

1 Input/Output Systems and Peripheral Devices

3. SYSTEM MANAGEMENT BUS

 This laboratory work presents the System Management Bus (SMBus). After an over-

view of SMBus, bit and data transfers are described, the bus arbitration procedure is present-

ed, the differences between SMBus and the I2C bus are highlighted, and several command

protocols are detailed. Next, the Intel SMBus controller is presented, including its registers

and commands, as well as its use with I2C devices. The applications aim to detect the devices

connected to the computer’s SMBus, read the contents of SPD memories present in the sys-

tem, and decode the contents of these memories.

 3.1. Overview of SMBus

 System Management Bus (SMBus) is a simple serial bus with only two signal lines.

This bus can be used for communication between various system devices and between these

devices and the rest of a system. The operating principles of SMBus are similar to those of the

I2C bus. There are, however, several differences between the two buses, differences which

will be presented later.

 SMBus represents a control bus for system management and power management op-

erations. A system may use the SMBus to transfer messages to and from various devices in-

stead of using individual control lines, which allows to reduce pin count and interconnection

wires. A device may use the SMBus to provide manufacturer information, provide the device

model number, report different types of errors, accept control parameters, and return the de-

vice status.

 SMBus was initially proposed by Intel as a link between an intelligent battery, a

charger for the battery and a microcontroller that communicates with the rest of the system.

The initial SMBus specification has been updated by the System Management Interface Fo-

rum (www.powersig.org). The current version of the SMBus specification is 3.2, released in

2022. Although the first versions of SMBus were primarily designed for smart batteries, the

more recent versions allow to connect a wide variety of devices, including system sensors,

memory chips, and communication devices.

 Two types of devices, master devices and slave devices, may be connected to the

SMBus. Each device connected to the bus is software addressable by a unique address. In

general, a master device initiates a bus transfer between it and a single slave device, providing

the clock signal required for the transfer. One exception occurs during initial bus setup, when

a single master device may initiate transactions with multiple slave devices simultaneously. A

slave device can receive data sent by the master device or it can provide data to the master

device.

 Like the I2C bus, SMBus is a multi-master bus, allowing several master devices to be

connected to the bus. However, only one device may control the bus at any time. Since sever-

al master devices may attempt to take control of the bus, SMBus provides an arbitration

mechanism that relies on the wired-AND connection of all devices to the bus.

 SMBus devices may be powered by the bus power source or by another power source

(as in the case of smart batteries). Depending on the SMBus version, the nominal voltage of

the bus power source, VDD, is 5 V (minimum 4.5 V), 3 V (minimum 2.7 V), or 1.8 V (mini-

mum 1.62 V). Figure 3.1 shows an example implementation of a 5-V SMBus with a device

powered by the bus power source. At the same time, there is another device attached to the

http://www.powersig.org/

2 3. System Management Bus

SMBus lines, which is powered by a power source of 3 V. These devices will inter-operate as

long as they adhere to the SMBus electrical specifications.

Figure 3.1. Example of SMBus topology.

 The SMBCLK clock line and SMBDAT data line are both bidirectional, connected to

the supply voltage through the RP pull-up resistors; the lines can also be connected through a

current source. The output stages of devices connected to the bus must have an open drain or

open collector in order to perform the wired-AND function. When the bus is free, both lines

are in the logic high state. A device may pull a bus line to the logic low state by driving the

line to the defined low voltage level (maximum 0.4 V). When the device releases a bus line, it

will be pulled to the logic high state by the RP pull-up resistor.

 Versions 1.0 and 1.1 of the SMBus specification, designed especially for smart batter-

ies, defined only low-power electrical characteristics. These characteristics are appropriate for

systems where conservation of energy is the most important aspect. Version 2.0 of the SMBus

specification introduced a new class of higher-power electrical characteristics. These charac-

teristics provide the robustness necessary, for example, to enable SMBus to traverse a PCIe

connector, allowing SMBus devices on PCIe expansion cards to communicate with other

SMBus devices on both the system board and other PCIe expansion cards. This version also

reduced the nominal VDD voltage from 5 V to 3 V. All these versions specify a clock frequen-

cy between 10 KHz and 100 KHz; most current implementations, however, use a clock fre-

quency in the range of 50 KHz to 100 KHz.

 Version 3.0 of the SMBus specification reduced the nominal VDD voltage from 3 V to

1.8 V. This version also added new data protocols for reading or writing 32-bit and 64-bit

values and introduced operation at the higher clock frequencies of 400 KHz and 1 MHz.

 For devices that conform to the low-power electrical characteristics, the SMBus spec-

ification indicates a minimum current of 100 A and a maximum current of 350 A through

the RP pull-up resistor. Therefore, the minimum value of the RP pull-up resistor should be

14.28 K. For devices that conform to the high-power electrical characteristics, the specifica-

tion indicates a minimum current sinking requirement of 4 mA, which determines a minimum

value of the RP pull-up resistor of 1.25 K.

 An optional feature of SMBus is the Packet Error Checking mechanism, which al-

lows to improve reliability and communication robustness. This feature has been introduced

in version 1.1 of the SMBus specification. It is implemented by appending a Packet Error

Code (PEC) at the end of each message. The PEC is computed from all the bytes of a message

by using an 8-bit cyclic redundancy check (CRC-8) code. The PEC byte is appended to the

message by the device that supplied the last data byte.

 3.2. Bit and Data Transfers

 3.2.1. Bit Transfers

 For the data to be valid, the SMBDAT line must be stable during the period in which

the SMBCLK line is in the logic high state. The data line can only change state when the

SMBCLK line is in the logic low state. This requirement is illustrated in Figure 3.2.

3 Input/Output Systems and Peripheral Devices

Figure 3.2. Data validity on the SMBus.

 Each transfer begins with a START condition and finishes with a STOP condition.

These conditions are always generated by the master device. START and STOP conditions

are illustrated in Figure 3.3 and are defined below.

• A START condition is defined by a transition from the logic high state to the logic

low state of the SMBDAT line while the SMBCLK line is in the logic high state.

• A STOP condition is defined by a transition from the logic low state to the logic high

state of the SMBDAT line while the SMBCLK line is in the logic high state.

Figure 3.3. START and STOP conditions on the SMBus.

 After a START condition, the bus is considered busy. The bus becomes idle again

after a certain time following the STOP condition or after the SMBCLK and SMBDAT lines

both remain in the logic high state for more than 50 s.

 3.2.2. Data Transfers

 On the SMBus, bytes are transferred with the most significant bit (MSB) first. Each

byte transferred on the bus must be followed by an acknowledge (ACK) bit. The clock pulse

corresponding to the ACK bit is generated by the master device. The transmitter device, mas-

ter or slave, releases the SMBDAT line during the ACK clock cycle. To acknowledge a byte,

the receiver must pull the SMBDAT line to the logic low state during the ACK clock cycle.

An example data transfer is illustrated in Figure 3.4.

Figure 3.4. Example data transfer on the SMBus.

 Note

• A device on the SMBus must always acknowledge its own address. This requirement is

used by the SMBus controller to detect the presence of a detachable device on the bus.

It is possible for a receiver to not acknowledge a data byte and to send a NACK bit.

For this, the receiver must maintain the SMBDAT line in the logic high state during the ACK

clock cycle. A slave device may decide to not acknowledge a byte other than the address byte

in the following situations:

4 3. System Management Bus

• The slave device is busy performing a real-time task, or the requested data are not

available. When the master device detects a NACK bit, it must generate a STOP con-

dition to abort the transfer. As an alternative, the slave device can extend the logic

low state of the clock signal (as illustrated in Figure 3.4) for a time of up to 25 ms to

complete its tasks.

• The slave device detects an invalid command or invalid data. In this case, the master

device must generate a STOP condition and retry the transaction.

• If a master-receiver device is involved in a transaction, it must signal to the slave-

transmitter device not to send more data by transmitting a NACK bit after the last

byte that was sent by the slave device. The slave-transmitter device must release the

data line to allow the master device to generate a STOP condition.

Data transfers on the SMBus have the following format. After the START condition,

the master device places on the bus the 7-bit address of the slave device it wants to address.

The 7-bit address is followed by an eighth bit (R/W#) indicating the direction of the data

transfer; if R/W# is zero, it indicates a write transfer, and if R/W# is one, it indicates a read

transfer. A data transfer is terminated with a STOP condition generated by the master device.

 Specific SMBus protocols require the master device to generate a repeated START

condition followed by the slave device address without first generating a STOP condition.

 3.3. Bus Arbitration

 A master device may only start a transfer if the bus is in the idle state. One or more

devices may generate a START condition at the same time. Since the devices that generated

the START condition may not be aware that other master devices are contending for the bus,

an arbitration procedure is used. Arbitration is performed with the SMBDAT line while the

SMBCLK line is in the logical high state. A master device that transmits a logic high level on

the SMBDAT line while other master devices are transmitting a logic low level on this line

loses control of the bus in the arbitration cycle.

 The master device that lost the arbitration may continue to provide clock pulses until

transmission or reception of the byte on which it lost the arbitration is completed. If two mas-

ter devices are arbitrating and the first master device wants to generate a repeated START

condition, while the second master device wants to place a 0 data bit on the bus, the first mas-

ter device will recognize that it cannot generate the START condition and will lose arbitra-

tion. If the first master device wants to generate a repeated START condition, while the sec-

ond master device wants to place a 1 data bit on the bus, the second master device will detect

the repeated START condition and will lose arbitration. If both master devices want to gener-

ate a repeated START condition in the same bit position, arbitration should continue at each

data bit.

 This arbitration mechanism requires that master devices participating in an arbitration

cycle monitor the state of the SMBDAT line during arbitration. Once a master device has won

arbitration, arbitration is disallowed until the bus will be again in the idle state.

 3.4. Command Protocols

 A typical SMBus device has a set of commands by which its data can be read or writ-

ten. Each command is sent to a device using a specific command protocol that is defined by

the SMBus specification. Version 3.0 of this specification defines a number of 15 command

protocols. Devices need not support all the protocols defined in the SMBus specification.

 Typical command protocols include an 8-bit command code. Command arguments

and their return values may vary in length. Each command protocol (except for the Quick

Command protocol) has two variants: one with the Packet Error Code (PEC) byte and one

without the PEC byte.

 The command protocols may have one of the following general formats:

5 Input/Output Systems and Peripheral Devices

• A master-transmitter device transmits data to a slave-receiver device. The transfer di-

rection is not changed in this case.

• A master device reads data from a slave device immediately after the first byte. At the

first acknowledge bit (provided by the slave-receiver device), the master-transmitter

device becomes a master-receiver device (and the slave-receiver device becomes a

slave-transmitter device).

• With the combined format, during a change of direction within a transfer, the master

device generates a repeated START condition and sends the slave device address byte

with the R/W# bit set to 1. The master-receiver device terminates the transfer by

sending a NACK bit after the last byte of the transfer and then generating a STOP

condition.

 In this section, only a part of the SMBus command protocols is described. To simpli-

fy the presentation, the variants of command protocols with the PEC byte are not described.

The following symbols are used to describe the command protocols:

• S: A START condition generated by a master device.

• Sr: A repeated START condition generated by a master device.

• P: A STOP condition generated by a master device.

• Wr: Indicates a write transfer; bit 0 (R/W#) of the address byte will be 0.

• Rd: Indicates a read transfer; bit 0 (R/W#) of the address byte will be 1.

• A: An ACK bit sent from a master device or a slave device.

• N: A NACK bit sent from a master device or a slave device.

 Notes

• A number above a data field represents the length in bits of that field.

• The START and STOP conditions are transitions, not bits, and are shown without a bit

count number above their symbols. The repeated START condition is also a transition

rather than a bit.

• The fields containing information sent from a slave device to a master device are repre-

sented in a darker color.

 3.4.1. Quick Command Protocol

 In the Quick Command protocol (Figure 3.5), the R/W# bit of the slave device ad-

dress represents the command. This bit may be used to enable/disable a device function or to

enable/disable a low power operational mode. There are no data sent or received.

Figure 3.5. Quick Command protocol.

 3.4.2. Send Byte Protocol

 The Send Byte protocol (Figure 3.6) can be used to send a command encoded on a

byte to a slave device. The command code byte follows the slave device address. All or parts

of the byte sent may contribute to the command. For instance, the highest 7 bits of the byte

might specify an action to be executed, such as placing the device in a specific operational

mode, while the least significant bit may specify to enable or disable a device feature.

Figure 3.6. Send Byte protocol.

6 3. System Management Bus

 Note

• The interpretation of the command code is entirely device-specific. The SMBus specifi-

cation does not define a list of command codes to be used with all SMBus devices.

 3.4.3. Receive Byte Protocol

 The Receive Byte protocol (Figure 3.7) is similar to the Send Byte protocol; the only

difference is the direction of data transfer, which is from the slave device to the master device.

This protocol can be used to read information from a slave device. A NACK bit indicates the

end of the read transfer.

Figure 3.7. Receive Byte protocol.

 3.4.4. Write Byte and Write Word Protocols

 The Write Byte and Write Word protocols (Figure 3.8) enable to send one or two

bytes of data to a slave device. The master device sends the slave device address followed by

a write bit Wr. The slave device returns an ACK bit, and the master device sends the com-

mand code. The slave device again returns an ACK bit before the master device sends the

data byte or word (with the low byte first). The slave device acknowledges each byte, and the

entire transfer is finished with a STOP condition.

Figure 3.8. (a) Write Byte protocol; (b) Write Word protocol.

 3.4.5. Read Byte and Read Word Protocols

 The Read Byte and Read Word protocols (Figure 3.9) allow to read one or two bytes

of data from a slave device. The master device must first send a command to the slave device.

Then, it must follow the command with a repeated START condition to denote a read transfer

from the addressed device. The slave device then returns one or two bytes of data. There is no

STOP condition before the repeated START condition. The NACK bit indicates the end of

the read transfer.

Figure 3.9. (a) Read Byte protocol; (b) Read Word protocol.

7 Input/Output Systems and Peripheral Devices

 3.4.6. Process Call Protocol

 In the Process Call protocol (Figure 3.10), the master device sends a command code

followed by two bytes of data, and then waits for the slave device to return a two-byte value

dependent of the data sent. This protocol is a combination of the Write Word protocol fol-

lowed by the Read Word protocol without the Read Word command code and the Write Word

STOP condition. There is no STOP condition before the repeated START condition. The

NACK bit indicates the end of the transfer.

Figure 3.10. Process Call protocol.

 3.4.7. Block Write and Block Read Protocols

 In the Block Write protocol (Figure 3.11 (a)), the master device first sends a slave

device address and a write bit, followed by a command code. Then, the master device sends a

byte count which indicates the number of data bytes that will follow in the message. The byte

count may be zero. This protocol allows to transfer a maximum of 255 data bytes.

Figure 3.11. (a) Block Write protocol; (b) Block Read protocol.

 The Block Read protocol (Figure 3.11 (b)) differs from the Block Write protocol in

that a repeated START condition is inserted in order to allow the change of the transfer direc-

tion. A NACK bit immediately preceding the STOP condition indicates the end of the read

transfer.

 3.4.8. Block Write-Block Read Process Call Protocol

 The Block Write-Block Read Process Call protocol (Figure 3.12) has two parts. In the

first part of the protocol, the master device sends the slave device address, a write bit, the

command code, and a write byte count (M) that specifies how many more bytes will be sent in

the first part of the protocol. The write byte count may be zero. In the second part of the pro-

tocol, the master device generates a repeated START condition, then sends the slave device

address and a read bit. The slave device will send a read byte count (N), followed by N data

bytes. The read byte count may differ from the write byte count and may be zero. The com-

bined byte count (M + N) must not exceed 255. Note that there is no STOP condition before

the repeated START condition.

8 3. System Management Bus

Figure 3.12. Block Write-Block Read Process Call protocol.

 3.5. Differences between SMBus and I2C Bus

 SMBus is derived from the I2C bus, and therefore the two buses are very similar.

However, there are several differences between these buses regarding electrical characteris-

tics, timing, operation modes, and protocols. The most important differences are described

next.

• The minimum and maximum values of the VDD supply voltage are specified different-

ly for the SMBus and I2C buses. The SMBus specification restricts the nominal sup-

ply voltages of devices attached to the bus to a minimum of 1.8 V and a maximum of

5 V. The I2C specification is more tolerant regarding the values of the supply voltage.

• The I2C and SMBus specifications define the low-level and high-level input voltages

for the bus lines differently. The I2C specification defines the low-level input voltage

(VIL) as 30% of VDD, and the high-level input voltage (VIH) as 70% of VDD. The

SMBus specification defines fixed thresholds for these voltages; VIL is defined as

maximum 0.8 V, and VIH as minimum 1.35 V. However, even with the different spec-

ifications for the input voltage thresholds, in general, I2C and SMBus devices will be

interoperable over the supply voltages allowed by the SMBus specification.

• The SMBus specification limits to 10 ms the maximum amount of time a master de-

vice may extend the logic low state of the clock signal within each byte of a message.

There is also a limit of 25 ms on the total time a slave device may extend the logic

low state of the clock signal within each message. A further restriction on the SMBus

operation is a timeout interval of 35 ms, after which the bus is presumed hung and all

devices attached to the bus must reset their I/O interfaces. In contrast to the SMBus

specification, the I2C specification allows a master or a slave device to hold the clock

line in the logic low state for an unlimited amount of time, and there is no timeout in-

terval defined.

• The SMBus specification defines a bus with low-power electrical characteristics for

applications where power consumption must be minimized, such as in battery-

powered systems. The I2C bus does not have a similar specification.

• The SMBus specification requires a minimum operating frequency of 10 KHz, while

the I2C specification does not indicate a minimum bus frequency.

• The I2C specification does not require that a slave device always acknowledge its own

address. Consequently, if a device does not acknowledge its address, the controller

cannot detect whether the device is busy, has failed, or it has been removed from the

bus. To eliminate this confusion, the SMBus specification requires that a slave device

always acknowledge its own address.

9 Input/Output Systems and Peripheral Devices

• The I2C specification only defines three types of protocols or bus cycles: write cycle,

read cycle, and combined format cycle (these cycles are described in Section 3.7.1).

The SMBus specification defines a larger number of command protocols that may be

used for communication with devices. Therefore, not all I2C devices will support the

SMBus command protocols.

• An important difference between SMBus and the I2C bus is how the number of bytes

transferred is controlled during block write and block read transfers. During I2C write

cycles, the slave device is the one that determines the size of the data transfer by

sending a NACK bit after the last data byte accepted. During the SMBus Block Write

protocol, however, the master device determines the transfer size by sending the byte

count as part of the protocol; after the last byte sent, the master device expects a nor-

mal acknowledgement (ACK bit) from the slave device. During I2C read cycles, the

master device is the one that controls the transfer size. After it receives the last data

byte, the master device sends a NACK bit and generates a STOP condition, ending

the cycle. During the SMBus Block Read protocol, however, the slave device is the

one that determines the transfer size. After it returns the last data byte, the slave de-

vice sends a NACK bit, and then the master device generates a STOP condition, end-

ing the transfer.

• An I2C slave device sends a NACK bit to indicate that it cannot receive any more data

bytes. A SMBus slave device sends a NACK bit to indicate the reception of an invalid

command or data.

• During several SMBus protocols, a command code byte is sent after the slave device

address. I2C slave devices interpret this byte as the first write data byte in the data

block.

• The SMBus protocols for reading data from a device generally use a repeated START

condition. Some I2C devices may not recognize a repeated START condition. An at-

tempt to use a SMBus protocol with this condition to read data from an I2C device

may yield unexpected results.

 3.6. The Intel SMBus Controller

 The Platform Controller Hub (PCH) component of current Intel chipsets includes a

SMBus controller, which represents the PCIe device 31, function 3 (D31:F3) or device 31,

function 4 (D31:F4). The features of this controller depend on the chipset series. For instance,

the SMBus controller of the Intel 8 Series chipset used in the laboratory computers allows a

frequency of operation up to 100 KHz (with transfer speeds of up to 100 Kbits/s) and supports

the SMBus specification version 2.0. This controller also supports communication with many

devices that are compatible with the I2C bus.

 3.6.1. SMBus Controller Registers

 The Intel SMBus controller contains two categories of registers: PCI configuration

registers and I/O registers. The following sections describe the most important registers from

each category.

 3.6.1.1. PCI Configuration Registers

 The PCI configuration registers of the Intel SMBus controller include the PCI config-

uration header registers and a single PCI device-specific register. These registers can be ac-

cessed using either the PCI-compatible configuration mechanism or the PCIe enhanced con-

figuration mechanism. The PCI configuration registers are listed in Table 3.1. Each entry of

the table contains the offset of a PCI configuration register, its mnemonic, name, and size.

The offset is relative to the base address of the configuration space allocated for function 3 or

function 4 of PCIe device 31.

10 3. System Management Bus

Table 3.1. Intel SMBus controller PCI configuration registers.

Offset Mnemonic Register Name Size (Bits)

0x00 VID Vendor Identification 16

0x02 DID Device Identification 16

0x04 PCICMD PCI Command 16

0x06 PCISTS PCI Status 16

0x08 RID Revision Identification 8

0x09 PI Programming Interface 8

0x0A SCC Sub-Class Code 8

0x0B BCC Base Class Code 8

0x10 SMBMBAR0 Memory Base Address Register 0 32

0x14 SMBMBAR1 Memory Base Address Register 1 32

0x20 SMB_BASE SMBus Base Address 32

0x2C SVID Subsystem Vendor Identification 16

0x2E SID Subsystem Identification 16

0x3C INT_LN Interrupt Line 8

0x3D INT_PN Interrupt Pin 8

0x40 HOSTC Host Configuration 8

 Note

• In the SMBus-e.h header file, which will be used for the applications, the SMBus con-

troller’s PCI configuration registers are defined in a structure named SMBUS_CFG.

 PCI Configuration Header Registers

 The SMBus controller’s PCI configuration header registers (with offsets between

0x00 and 0x3D) have the same functions as the general PCI configuration header registers

described in the laboratory document PCI Express Bus. The SMBMBAR0 register contains on

bit positions 31 through 8 the low part of the base address for the memory mapped I/O regis-

ters, while the SMBMBAR1 register contains on bit positions 31 through 0 the high part of the

base address for the memory mapped I/O registers. The SMB_BASE register contains on bit

positions 15 through 5 the base address for the I/O registers mapped in the I/O space.

 HOSTC – Host Configuration Register

 The HOSTC register is specific to the SMBus controller. The bits of this register are

described next.

• Bits 7..5 are reserved.

• Bit 4 (SPD Write Disable): If set, writes to SMBus addresses between 0x50..0x57 are

disabled. This address range is used by SPD (Serial Presence Detect) memories;

these are serial-access EEPROM memories used in DIMM memory modules.

• Bit 3 (Soft SMBus Reset): If set, the SMBus state machine and logic is reset.

• Bit 2 (I2C_EN): If set, some command protocols of the SMBus controller are changed

in order to be able to communicate with I2C devices. The effects of setting this bit are

discussed in Section 3.6.2.5 and Section 3.6.2.6.

• Bit 1 (SMB_SMI_EN): If set, any source of a SMBus interrupt will be routed to gen-

erate a special System Management Interrupt (SMI).

• Bit 0 (HST_EN): If set, the SMB controller is enabled to execute commands.

 3.6.1.2. I/O Registers

 The most important I/O registers of the SMBus controller are listed in Table 3.2.

11 Input/Output Systems and Peripheral Devices

Table 3.2. Intel SMBus controller I/O registers.

Offset Mnemonic Register Name Size (Bits)

0x00 HST_STS Host Status 8

0x02 HST_CNT Host Control 8

0x03 HST_CMD Host Command 8

0x04 XMIT_SLVA Transmit Slave Address 8

0x05 HST_D0 Host Data 0 8

0x06 HST_D1 Host Data 1 8

0x07 Host_BLOCK_dB Host Block Data Byte 8

0x08 PEC Packet Error Check 8

0x0C AUX_STS Auxiliary Status 8

0x0D AUX_CTL Auxiliary Control 8

 Notes

• The SMBus controller’s I/O registers can be accessed either as memory mapped regis-

ters using the contents of SMBMBAR0 and SMBMBAR1 registers as base address, or

registers mapped in the I/O space using the contents of SMB_BASE register as base ad-

dress. The offsets are the same for both memory mapped registers and registers mapped

in the I/O space.

• In the SMBus-e.h header file, the SMBus controller’s memory mapped I/O registers are

defined in a structure called SMBUS_REG.

HST_STS – Host Status Register

 The HST_STS register contains status bits set by the SMBus controller. A status bit

can be cleared by the software writing 1 to the particular bit position. Writing 0 to any bit

position has no effect. The bits of this register are described next.

• Bit 7 (BYTE_DONE_STS): If set, the controller received a byte (for a block read

command) or it has completed transmission of a byte (for a block write command)

when the 32-byte buffer is not enabled. This bit has no meaning for block transfers

when the 32-byte buffer is enabled.

• Bit 6 (INUSE_STS): If set, the SMBus controller is in use by a software thread. This

bit can be used as semaphore among various software threads that may need to use

the SMBus controller. Software may check the status of this bit until it reads 0, and

then it may use the controller. Subsequent reads of this bit will return 1. A write of 1

to this bit will reset the next read value to 0.

• Bit 5 (SMBALERT_STS): If set, the source of an interrupt was the SMBALERT# sig-

nal. This is an optional interrupt signal of SMBus which can be used by a slave de-

vice to signal the controller that it has a message to send. The use of this signal is not

described in this laboratory work.

• Bit 4 (FAILED): If set, the source of an interrupt was a failed bus transaction. This bit

is set in response to the KILL bit of the Host Control register being set in order to ter-

minate a transaction.

• Bit 3 (BUS_ERR): If set, the source of an interrupt was a collision during execution

of a transaction.

• Bit 2 (DEV_ERR): If set, the source of an interrupt was either an invalid command

field or a timeout error generated by the controller.

• Bit 1 (INTR): If set, the source of an interrupt was the successful completion of the

last command. The INTR bit is not dependent on the status of the INTREN bit of the

Host Control register. If the INTREN bit is not set, then the INTR bit will be set at the

successful termination of a command, although the interrupt will not be generated.

12 3. System Management Bus

• Bit 0 (HOST_BUSY): If set, it indicates that the SMBus controller is running a com-

mand. No registers of the controller should be accessed while this bit is set, except for

the Host Block Data Byte register. This bit can be used to detect when the controller

has finished execution of a command.

 HST_CNT – Host Control Register

 The HST_CNT register allows specifying the command to be executed by the SMBus

controller, initiate execution of the specified command, and to enable the generation of an

interrupt when a command has been completed. The bits of this register are described next.

• Bit 7 (PEC_EN): If set, the SMBus controller will perform the bus transaction with

the Packet Error Checking (PEC) phase appended. For write transactions, the value

of the PEC byte is transferred from the PEC register. For read transactions, the PEC

byte is loaded into the PEC register. This bit must be set prior to the write operation

in which the START bit is set.

• Bit 6 (START): When this bit is set, the controller will start execution of the com-

mand specified in the SMB_CMD field of the Host Control register. All registers

needed for the command execution should be set prior to setting this bit.

• Bit 5 (LAST_BYTE): This bit is used for the Block Read and I2C Read commands.

Software sets this bit to indicate that the next byte will be the last byte to be received

in the data block. This causes the controller to send a NACK bit (instead of an ACK

bit) after receiving the last byte.

• Bits 4..2 (SMB_CMD): Software writes into this field the command code to be exe-

cuted by the controller. The encodings of supported commands and their names are

listed below; the commands are described in Section 3.6.2.

000: Quick Command;

001: Send/Receive Byte;

010: Write/Read Byte;

011: Write/Read Word;

100: Process Call;

101: Block Write/Read;

110: I2C Read;

111: Block Write-Block Read Process Call.

• Bit 1 (KILL): If set, the controller aborts the current transaction, sets the FAILED status

bit, and generates an interrupt if the interrupts are enabled. Once set, this bit must be

cleared by the software to allow the controller to operate normally.

• Bit 0 (INTREN): If set, this bit enables the generation of an interrupt when execution

of a command is completed.

 HST_CMD – Host Command Register

 The contents of the Host Command register are transmitted by the controller in the

Command Code field of the SMBus protocols during the execution of several commands.

 XMIT_SLVA – Transmit Slave Address Register

 The Transmit Slave Address register is written by the software with the slave device

address and direction bit. The contents of this register are transmitted by the controller in the

Address field of any SMBus protocol.

• Bits 7..1 (Address): This field contains the 7-bit address of the slave device.

13 Input/Output Systems and Peripheral Devices

• Bit 0 (RW): This bit indicates the direction of the transfer. A value of 0 indicates a

write transfer, while a value of 1 indicates a read transfer.

 HST_D0 – Host Data 0 Register

 For the Write Byte command, the Host Data 0 register is written by the software with

the data byte to be sent in the Data Byte field of the SMBus protocol. For the Write Word

command and Process Call command, this register is written by the software with the data

byte to be sent in the Data Byte Low field of the SMBus protocol. For the Block Write and

Block Write-Block Read Process Call commands, this register is written by the software with

the number of bytes to be transferred, number which will be sent in the Byte Count field of the

SMBus protocol.

 Note

• For the Block Write and Block Write-Block Read Process Call commands, the Host

Data 0 register should be written with a value between 1 and 32 for the byte count. A

value of 0 or above 32 will result in unpredictable behavior since the controller does

not check the validity of the byte count.

With the Read Byte command, after the command completes, the Host Data 0 register

will contain the data byte read. With the Read Word and Process Call commands, this register

will contain the data byte received in the Data Byte Low field of the SMBus protocol. With

the Block Read and Block Write-Block Read Process Call commands, this register will con-

tain the number of bytes to be received, number which is received in the Byte Count field of

the SMBus protocol.

 Note

• With the I2C Read command, each data byte read is stored in the Host Block Data

Byte register and not in the Host Data 0 register.

 HST_D1 – Host Data 1 Register

 For the Write Word and Process Call commands, this register is written by the soft-

ware with the data byte to be sent in the Data Byte High field of the SMBus protocol. For the

Read Word and Process Call commands, this register will contain the data byte received in

the Data Byte High field of the SMBus protocol. Other commands do not use this register.

 Host_BLOCK_dB – Host Block Data Byte Register

 Host Block Data Byte is either a register or a pointer into a 32-byte buffer, depending

on whether the E32B bit has been set in the Auxiliary Control register. When the E32B bit has

been cleared, this is a register containing a data byte to be sent with a block write transfer or

received with a block read transfer. When the E32B has been set, this register is used as a

pointer to access the 32-byte buffer. This pointer is reset to 0 by reading the Host Control

register. The pointer then increments automatically upon each access to this register.

 Details about using the Host Block Data Byte register are presented in Section 3.6.2.6.

 PEC – Packet Error Check Register

 For a write command, the Packet Error Check register is written with the 8-bit CRC

code representing the PEC byte prior to starting the command. For a read command, the PEC

byte is loaded into this register from the bus and then it can be read by software.

 AUX_STS – Auxiliary Status Register

 The main function of the Auxiliary Status register is to signal a CRC error in a re-

ceived message.

14 3. System Management Bus

• Bit 0 (CRC Error – CRCE): If set, it indicates that the received message contains a

CRC error. When this bit is set, the DEV_ERR bit of the Host Status register will also

be set.

 AUX_CTL – Auxiliary Control Register

 The Auxiliary Control register allows to enable or disable the 32-byte buffer and to

enable or disable appending the CRC code to a message.

• Bit 1 (Enable 32-Byte Buffer – E32B): If set, the Host Block Data Byte register is a

pointer into the 32-byte buffer, as opposed to a single data register. This enables the

block commands to send or receive up to 32 data bytes before the controller generates

an interrupt.

• Bit 0 (Automatically Append CRC – AAC): If set, the controller will automatically ap-

pend the CRC code to the message. This bit must not be changed during bus transac-

tions.

 3.6.2. SMBus Controller Commands

 The commands supported by the SMBus controller implement the SMBus protocols

that have been described in Section 3.4. In addition, the controller supports the I2C Read

command, which allows to read data from I2C-compatible devices that do not implement the

SMBus block read protocols.

 For issuing a certain command, the software should perform the following operations:

1. Wait until the SMBus controller finishes a previous command, when it clears the

HOST_BUSY bit in the Host Status register.

2. Set the controller’s registers needed for the command; the registers that should be set

for each command are presented in subsections 3.6.2.1 through 3.6.2.8.

3. Write to the Host Control register a byte containing the command code in the

SMB_CMD field and the START bit set to 1. Assuming that no interrupts are used, bit

0 (INTREN) of this byte should be 0.

 After issuing a command, the Host Status register is used to determine the progress of

the command. If the command completes successfully, the INTR bit will be set. If the device

does not respond with an ACK bit and the transaction times out, the DEV_ERR bit will be set.

If the software sets the KILL bit in the Host Control register during the command execution,

the transaction will be aborted, and the FAILED bit will be set in the Host Status register.

 Assuming that no interrupts are used, the software should perform the following

operations to determine if the command has completed and to check the completion status:

1. Wait the completion of command execution, when the controller sets either the INTR

bit in the Host Status register, or one of the following bits in the same register:

FAILED, BUS_ERR, or DEV_ERR.

2. After command completion, if the INTR bit is set, the command has completed suc-

cessfully. If one of the FAILED, BUS_ERR, or DEV_ERR bit is set, the command

completed with an error and the software may signal the type of error. In either case,

the software should clear the status bits in the Host Status register by reading the con-

tents of the register and writing back the value read.

 3.6.2.1. Quick Command

 Before issuing a Quick Command, the software must force the I2C_EN bit to 0 in the

Host Configuration register and the PEC_EN bit to 0 in the Host Control register. The Trans-

mit Slave Address register should be written with the slave device address in the Address field

and the command code (0 or 1) in the RW bit.

15 Input/Output Systems and Peripheral Devices

 Note

• The PEC_EN bit in the Host Control register must be written prior to the write opera-

tion in which the START bit is set in the same register.

 3.6.2.2. Send/Receive Byte Command

 For a Send Byte command, the Transmit Slave Address register must be written with

the slave device address in the Address field and the direction of transfer (0) in the RW bit.

The Host Command register should be written with the data byte to be sent.

 For a Receive Byte command, the Transmit Slave Address register must be written

with the slave device address in the Address field and the direction of transfer (1) in the RW

bit. The data byte received will be stored in the Host Data 0 register.

 3.6.2.3. Write/Read Byte Command

 For a Write Byte command, the Transmit Slave Address register must be written with

the slave device address in the Address field and the direction (0) in the RW bit. The Host

Command register should be written with the command code, and the Host Data 0 register

should be written with the data byte to be sent.

 For a Read Byte command, the Transmit Slave Address register must be written with

the slave device address in the Address field and the direction (1) in the RW bit. The Host

Command register should be written with the command code. The data byte read will be

stored in the Host Data 0 register.

 3.6.2.4. Write/Read Word Command

 For a Write Word command, the Transmit Slave Address register must be written with

the slave device address in the Address field and the direction (0) in the RW bit. The Host

Command register should be written with the command code. The Host Data 0 register should

be written with the low data byte to be sent, and the Host Data 1 register should be written

with the high data byte to be sent.

 For a Read Word command, the Transmit Slave Address register must be written with

the slave device address in the Address field and the direction (1) in the RW bit. The Host

Command register should be written with the command code. After command completion, the

low data byte read will be stored in the Host Data 0 register, and the high data byte read will

be stored in the Host Data 1 register.

 3.6.2.5. Process Call Command

 Before issuing a Process Call command, the software must force either the I2C_EN

bit to 0 in the Host Configuration register or the PEC_EN bit to 0 in the Host Control register.

 Note

• Executing a Process Call command with the I2C_EN and PEC_EN bits both set to 1

produces undefined results.

 For executing this command, the Transmit Slave Address register must be written

with the slave device address in the Address field and the direction (0) in the RW bit. The

Host Command register should be written with the command code. The Host Data 0 register

should be written with the low data byte to be sent, and the Host Data 1 register should be

written with the high data byte to be sent. After command completion, the low data byte re-

ceived will be stored in the Host Data 0 register, and the high data byte received will be

stored in the Host Data 1 register.

16 3. System Management Bus

 Note

• When operating in I2C mode, with the I2C_EN bit in the Host Configuration register

set, the implemented protocol changes in that the command code is not sent as part of

the message.

 3.6.2.6. Block Write/Read Command

 Before issuing a Block Write command, the software must either force the I2C_EN bit

to 0 in the Host Configuration register or force the PEC_EN bit in the Host Control register

and the AAC bit in the Auxiliary Control register both to 0.

 The Block Write/Read command may use the 32-byte buffer of the SMBus controller.

This buffer can be enabled by setting the E32B bit of the Auxiliary Control register. For a

write command, the software fills the 32-byte buffer with the data to be transmitted, and for a

read command, the controller fills the buffer with the data received. The controller will only

generate an interrupt after transmission or reception of 32 bytes, or when the byte count has

been exhausted.

 Note

• When operating in I2C mode, with the I2C_EN bit in the Host Configuration register

set, the controller will not use the 32-byte buffer for any block command.

 For a Block Write command, the Transmit Slave Address register must be written with

the slave device address in the Address field and the direction (0) in the RW bit. The Host

Command register should be written with the command code, and the Host Data 0 register

should be written with the byte count representing the number of bytes that will be sent. The

byte count may not be 0. Depending on whether the 32-byte buffer has been enabled or not,

the data bytes to be sent should be written to the controller’s registers as specified next.

• If the 32-byte buffer has been enabled, the software will write up to 32 data bytes into

the Host Block Data Byte register. The controller will send the slave device address,

the command code, the byte count, and all the data bytes from the 32-byte buffer.

• If the 32-byte buffer has been disabled, the software will write a single data byte into

the Host Block Data Byte register. After the controller sends the slave device address,

the command code, and the byte count, it will send the data byte from the Host Block

Data Byte register and will set the BYTE_DONE_STS bit in the Host Status register.

If there are more bytes to send, the software will write the next data byte into the Host

Block Data Byte register and will clear the BYTE_DONE_STS bit. The controller will

then send the next data byte.

 Note

• When operating in I2C mode, with the I2C_EN bit in the Host Configuration register

set, the implemented Block Write protocol changes in that the byte count contained in

the Host Data 0 register is not sent as part of the message.

 For a Block Read command, the Transmit Slave Address register must be written with

the slave device address in the Address field and the direction (1) in the RW bit. The Host

Command register should be written with the command code. After the controller sends the

slave device address and the command code, it receives the byte count in the Host Data 0

register. Depending on whether the 32-byte buffer has been enabled or not, the data bytes will

be received differently, as specified next.

• If the 32-byte buffer has been enabled, the controller will store the received data bytes

in the 32-byte buffer. If the byte count has been exhausted or the 32-byte buffer has

been filled, the controller will generate an interrupt and set the BYTE_DONE_STS bit

in the Host Status register. The software will then read the data bytes individually

17 Input/Output Systems and Peripheral Devices

from the Host Block Data Byte register, and then it will clear the BYTE_DONE_STS

bit.

 Note

• The software must perform a read of the Host Control register to reset the pointer into

the 32-byte buffer prior to reading the Host Block Data Byte register.

• If the 32-byte buffer has been disabled, the controller will store a received byte in the

Host Block Data Byte register. Then, the controller will generate an interrupt and set

the BYTE_DONE_STS bit in the Host Status register. The software will read the data

byte from the Host Block Data Byte register and will clear the BYTE_DONE_STS bit.

The controller will then receive the next data byte.

 3.6.2.7. I2C Read Command

 The I2C Read command allows to perform a block read operation with certain I2C-

compatible devices, such as serial EEPROM memories. For instance, this command allows

access to devices that are using the I2C combined format cycle and require to send a single

byte after the slave device address. Typically, this byte corresponds to an address (offset)

within the memory chip.

 When executing an I2C Read command, the SMBus controller sends the slave device

address followed by the contents of the Host Data 1 register. The controller then generates a

repeated START condition, sends the slave device address again, and begins to receive a

number of data bytes from the slave device. After the required number of data bytes have

been received, the controller sends a NACK bit and generates a STOP condition, ending the

transfer.

 The I2C Read command only supports the 7-bit addressing mode of the I2C bus.

 Before issuing an I2C Read command, the software must force both the PEC_EN bit

in the Host Control register and the AAC bit in the Auxiliary Control register to 0.

 Notes

• Executing an I2C Read command with the PEC_EN bit set to 1 produces undefined

results.

• Execution of an I2C Read command is supported by the controller regardless of the

setting of the I2C_EN bit in the Host Configuration register.

Before issuing an I2C Read command, the Transmit Slave Address register must be

written with the slave device address in the Address field and the direction (0) in the RW bit.

The Host Data 1 register should be written with the byte to be sent to the slave device; for

instance, this byte might be the starting address from which the contents of a memory chip

should be read.

 Notes

• For the I2C Read command, the RW bit in the Transmit Slave Address register must

be set to 0; this setting is different from the setting for other read commands, for

which the RW bit must be set to 1, corresponding to the read direction.

• Since a single byte is sent after the slave device address, the I2C Read command can-

not be used with devices that require to send more than one byte after the slave device

address, such as with memories that require a two-byte address.

For receiving the data from the slave device, the software should perform the follow-

ing operations for each data byte:

1. Check the status of the BYTE_DONE_STS bit in the Host Status register and wait un-

til the controller sets this bit to 1, which means that it has received a data byte and

stored it in the Host Block Data Byte register.

18 3. System Management Bus

2. Read the contents of the Host Block Data Byte register into a buffer in memory.

3. Clear the BYTE_DONE_STS bit in the Host Status register.

4. If the byte received is the next to last byte, set the LAST_BYTE bit in the Host Con-

trol register and continue with Step 1 (setting this bit will cause the controller to send

a NACK bit instead of an ACK bit after receiving the last byte). Otherwise (if the

byte received is not the next to last byte), continue with Step 1.

5. If the byte received is the last byte, clear the LAST_BYTE bit in the Host Control reg-

ister and the operation is completed. Otherwise, continue with Step 1.

 3.6.2.8. Block Write-Block Read Process Call Command

 The Block Write-Block Read Process Call command implements the SMBus protocol

with the same name, which has been described in Section 3.4.8. However, the following dif-

ferences exist between this command and the corresponding protocol described in the SMBus

specification:

• In the command implementation, none of the byte counts, write byte count (M) and

read byte count (N), can be zero, while in the protocol specification any byte count

can be zero.

• In the command implementation, the combined byte count (M + N) must not exceed

32, while in the protocol specification the combined byte count must not exceed 255.

 Note

• The E32B bit in the Auxiliary Control register must be set before issuing this com-

mand.

For executing the Block Write-Block Read Process Call command, the Transmit Slave

Address register must be written with the slave device address in the Address field and the

direction (0) in the RW bit. The Host Command register should be written with the command

code. The Host Data 0 register should be written with the write byte count indicating the

number of data bytes that will be sent. The data bytes to be sent should be written into the

Host Block Data Byte register, byte by byte; they will be stored in the 32-byte buffer.

 After sending the slave device address, command code, write byte count, and data

bytes from the 32-byte buffer, the controller receives the read byte count and stores it in the

Host Data 0 register. The controller then receives the number of data bytes indicated by the

read byte count, stores them in the 32-byte buffer, generates an interrupt, and sets the

BYTE_DONE_STS bit in the Host Status register. The software should perform a read of the

Host Control register to reset the pointer into the 32-byte buffer, should read the data bytes

individually from the Host Block Data Byte register, and clear the BYTE_DONE_STS bit.

 3.7. Using the Intel SMBus Controller with I2C Devices

 The I2C bus is used by a wide variety of devices, such as EEPROM memories, real-

time clocks, and various types of sensors, including temperature sensors. The Intel SMBus

controller can communicate with many of these devices in addition to be able to communicate

with native SMBus devices.

 There are several differences between the I2C bus cycles and the SMBus protocols;

some of these differences have been discussed in Section 3.5. However, by a careful selection

of specific controller commands and by certain register settings, it is often possible to estab-

lish a communication between the SMBus controller and I2C slave devices. For instance, the

SMBus controller includes a setting to enable the I2C mode; this is achieved by setting the

I2C_EN bit in the Host Configuration register. In addition, the controller provides a specific

I2C command called I2C Read, which has been described in Section 3.6.2.7. Nonetheless,

neither of these settings places the controller into a 100% I2C mode.

19 Input/Output Systems and Peripheral Devices

 3.7.1. I2C Bus Cycles

 The I2C bus specification defines three basic bus cycle types: write cycle, read cycle,

and combined format cycle type. Each cycle type operates in block mode, being able to trans-

fer more than one data byte. In this section, the basic I2C bus cycle types are presented, and

the differences between each cycle type and a corresponding SMBus protocol are underlined.

 3.7.1.1. I2C Write Cycle

 The I2C write cycle is illustrated in Figure 3.13. The master device can send multiple

data bytes to the slave device; the number of bytes is not limited. The number of bytes trans-

ferred is determined by the slave device; after a certain number of bytes received, the slave

device sends a NACK bit, and then the master device generates a STOP condition. This cycle

differs from the SMBus Block Write protocol, in which the master device determines the

transfer size by only sending the required number of bytes during the transfer.

Figure 3.13. I2C write cycle.

 Another difference from the SMBus Block Write protocol is that during the I2C write

cycle the data bytes are sent immediately after the slave device address, while during the

SMBus protocol a command code and a byte count are sent before sending the data bytes.

This may prevent the Block Write protocol from being used with I2C devices. Another poten-

tial problem is that an I2C slave device will send a NACK bit after receiving the last data byte,

while, according to the SMBus protocol, the master device expects an ACK bit from the slave

device even after the last data byte.

 3.7.1.2. I2C Read Cycle

 The I2C read cycle is illustrated in Figure 3.14. The master device can read multiple

data bytes from the slave device; the number of bytes is not limited. The number of bytes

transferred is determined by the master device; after a certain number of data bytes received,

the master device sends a NACK bit, and then it generates a STOP condition.

Figure 3.14. I2C read cycle.

 The I2C read cycle differs significantly from the SMBus Block Read protocol. During

the I2C read cycle, the data bytes are received by the master device immediately after it sends

the slave device address. During the SMBus Block Read protocol, after sending the slave de-

vice address, the master device sends a command code, then it generates a repeated START

condition, sends the slave device address again, and expects a read byte count from the slave

device before the data bytes themselves. Due to these differences, the SMBus Block Read

protocol cannot be used to communicate with devices that use the I2C read cycle.

20 3. System Management Bus

 3.7.1.3. I2C Combined Format Cycle

 The I2C combined format cycle is illustrated in Figure 3.15. In the first part of this

cycle type, the master device sends the slave device address, after which it sends a number of

data bytes to the slave device until the slave device sends a NACK bit. In the second part of

this cycle type, the master device generates a repeated START condition, sends the slave de-

vice address again, receives a certain number of data bytes from the slave device, sends a

NACK bit, and generates a STOP condition.

Figure 3.15. I2C combined format cycle.

 For communication with I2C devices that use the I2C combined format cycle, a possi-

bility would be to use the SMBus Block Write-Block Read Process Call protocol. However,

one problem is that during this protocol the master device sends a command code and a write

byte count, which are not part of the I2C combined format cycle. Another problem is that in

the SMBus protocol, after generating a repeated START condition and sending the slave de-

vice address, the master device expects to receive a read byte count, which is also not part of

the I2C combined format cycle. Therefore, the SMBus Block Write-Block Read Process Call

protocol cannot be used to communicate with devices that use the I2C combined format cycle.

 3.7.2. I2C-Compatible SMBus Controller Commands

 The protocol used by several commands of the SMBus controller can be changed to a

certain extent in order to be more compatible with the I2C bus cycles by setting the I2C_EN

bit in the Host Configuration register. The effects of setting the I2C_EN bit are the following:

• The Block Write command will not send the byte count;

• The Process Call command will not send the command code.

 Note

• Setting the I2C_EN bit and selecting the I2C Read command should not be confused.

Setting the I2C_EN bit modifies the execution of the Block Write and Process Call

commands, while selecting the I2C Read command allows to implement a particular

I2C combined format cycle, as described in Section 3.6.2.7.

 When the SMBus controller must be used with a certain I2C device, there is no gen-

eral rule to determine if communication with that device is possible. The device’s datasheet

should be analyzed carefully to determine which I2C cycles are needed and whether a particu-

lar cycle can be created by the SMBus controller. The following commands of the SMBus

controller can be considered compatible with certain I2C devices under the specified condi-

tions:

• Quick Command: Sends the slave device address and the R/W# bit to the device; this

bit specifies a command for the device.

• Send Byte: Sends a single data byte from the Host Command register to the device.

• Receive Byte: Receives a single data byte from the device into the Host Data 0 regis-

ter.

• Write Byte: Sends two data bytes to the device, the first from the Host Command reg-

ister and the second from the Host Data 0 register.

21 Input/Output Systems and Peripheral Devices

• Read Byte: Sends a single data byte from the Host Command register to the device

and receives a single data byte from the device into the Host Data 0 register.

• Write Word: Sends three data bytes to the device, the first from the Host Command

register, the second from the Host Data 0 register, and the third from the Host Data 1

register.

• Read Word: Sends a single data byte from the Host Command register to the device

and receives two data bytes from the device, the first into the Host Data 0 register and

the second into the Host Data 1 register.

• Process Call with I2C_EN = 1: Sends two data bytes to the device, the first from the

Host Command register and the second from the Host Data 0 register, and receives

two data bytes from the device, the first into the Host Data 0 register and the second

into the Host Data 1 register.

• Block Write with I2C_EN = 1: Sends N data bytes to the device, the first byte from the

Host Command register, and the remaining N–1 bytes from the 32-byte buffer or in-

dividually from the Host Block Data Byte register.

 Note

• The Block Write command of the SMBus controller can transfer a maximum of 32 da-

ta bytes when the 32-byte buffer is enabled, although the I2C bus does not limit the

transfer size.

• I2C Read: Sends a single data byte from the Host Data 1 register to the device and re-

ceives N data bytes from the device, individually into the Host Block Data Byte regis-

ter.

 3.7.3. Examples for Using I2C Devices with the SMBus Controller

 In this section, two examples are presented for connecting I2C-compatible devices to

the SMBus controller. The first example is for connecting a serial EEPROM device, and the

second example is for connecting an analog-to-digital converter.

 3.7.3.1. Using the Microchip 24LC01B EEPROM

 The Microchip Technology 24LC01B device is a serial EEPROM with a capacity of

1 Kbit. The device is organized as one block of 128 x 8-bit memory. This device is commonly

used in DIMM memory modules as the SPD (Serial Presence Detect) EEPROM.

 We will only refer to the read operations supported by this memory, although the

device also supports write operations. This memory supports the following read operations:

current address read; random read; sequential read.

 Current Address Read

 The 24LC01B device has an internal address pointer to the last byte accessed during a

previous operation. This pointer is initialized to zero when the device is powered up and is

incremented automatically after each read or write access. The current address read cycle is

illustrated in Figure 3.16.

Figure 3.16. Current address read cycle of the Microchip 24LC01B memory device.

 For the current address read cycle, the controller sends the slave device address and

the R/W# bit set to 1 (Rd bit). The device sends an ACK bit and then sends the current data

22 3. System Management Bus

byte from the memory. It is easy to observe that this cycle can be created using the Receive

Byte command of the SMBus controller.

 Random Read

 A random read operation allows to access any memory location regardless of previ-

ous accesses. The random read cycle is illustrated in Figure 3.17. After sending the slave de-

vice address and the R/W# bit set to 0 (Wr bit), the controller sends the 8-bit address of the

location to be accessed, then it generates a repeated START condition and sends the slave

device address again. The device sets the internal address pointer and then sends the data byte

from the addressed location.

Figure 3.17. Random read cycle of the Microchip 24LC01B memory device.

 Reviewing the SMBus protocols, it can be seen that the random read cycle is similar

to the SMBus Read Byte protocol. The Read Byte command of the SMBus controller can be

used to create this cycle, with the Host Command register containing the location address.

 Sequential Read

 A sequential read operation can be initiated by the controller similarly to a random

read operation, by sending the slave device address, the Wr bit, the address of the first loca-

tion to be accessed, followed by a repeated START condition and the slave device address

(Figure 3.18). The device sets the internal address pointer and then sends a block of data bytes

starting from the addressed location. The device is expecting the controller to terminate the

cycle by sending a NACK bit after the last data byte (n + x) and generating a STOP condition.

Figure 3.18. Sequential read cycle of the Microchip 24LC01B memory device.

 This cycle can be created using the I2C Read command of the SMBus controller. The

Host Data 1 register must be loaded with the location address before issuing the command.

Software should monitor the data bytes read and set the LAST_BYTE bit in the Host Control

register after receiving the next to last byte to ensure that the controller sends a NACK bit

after the last byte.

 3.7.3.2. Using the LTC2481 Analog-to-Digital Converter

 The LTC2481 device is a 16-bit analog-to-digital converter by Linear Technology.

The device can be configured through an I2C interface to provide a programmable gain from 1

to 256, to digitize an external signal or an integrated sensor temperature, select line frequency

noise rejection (50 Hz, 60 Hz, or simultaneous 50Hz and 60 Hz), and select a 2x speed up

mode.

 The LTC2481 converter has two registers, an output register, and a configuration

register. The output register contains the last conversion result. The configuration register is

user-programmable and allows to set the converter operation mode. The device supports sev-

eral write and read operations. Write operations allow to initiate a new conversion and to set

the operation mode of the converter. Read operations allow to read up to three bytes from the

device, which include the last conversion result and the contents of the configuration register.

23 Input/Output Systems and Peripheral Devices

 Initiating a New Conversion

 A new conversion may be initiated with a simple write cycle. For this cycle, the

SMBus controller sends the device address and a Wr bit (Figure 3.19). The device sends an

ACK bit to acknowledge the write cycle. When the controller finishes the cycle by generating

a STOP condition, the device initiates a new conversion. The result of this conversion can be

retrieved with a subsequent read cycle.

Figure 3.19. Write cycle for initiating a new conversion for the LTC2481 device.

 This write cycle can be created using the Quick Command of the SMBus controller.

 Initiating a New Conversion with Configuration Updating

 A modified write cycle can be used to initiate a new conversion and to write a new

configuration into the configuration register. After the SMBus controller sends the device

address and a Wr bit, the device acknowledges the write cycle. The controller then sends a

data byte containing the new configuration (Figure 3.20). The device sends an ACK bit, and

the controller generates a STOP condition, when the device initiates a new conversion.

Figure 3.20. Write cycle for initiating a new conversion and updating the configuration of the LTC2481 device.

 This modified write cycle can be created using the Send Byte command of the SMBus

controller.

 Continuous Read

 When the configuration does not need to change after each conversion cycle, the con-

version result can be read continuously. When the device finishes a conversion, it may be

addressed for a read operation. At the end of a read operation, a new conversion begins. If the

conversion cycle is not finished and the device receives a valid command, it sends a NACK

bit indicating that the conversion cycle is in progress.

 The cycle for reading a 24-bit value from the converter is illustrated in Figure 3.21.

After receiving the slave device address and a Rd bit, the converter sends three data bytes to

the controller, which then sends a NACK bit and generates a STOP condition.

Figure 3.21. Read cycle for reading the last conversion result and the configuration register of the LTC2481

device.

 Since this cycle requires three bytes to be read from the device, it will have to be cre-

ated using one of the block commands of the SMBus controller. However, none of the availa-

ble commands allows to create this cycle, and therefore the continuous read operation cannot

be issued using the SMBus controller.

 Continuous Write/Read

 After a conversion cycle is completed, the configuration register of the LTC2481

converter can be updated and the three data bytes can be read from the device with the cycle

illustrated in Figure 3.22.

24 3. System Management Bus

Figure 3.22. Write, read, start conversion cycle of the LTC2481 device.

 For this cycle, the controller sends the slave device address, a Wr bit, and a data byte

containing the configuration information. The controller then generates a repeated START

condition and sends the slave device address again. The device returns three data bytes to the

controller, which sends a NACK bit and generates a STOP condition.

 This cycle can be created using the I2C Read command of the SMBus controller. The

Host Data 1 register must be loaded with the configuration information before issuing the

command. The software should set the LAST_BYTE bit in the Host Control register after re-

ceiving the second data byte from the device, which will cause the controller to send a NACK

bit and to generate a STOP condition after the third byte received.

 3.8. Applications

 3.8.1. Answer the following questions:

a. What are the improvements of SMBus introduced in version 2.0 and version 3.0 of

the SMBus specification?

b. What are the main differences between SMBus and the I2C bus?

c. What is the difference between the I2C read cycle and the SMBus Block Read proto-

col?

d. What is the effect of setting the I2C_EN bit in the Host Configuration register of the

Intel SMBus controller compared to selecting the I2C Read command of this control-

ler?

 3.8.2. Open the project created for Application 2.7.5 of the PCI Express Bus laborato-

ry. Copy to the project folder the SMBus-e.h file, available on the laboratory web page in the

SMBus-e.zip archive. Add to the project the SMBus-e.h header file, open the AppScroll-e.cpp

source file, and add a #include directive to include the SMBus-e.h header file. In the

AppScroll-e.cpp source file, write a function that returns the base address (of type WORD) for

the I/O registers mapped in the I/O space of the SMBus controller. The input parameter of this

function is the pointer to the PCIe configuration header of the SMBus controller, determined

in Application 2.7.5. Call this function, store the base address returned by the function in a

global variable, and display the base address.

 Notes

• In the PCIe configuration header, the register containing the base address for the I/O

registers mapped in the I/O space of the SMBus controller is SMB_BASE. The base

address is in the low word of this 32-bit register. Bit 0 of the base address read from

this register should be cleared to 0.

• For an AMD processor, if the SMBus controller is found on bus 0, device 20, and

function 0, the base address of the I/O registers cannot be determined by reading the

registers of the PCIe configuration header. In this case, the function will return a base

address of 0x0B00.

 3.8.3. Extend Application 3.8.2 by writing a function that aborts the current transac-

tion of the SMBus controller. The input parameter of the function is the base address for the

I/O registers mapped in the I/O space of the SMBus controller. The function sets the KILL bit

in the Host Control register, waits for a certain time (e.g., 100 ms), and then clears the KILL

25 Input/Output Systems and Peripheral Devices

bit. The function returns 0 if the current transaction has been aborted and 1 otherwise. The

transaction has been aborted if the HOST_BUSY bit in the Host Status register is not set and

the FAILED bit in the same register is set.

 3.8.4. Continue Application 3.8.2 by writing a function that sends the Receive Byte

command to an SMBus device. The input parameters of the function are the handler to the

application window (of type hWnd), and the SMBus device address (of type BYTE). The func-

tion returns 0 if the Receive Byte command completed successfully, in which case the INTR

bit in the Host Status register is set. The function returns 1 if the command execution is com-

pleted with an error, when one of the following bits of the Host Status register is set: FAILED,

BUS_ERR, or DEV_ERR.

 Notes

• Define the offsets of the registers used in the function and the bitmasks needed for

these registers with #define directives at the beginning of the AppScroll-e.cpp file.

• When calling the HW driver functions to access a register, the address of the register

is formed by adding its offset to the base address of the I/O registers of the SMBus

controller.

 3.8.5. Continue Application 3.8.2 to identify the devices connected to the SMBus of

the computer. In the main function (AppScroll) of this application, after determining the

base address for the I/O registers of the SMBus controller with the function written for Appli-

cation 3.8.2, send the Receive Byte command to devices with addresses between 0x10 and

0x7F with the function written for Application 3.8.4. If the execution of this command is

completed successfully, display a message indicating that an SMBus device has been found

and display the device address. Additionally, display the type of the device detected, based on

the following address ranges used by some SMBus devices:

• 0x18..0x1F: Thermal sensors of an SPD memory;

• 0x30..0x37: Write protection for an SPD memory;

• 0x40..0x47: Real-time clock;

• 0x50..0x57: SPD memory.

 3.8.6. Extend the application that identifies the devices connected to the SMBus by

writing a function that sends the Read Byte command to an SMBus device. The input parame-

ters of the function are the handler to the application window (of type hWnd), the SMBus de-

vice address (of type BYTE), and the command code (of type BYTE). The function returns the

same values as the function that sends the Receive Byte command, written for Application

3.8.4.

 3.8.7. Extend the application that identifies the devices connected to the SMBus with

a function that reads and displays the contents of an SPD memory. The input parameters of

the function are the handler to the application window (of type hWnd) and the SMBus device

address (of type BYTE). The function returns the same values as the function that sends the

Receive Byte command, written for Application 3.8.4. The operations that should be per-

formed by this function are the following:

1. Send the Read Byte command to the device (an SPD memory), with the command

code set to 0. When receives this command, the SPD memory will reset its internal

pointer and will return the first byte from the memory.

2. Store the received byte in the first location of a 512-bytes buffer, and based on this

byte, determine the number of bytes used in the SPD memory. This number is indi-

cated by bits 3..0 of the byte received. When these bits are 0001, 128 bytes are used

in the SPD memory, when they are 0010, 256 bytes are used, and when they are 0011,

384 bytes are used. For other combinations, it is assumed that the number of bytes

used is 512.

26 3. System Management Bus

3. Send repeatedly (in a loop) the Receive Byte command to the device and store the

bytes received starting with the second location of the 512-byte buffer. The iteration

count should be the number of bytes used in the SPD memory minus 1.

4. Display the contents of the SPD memory. In each line, display three digits in decimal

representing the offset of an 8-byte area in the memory, followed by 8 data bytes in

hexadecimal.

In the main function of the application, call the function described previously for each

SPD memory detected on the SMBus; SPD memories have addresses between 0x50 and 0x57.

 3.8.8. Modify Application 3.8.7 to decode part of the information read from an SPD

memory rather than displaying the memory contents. To decode the contents of the memory,

use the SPD-e.h header file, available on the laboratory web page in the SPD-e.zip archive.

The following information should be decoded:

• SPD revision;

• DRAM device type;

• Module type;

• SDRAM density (capacity);

• Number of internal banks;

• Module nominal voltage;

• Memory type and bus frequency, based on the minimum cycle time;

• Minimum CAS latency time (ns);

• Minimum RAS to CAS delay time (ns);

• Minimum RAS precharge time (ns).

• Module manufacturer;

• Module serial number;

• Module part number;

• DRAM manufacturer.

 Note

• The SPD-e.h header file defines structures to simplify decoding the SPD memory

contents. Each structure contains a byte and a pointer to a character string. Based on

the value of a byte in the SPD memory, it is possible to directly display the character

string corresponding to the byte meaning. The file also includes comments describing

the meaning of the most important bytes of the SPD memory.

 3.8.9. Extend Application 3.8.7 by writing a function that sends the I2C Read com-

mand to an SMBus device and stores in a buffer the specified number of bytes received from

the device. The input parameters of the function are the following: the handler to the applica-

tion window (of type hWnd); the SMBus device address (of type BYTE); the command code

(of type BYTE); a pointer to the receive buffer (of type PBYTE); and the number of bytes to be

received (of type int). If the specified number of bytes to be received is 0, the function de-

termines the number of bytes to be received as described in Step 2 of the operations to be

performed for Application 3.8.7. The function returns the same values as the function that

sends the Receive Byte command, written for Application 3.8.4. The function should perform

the operations described in Section 3.6.2.7 for receiving each data byte from the device.

 3.8.10. Modify Application 3.8.7 in order to use the I2C Read command for reading

the contents of an SPD memory instead of the Read Byte and Receive Byte commands.

Change the function that reads and displays the contents of an SPD memory so that it calls the

function written for Application 3.8.9 for sending the I2C Read command to the SPD memory.

When calling this function, specify the value 0 for the command code (which will reset the

internal pointer of the memory) and the value 0 for the number of bytes to be received (there-

fore, the number of bytes to be received will be determined from the first byte read from the

memory).

27 Input/Output Systems and Peripheral Devices

 Bibliography

[1] Fan, Roger, “SMBus Quick Start Guide”, Application Note AN4471, Rev. 1, Freescale

Semiconductor Inc., 2012, http://cache.freescale.com/files/32bit/doc/app_note/

AN4471.pdf.

[2] Fleming, Sam, “Interfacing I2C Devices to an Intel SMBus Controller”, White Paper,

Intel Corporation, 2009, http://www.intel.com/content/dam/www/public/us/en/

documents/white-papers/smbus-controller-i2c-devices-paper.pdf.

[3] Intel Corporation, “Intel 8 Series/C220 Series Chipset Family Platform Controller Hub

(PCH)”, Datasheet, May 2014, http://www.intel.com/content/dam/www/public/us/en/

documents/datasheets/8-series-chipset-pch-datasheet.pdf.

[4] JEDEC Solid State Technology Association, "SPD Annex L: Serial Presence Detect

(SPD) for DDR4 SDRAM Modules", Release 6, SPD4.1.2.L-6, Nov. 2020.

[5] JEDEC Solid State Technology Association, “Standard Manufacturer’s Identification

Code”, JEP106BC, Feb. 2021.

[6] Linear Technology Corporation, “LTC2481 – 16-Bit  ADC with Easy Drive Input

Current Cancellation and I2C Interface”, 2005, http://cds.linear.com/docs/en/datasheet/

2481fd.pdf.

[7] Melexis Microelectronic Integrated Systems, “SMBus Communication with

MLX90614”, Application Note, Rev. 004, 2008, http://www.generationrobots.com/

media/SMBus-communication-with-MLX90614.pdf.

[8] Microchip Technology Inc., “24AA01/24LC01B 1K I2C Serial EEPROM”, Datasheet

DS21711J, 2009, http://ww1.microchip.com/downloads/en/DeviceDoc/21711J.pdf.

[9] System Management Interface Forum, “System Management Bus (SMBus)

Specification”, Version 3.0, 20 December 2014, http://pmbus.org/Assets/PDFS/Public/

SMBus_3_0_20141220.pdf.

http://cache.freescale.com/files/32bit/doc/app_note/%20AN4471.pdf
http://cache.freescale.com/files/32bit/doc/app_note/%20AN4471.pdf
http://www.intel.com/content/dam/www/public/us/en/%20documents/white-papers/smbus-controller-i2c-devices-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/%20documents/white-papers/smbus-controller-i2c-devices-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/%20documents/datasheets/8-series-chipset-pch-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/%20documents/datasheets/8-series-chipset-pch-datasheet.pdf
http://cds.linear.com/docs/en/datasheet/%202481fd.pdf
http://cds.linear.com/docs/en/datasheet/%202481fd.pdf
http://www.generationrobots.com/%20media/SMBus-communication-with-MLX90614.pdf
http://www.generationrobots.com/%20media/SMBus-communication-with-MLX90614.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21711J.pdf
http://pmbus.org/Assets/PDFS/Public/%20SMBus_3_0_20141220.pdf
http://pmbus.org/Assets/PDFS/Public/%20SMBus_3_0_20141220.pdf

