

byte or word on the data bus and asserts the ACK signal. The device reads the byte or word, 

de-asserts the REQ signal, and waits for the initiator to de-assert the ACK signal. These opera-

tions are then repeated for the next byte or word. 
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 This REQ/ACK handshake protocol requires that the signals propagate through the 

SCSI cable twice for each data transfer. This requires a certain time; typically, the propaga-

tion delay is about 5.25 ns for each meter. The propagation delay is the primary speed limita-

tion of asynchronous SCSI transfers when long cables are used. 

 In the synchronous SCSI protocol, an acknowledgement is also required for each 

request sent, but the acknowledgement can be delayed. Consequently, a device can send data 

packets one after another without the propagation delays required in the asynchronous proto-

col. The speed is determined by the bus cycle time without regard to propagation delay, and is 

therefore independent of cable length. 

 The first clock frequency specified for synchronous transfers was 5 MHz. This fre-

quency has been increased gradually in the newer versions of the interface, with each version 

doubling the frequency of its predecessor version. Starting with the SPI-3 interface, the DT 

(Double Transition) technology is used, so that data transfers take place on both the rising and 

falling edge of each clock cycle. 

 6.4.3. SCSI Bus Signals 

 The 8-bit SCSI bus that uses the A cable contains 18 signals, out of which 9 data sig-

nals and 9 control signals. For the 16-bit and 32-bit versions there are bus extensions. The bus 

signals are described next. 

• BSY (Busy): A wired-OR signal that indicates the busy state of the bus. 

• SEL (Select): A wired-OR signal used by an initiator device to select a target device 

or by a target device to reselect an initiator device. The identifier of the selected de-

vice will appear on the data lines. 

• C/D (Control/Data): Used by the target device to specify whether control or data in-

formation is sent on the data bus. The asserted state of this signal specifies that con-

trol information is sent. 

• I/O (Input/Output): The target device controls with this signal the direction of data 

transfer. The direction is considered from the initiator device’s viewpoint. The assert-

ed value indicates an input operation for the initiator. This signal is also used to dis-

tinguish between the Selection and Reselection phases. 

• MSG (Message): The target indicates with this signal that a message is sent on the bus 

(in the Message phase). 

• REQ (Request): Generated by the target device to specify a transfer request using the 

asynchronous protocol. 

• ACK (Acknowledge): Generated by the initiator device to acknowledge an 

asynchronous transfer request made by a target device by asserting the REQ signal. 

• ATN (Attention): Used by an initiator device to indicate an attention condition for the 

target device. 

• RST (Reset): A wired-OR signal that initialized the SCSI bus and resets all the devic-

es attached to the bus. 

• DB (7..0, P) (Data Bus). Represent the bidirectional data signals and the parity bit 

signal, which form a data bus. DB (7) is the most significant bit and it has the highest 

priority during the arbitration phase. DB (P) is the odd-parity bit. The parity is defined 

during the arbitration phase. 

• DB (31..8, P1, P2, P3) (Data Bus). Represent the extension of the data bus. DB (P1, 

P2, P3) are odd-parity bits for DB (15..8), DB (23..16), and DB (31..24), respectively. 

• TERMPWR (Terminator Power). Represents the power signal for the bus terminators. 
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 6.4.4. SCSI Bus Phases 

 During operation, the SCSI bus passes through several distinct states, called phases. 

A phase describes the direction of transfer and the contents of information transferred. The 

following phases can be distinguished: 

• Bus Free; 

• Arbitration; 

• Selection; 

• Reselection; 

• Command; 

• Data; 

• Status; 

• Message. 

After reset or power up, the bus enters the Bus Free phase. This is followed by the 

Arbitration phase, in which one of the devices gains control of the bus. If the arbitration fails, 

the bus returns to the Bus Free phase. If the arbitration succeeds, the bus enters the Selection 

or Reselection phase, in which a target and an initiator device that will execute a command 

are selected. After determining the two devices, one or more information transfer phases 

(Command, Data, Status, Message) follow. The last information transfer phase is normally 

the Message In phase, in which a DISCONNECT or COMMAND COMPLETE message is sent 

to the initiator, followed by the Bus Free phase. 

 Some examples of messages are described next. 

• COMMAND COMPLETE: Sent by the target device to the initiator to indicate that a 

command has been completed and a valid status has been sent to the initiator. 

• DISCONNECT: Sent by the target device to inform an initiator that the existing con-

nection is going to be interrupted and a later reconnect will be required to complete 

the current operation. 

• INITIATOR DETECTED ERROR: Sent by the initiator to inform a target device that 

an error (e. g., parity error) has occurred that does not preclude the target from retry-

ing the operation. 

• ABORT: Sent by the initiator to the target device to abandon the current operation. 

• SYNCHRONOUS DATA TRANSFER: Sent by the initiator to a target device to select 

the synchronous transfer protocol. 

 6.4.5. SCSI Command Example 

 A READ command will be used as example to explain the various bus phases and 

signals. This command transfers data from a target device to the initiator. 

 The command begins in the Bus Free phase. Next, an Arbitration phase follows, in 

which one or more devices compete to take control of the bus. Each of the devices asserts the 

BSY signal and one of the data lines. Each device has a unique ID from 0 to 7 (or from 0 to 

15), and each device asserts one of the data lines corresponding to its own ID. Each ID is 

assigned a priority, with 7 (or 15) having the highest priority and 0 the lowest priority. If more 

than one device asserts its ID during the Arbitration phase, then the device with the highest 

priority takes control of the bus. 

 The device that has won the arbitration becomes the initiator. This device enters the 

Selection phase by asserting the SEL signal. During this phase, the initiator asserts both data 

lines corresponding to its own ID and the target device’s ID. After a delay, the initiator de-

asserts the BSY signal. When the target device detects that the SEL signal is asserted, BSY and 
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I/O are de-asserted, and recognizes its ID, it will assert the BSY signal. When the initiator 

detects that the BSY signal is asserted, it releases the data bus and de-asserts the SEL signal. 

 Next, the target device indicates that it has entered the Command phase by asserting 

the C/D signal. This signal will remain asserted during this phase. The target device then as-

serts the REQ signal to request the first byte of the command from the initiator. The initiator 

places the first byte of the command on the data bus and asserts the ACK signal. The target 

device reads the byte and it de-asserts the REQ signal; the initiator then de-asserts the ACK 

signal. The first byte of the command contains the operation code, which indicates the number 

of bytes remained to be transferred. These additional bytes are transferred with the same 

REQ/ACK protocol. 

 After the target device has received and interpreted the command, it places the bus in 

the Data In phase by de-asserting the C/D signal (indicating data information) and it asserts 

the I/O signal (indicating the direction from the target to the initiator). The target device plac-

es the first byte or word of the requested data on the data bus and asserts the REQ signal. The 

initiator asserts the ACK signal after it has read the data. Additional data bytes or words are 

transferred with the same REQ/ACK protocol. 

 After transferring all the requested data, the target device places the bus in the Status 

phase and transfers a status byte to the initiator, indicating that it has successfully completed 

the transfer. The C/D signal is again asserted and the I/O signal remains asserted. The 

REQ/ACK protocol is used to transfer the status byte. 

 Finally, the target device places the bus in the Message In phase by asserting the MSG 

signal and transferring the COMMAND COMPLETE message byte. Once this message is re-

ceived by the initiator, the target device releases all bus signals to place the bus in the Bus 

Free phase. 

 6.5. SCSI Commands 

 The SCSI standards specify a high-level command set that must be supported by 

SCSI devices. Mandatory and optional commands are defined, out of which some are com-

mon for all device types, while others are specific for various types of devices. 

 6.5.1. Structure of a Command Descriptor Block 

 A command is specified as a Command Descriptor Block (CDB), which is sent to the 

target device. For some commands, the command descriptor block is followed by a list of 

parameters that are sent during the Data Out phase. The command descriptor block begins 

with an operation code in the first byte and ends with a control byte. 

 There are typical structures of the descriptor block for 6-byte, 10-byte, and 16-byte 

commands. Figure 6.3 presents the typical structure of a command descriptor block for 10-byte 

commands. 

Bit 
 Byte 

7 6 5 4 3 2 1 0 

0 Operation Code 

1 Logical Unit Number Reserved 

2 MSB   

3  Logical Block Address  

4    

5   LSB 

6 Reserved 

7 MSB Transfer Length, Parameter List Length,  

8  Allocation Length LSB 

9 Control 

Figure 6.3. Structure of a descriptor block for 10-byte SCSI commands. 

 The operation code contains two fields: the group code (bits 7..5) and command code 

(bits 4..0). The three bits of the group code allow 8 groups of codes. The five bits of the 
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command code allow 32 command codes in each group. Therefore, there are a total number of 

256 possible operation codes. The group code defines separate groups for 6-byte, 10-byte, or 

16-byte commands, as well as for vendor-specific codes. 

 The logical unit number is defined in the IDENTIFY message. The target will ignore 

the logical unit number specified in the command descriptor block if an IDENTIFY message 

has been received. It is recommended to set to zero the logical unit number in the descriptor 

block. This field was included into the command descriptor block for compatibility with some 

SCSI-1 devices. 

 The logical block address within a logical unit or a volume partition starts with block 

zero and must be contiguous up to the last logical block of the logical unit or partition. A de-

scriptor block for 6-byte commands contains a logical block address of 21 bits. Descriptor 

blocks for 10-byte and 16-byte commands contain logical block addresses of 32 bits. 

 The transfer length specifies the length of data that must be transferred, usually, in 

number of blocks. For some commands, the transfer length specifies the number of bytes that 

are to be transferred. For commands that use a byte for the transfer length, a transfer length 

between 1 and 255 indicates the number of blocks that must be transferred by a single com-

mand. A value of 0 indicates 256 blocks. For commands that use several bytes for the transfer 

length, a length of 0 indicates that no data are to be transferred. 

 The parameter list length is used to specify the number of bytes that are transferred 

during the Data Out phase, bytes that represent the parameters sent to the target device. 

 The allocation length specifies the maximum number of bytes allocated by the initia-

tor device for the data sent from the target device. The target will finish the Data In phase 

when a number of bytes indicated by the allocation length have been transferred. This length 

is used to limit the number of bytes returned to the initiator device. 

 The control field has the following structure: 

7 6 5 4 3 2 1 0 

Vendor-specific Reserved Flag Link 

 The Link bit is used to continue the I/O process after the current command completes 

successfully. If the Link bit is set to 1, the target enters the Command phase after the current 

command completes. Implementation of this bit is optional. The Flag bit specifies the mes-

sage that must be returned by the target device to the initiator if the Link bit is set to 1 and the 

command completes without errors. Usually, this bit is used to generate an interrupt of the 

initiator device between linked commands. Implementation of this bit is optional. 

 If the Link bit is set to 0 and the Flag bit is set to 1, the target device will return the 

CHECK CONDITION status. This status indicates that an unpredicted event occurred during 

the operation. The initiator device must send an additional command (Request Sense) to de-

termine the unpredicted event. If the Link bit is set to 1, the Flag bit is set to 0, and the com-

mand completes successfully, the target sends the LINKED COMMAND COMPLETE message. 

If the Link bit is set to 1, the Flag bit is set to 1, and the command completes successfully, the 

target sends the LINKED COMMAND COMPLETE (WITH FLAG) message. These messages 

indicate the end of a linked command. 

 6.5.2. Command Examples 

 The SCSI-3 standard defines commands that can be used for all types of devices and 

commands that are specific for various types of devices. The main device types for which 

commands are defined are the following: 

• Direct-access devices (magnetic disks); 

• Sequential-access devices (magnetic tapes); 

• Printers; 

• Processors (intelligent devices); 

• WORM (Write Once, Read Multiple) discs; 

• CD-ROM discs (including audio discs); 
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• DVD discs; 

• Scanners; 

• Optical memories (several optical discs, e. g., CD-R); 

• Communication devices (network nodes). 

 Table 6.2 presents example SCSI commands for direct-access devices. 

Table 6.2. SCSI commands for direct-access devices. 

Command Name Code Command Name Code 

ATA PASS-THROUGH (12) 0xA1 READ MEDIA SERIAL NUMBER 0xAB/0x01 

ATA PASS-THROUGH (16) 0x85 RECEIVE DIAGNOSTIC RESULTS 0x1C 

FORMAT UNIT 0x04 REQUEST SENSE 0x03 

INQUIRY 0x12 SEND DIAGNOSTIC 0x1D 

READ (10) 0x28 START STOP UNIT 0x1B 

READ (12) 0xA8 TEST UNIT READY 0x00 

READ (16) 0x88 VERIFY (10) 0x2F 

READ BUFFER (10) 0x3C VERIFY (16) 0x8F 

READ BUFFER (16) 0x9B WRITE (10) 0x2A 

READ CAPACITY (10) 0x25 WRITE (12) 0xAA 

READ CAPACITY (16) 0x9E/0x10 WRITE (16) 0x8A 

READ DEFECT DATA (10) 0x37 WRITE AND VERIFY (10) 0x2E 

READ DEFECT DATA (12) 0xB7 WRITE BUFFER 0x3B 

 6.5.3. INQUIRY Command 

 The INQUIRY command requests information about the logical unit and SCSI target 

device. The descriptor block of this command is presented in Figure 6.4. 

Bit 
 Byte 

7 6 5 4 3 2 1 0 

0 Operation Code (0x12) 

1                 Reserved EVPD 

2 Page Code 

3 MSB 
Allocation Length 

 

4  LSB 

5 Control 

Figure 6.4. Structure of the descriptor block for the INQUIRY command. 

 When the EVPD (Enable Vital Product Data) bit is set to 1, the device controller will 

return the product data specified by the Page Code field (page codes are not described in this 

document). If the requested product data page is not implemented, the command is terminated 

with the CHECK CONDITION target status code, a “sense key” set to ILLEGAL REQUEST 

(0x05), and an additional sense code set to INVALID FIELD IN CDB (0x24). With the ASPI 

programming interface, the target status code can be found in the SRB_TargStat byte of the 

SCSI Request Block (SRB). The sense key can be found in the SenseArea[2] byte of the SRB, 

and the additional sense code can be found in the SenseArea[12] byte of the SRB. When the 

EVPD bit is set to 0, the device controller will return the standard INQUIRY data. In this case, 

the Page Code field should be set to 0; otherwise, the command is terminated with the 

CHECK CONDITION target status code. 

 The Allocation Length field specifies the maximum number of bytes allocated for the 

data sent from the target device (the length of the buffer allocated by the user). Byte 3 of the 

descriptor block should contain the most significant byte (MSB) of the buffer length, and byte 

4 should contain the least significant byte (LSB) of the buffer length. The Control field should 

be set to 0. 

 The standard INQUIRY data contains at least 36 bytes. Additional bytes may contain 

vendor-specific data. The format of the first 36 bytes of the standard INQUIRY data is pre-

sented in Figure 6.5. Part of the fields of this data structure are described next. Other fields 

(shown in color, but without field names) are not described in this document. 
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Bit 
 Byte 

7 6 5 4 3 2 1 0 

0 Peripheral Qualifier Peripheral Device Type 

1 RMB   Reserved 

2 Version 

3 Reserved   Response Data Format (0x02) 

4 Additional Length 

5  Res.   Reserved  

6 Res.    Reserved 

7 Reserved Reserved CmdQue  

8 MSB 

T10 Vendor Identification 

 

    

15 LSB 

16 MSB 

Product Identification 

 

    

31 LSB 

32 MSB 

Product Revision 

 

    

35 LSB 

Figure 6.5. First 36 bytes of the data returned by the INQUIRY command. 

 The Peripheral Qualifier field specifies whether the addressed logical unit is accessi-

ble (the bits of the field are 000) or not accessible by the controller contained in the SCSI 

target device. The Peripheral Device Type field identifies the type of the device (e.g., direct-

access block device, CD/DVD device, RAID controller device, etc.). The RMB (Removable 

Medium) bit indicates whether the medium is not removable (when set to 0) or it is removable 

(when set to 1). 

 The Version field indicates the implemented version of the SCSI Primary Commands 

(SPC) standard. This field contains 0x04 for the SPC-2 version, 0x05 for the SPC-3 version, 

0x06 for the SPC-4 version, and 0x07 for the SPC-6 version. The Additional Length field indi-

cates the length in bytes of the remaining standard INQUIRY data. The contents of this field 

are not dependent on the allocation length specified when issuing the command. When the 

CmdQue bit is set to 1, it indicates that the logical unit supports command management 

through a command queue. 

 The T10 Vendor Identification field contains eight ASCII characters that identify the 

manufacturer of the logical unit. Vendor identification strings are assigned by the T10 com-

mittee. The Product Identification field contains 16 ASCII characters that identify the product. 

Product identification strings are defined by the manufacturer. The Product Revision field 

contains four ASCII characters that identify the product revision. Product revision strings are 

defined by the manufacturer. 

 6.5.4. READ CAPACITY (10) Command 

 The READ CAPACITY (10) command requests the device controller to transfer eight 

bytes of data to a buffer allocated by the user. The data transferred describe the capacity and 

logical block length of a direct-access block device. The descriptor block of this command is 

presented in Figure 6.6. The Reserved and Control fields should be set to 0. 

Bit 
 Byte 

7 6 5 4 3 2 1 0 

0 Operation Code (0x25) 

1  

Reserved 

 

     

8   

9 Control 

Figure 6.6. Structure of the descriptor block for the READ CAPACITY (10) command. 
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 The format of the data returned by the READ CAPACITY (10) command is shown in 

Figure 6.7. The Returned Logical Block Address field of four bytes contains the address of the 

last logical block of the device. This field contains 0xFFFFFFFF if the address of the last 

logical block is greater than the maximum value that can be specified in the field. In this case, 

the application should issue a READ CAPACITY (16) command to the device controller to 

transfer eight bytes of capacity data. The Logical Block Length field of four bytes contains the 

number of bytes of user data in a logical block. 

Bit 
 Byte 

7 6 5 4 3 2 1 0 

0 MSB 

Returned Logical Block Address 

 

    

3 LSB 

4 MSB 

Logical Block Length 

 

    

7 LSB 

Figure 6.7. Structure of data returned by the READ CAPACITY (10) command. 

 6.5.5. READ CAPACITY (16) Command 

 The READ CAPACITY (16) command requests the device controller to transfer data 

describing the capacity and medium format of a direct-access block device to a buffer allocat-

ed by the user. This command uses a CDB format called SERVICE ACTION IN (16), shown 

in Figure 6.8. 

Bit 
 Byte 

7 6 5 4 3 2 1 0 

0 Operation Code (0x9E) 

1 Reserved Service Action (0x10) 

2  

Reserved 

 

    

9  

10 MSB 

Allocation Length 

 

    

13 LSB 

14 Reserved 

15  Control  

Figure 6.8. Structure of the descriptor block for the READ CAPACITY (16) command. 

 The Operation Code and Service Action fields should be set to the values shown in 

Figure 6.8. The Reserved and Control fields should be set to 0. The Allocation Length field 

should be set to the maximum number of bytes allocated for the data sent from the device (the 

length of the buffer allocated by the user). 

Bit 
 Byte 

7 6 5 4 3 2 1 0 

0 MSB 

Returned Logical Block Address 

 

    

7 LSB 

8 MSB 

Logical Block Length 

 

    

11 LSB 

Figure 6.9. First 12 bytes of the data returned by the READ CAPACITY (16) command. 

 The READ CAPACITY (16) command returns 32 bytes of data. The format of the 

first 12 bytes of the data returned is shown in Figure 6.9. The Returned Logical Block Address 

field of eight bytes contains the address of the last logical block of the device. The Logical 

Block Length field of four bytes contains the number of bytes of user data in a logical block. 
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 6.5.6. READ CD RECORDED CAPACITY Command 

 The READ CD RECORDED CAPACITY command allows to request information 

regarding the recorded capacity of a CD/DVD present in a logical unit. The format of the 

descriptor block and the structure of the data returned by this command are the same as those 

of the READ CAPACITY (10) command (Section 6.5.4). The address in the Returned Logical 

Block Address field is that of the last sector in the last complete recording session. The logical 

block length is reported as 2048. 

 6.5.7. READ MEDIA SERIAL NUMBER Command 

 The READ MEDIA SERIAL NUMBER command requests the device controller to 

return the current media serial number. This command uses the SERVICE ACTION IN (12) 

CDB format, shown in Figure 6.10. 

Bit 
 Byte 

7 6 5 4 3 2 1 0 

0 Operation Code (0xAB) 

1 Reserved Service Action (0x01) 

2  

Reserved 

 

    

5  

6 MSB 

Allocation Length 

 

    

9 LSB 

10 Reserved 

11  Control  

Figure 6.10. Structure of the descriptor block for the READ MEDIA SERIAL NUMBER command. 

 The Operation Code and Service Action fields should be set to the values shown in 

Figure 6.10. The Reserved and Control fields should be set to 0. The Allocation Length field 

should be set to the maximum number of bytes allocated for the serial number (the length of 

the buffer allocated by the user). 

 The format of the data returned by the READ MEDIA SERIAL NUMBER command 

is shown in Figure 6.11. The Media Serial Number Length field contains the number of bytes 

in the Media Serial Number field. The number of bytes is a multiple of four. The contents of 

the Media Serial Number Length field are not dependent on the allocation length specified 

when issuing the command. The Media Serial Number field contains the vendor-specific serial 

number of the media currently installed. If the media serial number is not available (e.g., the 

media currently installed has no valid serial number), then the Media Serial Number Length 

field is set to 0. 

Bit 
 Byte 

7 6 5 4 3 2 1 0 

0 MSB 

Media Serial Number Length (4n-4) 

 

    

3 LSB 

4 MSB 

Media Serial Number 

 

    

4n-1 LSB 

Figure 6.11. Structure of data returned by the READ MEDIA SERIAL NUMBER command. 

 If no media is currently present in the device, the command is terminated with the 

CHECK CONDITION target status code, the “sense key” set to NOT READY (0x02), and the 

additional sense code set to MEDIUM NOT PRESENT (0x3A). With the ASPI programming 

interface, the location of these codes in the SRB has been presented in Section 6.5.3. 
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 6.6. SCSI Device Configuration 

 To configure a SCSI device, two operations must be performed: setting the SCSI 

identifier and installing the terminators. 

 6.6.1. Setting the SCSI Identifier 

 Up to 8 or 16 SCSI devices can be attached to a SCSI bus and each of them must 

have a unique SCSI identifier (ID) in order to avoid conflicts. One of these identifiers, usually 

7 or 15, which has the highest priority, is assigned to the host adapter. There are adapters that 

allow booting the operating system only from a disk drive with a specific ID. For example, 

older Adaptec host adapters required the boot disk drive to have the ID 0. Newer adapters 

allow booting the operating system from any drive, regardless its ID. 

 Usually, setting the ID requires positioning of three or four jumpers on the drive. The 

configuration of jumpers results from the binary representation of the ID values from 0 to 7 or 

from 0 to 15. In other cases, the ID can be set with a rotary switch. 

 Current SCSI systems are Plug-and-Play and the ID assignment is performed automati-

cally by the operating system and the SCSI adapter. A protocol called SCAM (SCSI Configured 

Automagically) is used, which interrogates the SCSI devices and assigns unique identifiers for 

each of them, so that no conflicts will exist. 

 6.6.2. Installing the Terminators 

 The SCSI bus, like other buses, needs terminators at both ends of the bus. The incor-

rect termination of the bus lines represents one of the problems that may occur when using 

SCSI devices. If the host adapter is at one end of the bus, it must have its terminator enabled. 

If the adapter is in the middle of the bus and both internal and external bus links are present, 

the terminator in the adapter must be disabled and the devices at the two ends of the bus must 

have their terminators installed. 

 There are several types of terminators for the SCSI bus: 

• Passive terminators; 

• Active terminators; 

• FPT (Forced Perfect Termination). 

Passive terminators, composed of resistors, allow fluctuations of the bus signals. The 

signal levels depend on the voltage drop on these resistors. Usually, passive terminators are 

adequate for short distances, of up to 1 m, but for longer distances active terminators are 

needed. 

 Active terminators use, instead of voltage dividers composed of resistors, one or more 

voltage regulators that ensure a constant voltage. The voltage regulators ensure termination of 

signals on the SCSI bus at a correct voltage level. The SCSI-2 and SCSI-3 standards recom-

mend using active terminators at both ends of the bus. 

 FPT terminators represent a type of active terminators that use stable voltage levels 

obtained with diodes. They eliminate fluctuations of signal levels, especially at high transfer 

speeds or great cable lengths. 

 Usually, external SCSI devices have an input and an output SCSI connector, so that 

several devices can be connected in a chain. When the device is at one end of the SCSI bus, a 

terminator must be installed in the output connector. 

 Some devices have embedded terminators that may be enabled or disabled through a 

switch or by their removal. Other devices do not have embedded terminators and for these 

external terminator modules must be used. Terminator modules are available in various con-

figurations of the connectors, which also include pass-through terminators. These are neces-

sary for devices installed at the end of the bus and which only have a single SCSI connector. 

Pass-through terminators are also commonly used in internal installations in which the devic-

es do not have embedded terminating resistors. Many disk drives use such terminators for 

internal installations to save space on the logic board. 
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 6.6.3. Other Configurations 

 There are additional options that can be configured for the SCSI drives. Following are 

the most common additional settings: 

• Start on command; 

• SCSI parity; 

• Terminator power; 

• Synchronous transfer negotiation. 

 6.6.3.1. Start on Command 

 If there are multiple disk drives connected to a system, they can be configured so that not 

all the drives start simultaneously, immediately when the system is powered on. In case of 

simultaneous start, the power consumption would increase significantly, the power supply can be 

overloaded, which can cause the system to hang or have other startup problems. 

 Usually, SCSI drives allow delaying the start of the spindle motor. When the SCSI 

adapters initialize the bus, most of them send out a command called Start Unit to each of the 

disk drives in succession. By positioning a jumper on the disk drive, the spindle motor will 

only start when the drive receives the Start Unit command form the host adapter. Because the 

adapter sends this command to all the disk drives, in succession, from the highest priority 

drive to the lowest priority drive, the higher priority drives can be configured to start first, and 

then lower priority drives to start sequentially. There are some adapters that do not send the 

Start Unit command. In this case, disk drives can be configured so that they delay the start 

with a certain number of seconds, rather than wait for the Start Unit command. 

 There is no need to enable the delayed start function for drives with separate power 

supply. This function is needed for internal drives that are powered from the same power sup-

ply that runs the system. 

 6.6.3.2. SCSI Parity 

 Using a parity bit allows limited error detection. Most of the host adapters support 

parity checking, so this option should be enabled on every device. This function is optional, 

because there are older adapters that do not use the SCSI parity bit, so for these adapters the 

parity checking must be disabled. 

 6.6.3.3. Terminator Power 

 Active terminators positioned at each end of the SCSI bus must be powered from at 

least one device attached to the bus. Usually, the terminator power is supplied by the host 

adapter, but there are some exceptions. 

 It is not a problem that the terminator power is supplied by multiple devices, because 

each source is protected with diodes. For simplicity, often all devices are configured to supply 

terminator power. If none of the devices supplies terminator power, the bus will not be 

terminated correctly and will not function properly. 

 6.6.3.4. Synchronous Transfer Negotiation 

 By default, the SCSI bus uses the asynchronous transfer protocol. It is possible to 

select the synchronous transfer protocol, which is faster, through a procedure called synchro-

nous transfer negotiation. Before information is transferred across the bus, the initiator device 

and the target device negotiate how the transfer will take place. If both devices support the 

synchronous protocol, the transfer will be performed with this protocol. 

 Some older devices do not respond to a request for synchronous transfer and can even be 

disabled when they receive such requests. For this reason, host adapters and devices that support 

synchronous transfer negotiation often have a jumper that can be used to disable this negotiation, 

so they can work with older devices. 



 
17 Input/Output Systems and Peripheral Devices 

 6.7. SCSI Adapters 

 The most important manufacturers of SCSI adapters are Adaptec and Future Domain. 

SCSI adapters can be easily installed, because all of their functions can be configured by 

software. The configuration information is written to a memory on the logic board of the 

adapter. The most important features of these adapters are the following: 

• The ROM memory of the adapters contains software tools that allow to fully config-

ure the adapters; 

• The interrupt levels, ROM addresses, DMA and I/O port addresses, SCSI bus parity, 

and physical addresses of devices can be configured by the software; 

• Terminators can be enabled and disabled by the software; 

• No additional drivers are needed for more than two disk drives; 

• Start on command of the drives is supported; 

• The operating system can be loaded from any SCSI device. 

 6.8. SCSI Drivers 

 Each of the SCSI devices attached to the bus, except for disk drives, needs an external 

SCSI driver. Usually, disk drives have the drivers included in the BIOS program of the SCSI 

adapter. The external drivers are designed for a specific type of device and are specific to a 

certain SCSI adapter. 

 Two types of standard drivers for interfacing with the host adapter became popular. If a 

standard driver is available for the host adapter, manufacturers can create more easily new drivers 

for peripheral devices, which can communicate with the universal host adapter driver. This 

eliminates dependence on a particular type of host adapter. Universal drivers perform the link 

between the host adapter and operating system. 

 One of these drivers is the Advanced SCSI Programming Interface (ASPI), initiated 

by the Adaptec company. Later on, other SCSI device vendors have used the ASPI driver for 

their products. Many operating systems include an ASPI driver for several SCSI host adapt-

ers. 

 The second driver is called CAM (Common Access Method) and has been created by 

Future Domain and NCR companies. The CAM driver is a protocol approved by ANSI and 

enables to control several SCSI host adapters. Future Domain also provides a CAM-ASPI 

converter for its host adapters. 

 Current Windows operating systems use the SCSI Pass Through Interface (SPTI) for 

accessing SCSI devices. This programming interface has been developed by Microsoft Corpo-

ration and is accessible to software using the DeviceIoControl() function, which allows to 

send a control code directly to a device driver. 

 6.9. Serial Attached SCSI 

 Serial Attached SCSI (SAS) represents the serial version of the SCSI interface. It uses 

a point-to-point serial protocol and the standard SCSI command set. The SAS serial interface 

offers compatibility with second-generation SATA (Serial ATA – Serial Advanced Technology 

Attachment) disk drives, which may be connected to SAS backplanes. 

 The SAS standards have been developed by the T10 Technical Committee of INCITS 

(InterNational Committee for Information Technology Standards). The first version of the 

SAS interface standard has been published in 2003, and an improved version (SAS-1.1) has 

been published in 2005. Both versions specify a serial interface with a maximum speed of 3 

Gbits/s. The SAS-2 standard, which has been published by the INCITS committee in 2009, 

defines the second generation of the SAS interface. This version of the standard introduces a 

serial link with a maximum speed of 6 Gbits/s, a physical layer that is compatible with the 
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SATA interface, and protocols for transferring SCSI commands to SAS devices and ATA 

commands to SATA devices. The SAS-2.1 version of the standard, which has been approved 

in 2010, defines a number of enhancements to the SAS-2 standard, including additional con-

nectors and power management features. The SAS-3 version of the standard, which has been 

published in 2013, defines the third generation of the SAS interface, with a maximum speed 

of 12 Gbits/s. The SAS-4 version of the standard, which has been approved in 2018 by the 

T10 Technical Committee, increases the maximum speed of the interface to 24 Gbits/s. The 

SAS-5 version of the standard is under development and is expected to reach a speed of 45 

Gbits/s. 

 Figure 6.12 illustrates the logos of the SAS-2, SAS-3, and SAS-4 interfaces. 

  

Figure 6.12. SAS-2, SAS-3, and SAS-4 logos. 

 The SAS interface is a point-to-point architecture, with each device connecting direct-

ly to a SCSI port rather than connecting to a shared bus. Since the bandwidth is not shared by 

several devices, as in the case of the parallel SCSI interface, transfers with higher speeds are 

possible. By using a point-to-point connection, data reliability and the ability to locate failures 

are improved compared to a shared-bus architecture. 

 The SAS protocol specifies a full-duplex communication between the SAS controller 

and a disk drive. Therefore, read and write operations can be performed at the same time, 

which increases performance. Comparatively, SATA drives use half-duplex communication, 

so that when data are being sent to the drive for writing, any data that needs to be read from 

the drive must wait for the previous communication to complete. 

 A large number of SAS or SATA disk drives can be connected to a SAS controller 

port by using SAS expanders. An expander allows a single initiator to communicate with a 

number of SAS/SATA target devices. A SAS expander is similar to a switch in a network, 

which allows multiple systems to be connected using a single switch port. The cost of a sys-

tem containing an expander is much lower compared to the cost of a system containing a large 

port-count SAS controller or multiple smaller port-count controllers. By using expanders, up 

to 16,384 physical links are possible. 

 A SAS domain consists of a set of SAS devices that communicate with one another 

by means of cables and backplanes, with or without expanders. Each SAS port and expander 

device in a SAS domain is assigned a globally unique identifier by the device manufacturer. 

This 64-bit identifier that represents the SAS address is called World Wide Name (WWN) and 

it uniquely identifies the device in the SAS domain just as a SCSI ID identifies a device at-

tached to a parallel SCSI bus. Out of the 64 bits, 24 bits represent the vendor company identi-

fier and 40 bits represent the vendor-specific identifier. Unlike for the parallel SCSI interface, 

there is no need to set manually the addresses in a serial SCSI system, since all the configura-

tion is performed automatically. The SAS interface does not require installing terminators like 

the parallel SCSI interface. 

 The SAS interface uses differential signaling and data scrambling to reduce electro-

magnetic interference. It is possible to combine up to four ports with the same address into a 

wide port, which enable to increase the data rate. 

 SAS disk drives are dual-ported, which means that they can be directly connected to 

and controlled by two SAS controllers at the same time. This capability allows a redundant 

system to be built. When one of the SAS controllers fails, the other is still able to access the 

SAS disk drives and the data stored on those drives. 

 A SAS system can use either SAS or SATA disk drives. A SATA drive can be con-

nected to a SAS system via an expander or a chip that implements the SAS protocol. This 

compatibility is possible because the SAS and SATA drive connectors are similar. These con-

nectors are shown in Figure 6.13. Both connectors have the same number of pins and the pins 
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have the same size and shape. However, the SATA drive connector has a notch, which is miss-

ing in the SAS drive connector. This notch prevents a SAS drive from being plugged into a 

SATA system. A SAS system uses a connector that allows a disk drive with a notch (SATA) or 

a disk drive without the notch (SAS) to be installed. 

 

Figure 6.13. SATA and SAS disk drive connectors. 

 SAS disk drives have higher performance compared to SATA disk drives. The spindle 

speed of SAS drives is between 10,000 and 15,000 revolutions per minute (RPM), while the 

spindle speed of SATA drives is between 5,400 and 7,200 RPM. The higher spindle speed 

reduces the access time. The full-duplex communication supported by SAS drives also con-

tributes to the higher performance of these drives. SAS drives are dual-ported, and this allows 

them to communicate with two host adapters or controllers simultaneously, which improves 

data availability. SAS drives are also much more reliable than SATA drives and are designed 

for much more intensive use. 

 6.10. Applications 

 6.10.1. Answer the following questions: 

a. What are the improvements introduced by the SCSI-3 standards for the parallel 

SCSI interface? 

b. What is the difference between the asynchronous and synchronous SCSI protocols? 

c. What are the operations required for configuring a SCSI system? 

d. What are the advantages of the serial SCSI interface compared to the parallel 

SCSI interface? 

 6.10.2. Create a Windows application for checking whether the ASPI manager is ini-

tialized correctly and for displaying the number of SCSI adapters in the system. As model for 

the Windows application, use the AppScroll-e application available on the laboratory web page in 

the AppScroll-e.zip archive. Perform the following operations to create the application project: 

1. In the Visual Studio 2022 programming environment, create a new empty Windows 

Desktop project with the Windows Desktop Wizard. Check the Place solution and 

project in the same directory option to avoid creating another folder for the solution. 

2. Change the active solution platform to x86. 

3. Change the Character Set project property by opening the Properties dialog window. 

In this window, expand the Configuration Properties option, expand the Advanced 

option, select the Character Set line in the right tab, and choose the Not Set option. 

4. Copy to the project folder the files contained in the AppScroll-e.zip archive and add all 

the files to the project. 
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5. Copy to the project folder the files from the WNASPI32.zip archive, available on the la-

boratory web page. Add to the project the wnaspi32.h and scsidefs.h header files. 

6. Open the AppScroll-e.cpp source file, delete the #include "Hw.h" directive, and add 

#include directives to include the wnaspi32.h and scsidefs.h header files. 

7. In the AppScroll() function, delete the sequences for initializing the HW library 

with the HwOpen() function and for closing the HW library with the HwClose() 

function. 

8. Select Build → Build Solution and make sure that the application builds without er-

rors. 

 Use the specifications of the ASPI programming interface from the ASPI32.pdf doc-

ument (available on the laboratory web page) and the wnaspi32.dll library to write a function 

with no input parameters for performing the following operations: 

• Load the wnaspi32.dll library with the LoadLibrary() function; 

• Determine the address of the GetASPI32SupportInfo() and SendASPI32-

Command() functions with the GetProcAddress() function. 

• Call the GetASPI32SupportInfo() function and display whether the ASPI mana-

ger is initialized correctly. 

• If the ASPI manager is initialized correctly, display the number of SCSI adapters in 

the system. 

 After writing the function, include the call to this function in the AppScroll() func-

tion and verify the operation of the function. 

 6.10.3. Extend Application 6.10.2 with a function for performing the following opera-

tions for every SCSI adapter, starting with adapter number 0: 

• Call the SendASPI32Command() function with the command code SC_HA_INQUIRY 

and display the following information from the SRB_HAInquiry structure: the string 

describing the ASPI manager (the HA_ManagerId member of the structure); the 

SCSI identifier of host adapter (the HA_SCSI_ID member of the structure); the string 

describing the host adapter (the HA_Identifier member of the structure). 

• Determine the maximum number of SCSI devices (targets); this number is contained 

in the HA_Unique[3] byte of the SRB_HAInquiry structure. 

• For every SCSI device and for every logical unit (from 0 to 7) of a device, call the 

SendASPI32Command() function with the command code SC_GET_DEV_TYPE, and 

display the SCSI device number, the logical unit number, and the device type (the 

SRB_DeviceType member of the SRB_GDEVBlock structure). 

 After writing the function, include the call to this function in the AppScroll() func-

tion, and verify the operation of the function. 

 Note 

• For obtaining information about some SCSI devices with the wnaspi32.dll library, 

administrator privileges are required. 

 6.10.4. Extend Application 6.10.3 with a function that sends the READ CAPACITY 

(10) command to a direct-access device (disk drive) or optical drive. The parameters of this 

function are the SCSI adapter number, SCSI device number, and logical unit number. In this 

function, create an event with manual reset and without a name using the CreateEvent() 

function, and reset the event using the ResetEvent() function. Initialize the SRB structure 

for the SendASPI32Command() function specifying SC_EXEC_SCSI_CMD for the command 
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code, input direction and event notification for the SRB_Flags field, and SENSE_LEN for the 

SRB_SenseLen field. Initialize the CDB structure for the READ CAPACITY (10) command, 

and then call the SendASPI32Command() function. If the function completes with the 

SS_PENDING code, call the WaitForSingleObject() function with the handle returned by 

the CreateEvent() function to wait until the event is in the signaled state. Then, examine 

the SRB_Status field to check the command completion. If the command completed with the 

SS_ERR code, display an error message containing the target status byte, the sense key, and 

the additional sense code (presented in Section 6.5.3), close the event handle, and return with 

an error code. If the command completed with the SS_COMP code, compute the capacity using 

the data returned by the function, display the capacity in bytes and MB, close the event han-

dle, and return with 0. 

 Include the call to this function in the function written for Application 6.10.3, when 

an optical (CD-ROM) drive is detected. Insert a CD or DVD into the optical drive and verify 

the operation of the function. 

 6.10.5. Extend Application 6.10.4 with a function that sends the INQUIRY command 

to a disk drive or optical drive. The parameters of this function are the SCSI adapter number, 

SCSI device number, and logical unit number. In the CDB structure of the command, the 

EVPD bit and the Page Code field should both be 0. If the command completes successfully, 

display whether the medium is removable or not removable, the implemented version of the 

SPC standard, the vendor identification string, product identification string, and product revi-

sion string. Include the call to this function in the function written for Application 6.10.3, 

when a disk drive or optical drive is detected, and verify its operation by running the .exe file 

as administrator. 
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